Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống
1
/ 67 trang
THÔNG TIN TÀI LIỆU
Thông tin cơ bản
Định dạng
Số trang
67
Dung lượng
1,68 MB
Nội dung
Chuong 1 : TÍNH TRỰC TIẾP
Câu 1. Trong hộp có 10 viên bi cùng kích cỡ, được đánh số từ 1 đến 10. Lấy ngẫu
nhiên trong hộp ra 1 viên bi. Xác suất để số viết trên viên bi lấy ra không vượt quá 10
a. 0
b. 0,1
c. 0,5
d. 1
Câu 2. Trong hộp có 15 viên bi cùng kích cỡ, gồm 5 trắng và 10 đen. Xác suất rút
trong hộp ra viên bi den
a. 0
b. 0,3
c. 0,6
d. 1
Câu 3. Trong hộp có 10 viên bi cùng kích cỡ, gồm 6 trắng và 4 đen. Lấy ngẫu nhiên
trong hộp ra 2 viên bi. Xác suất để cả 2 viên bi đều trắng
a. 1/5
b. 1/3
c. 1/2
d. 1
Câu 4. Gieo 2 lần liên tiếp một đồng xu cân đối đồng chất. Xác suất để cả 2 lần đều
xuất hiện mặt sấp
a. 1/2
b. 1/4
c. 0
d. 1
Câu 5. Trong hộp I có các viên bi đánh số từ 1 đến 5, hộp II có các viên bi đánh số từ
6 đến 10. Các viên bi cùng kích cỡ. Lấy ngẫu nhiên ở mỗi hộp 1 viên bi. Xác suất để
tổng các số viết trên 2 viên bi lấy ra không nhỏ hơn 7
24/25
a. 1
b. 1/5
c.3/5
d. 0
Câu 6. Trong hộp I có các viên bi đánh số từ 1 đến 5, hộp II có các viên bi đánh số từ
6 đến 10. Các viên bi cùng kích cỡ. Lấy ngẫu nhiên ở mỗi hộp 1 viên bi. Xác suất để
tổng các số viết trên 2 viên bi lấy ra không lớn hơn 11
a. 1
b. 1/5
c. 3/5
d. 0
Câu 7. Có 2 hộp đựng bi (kích cỡ như nhau), hộp I có 3 xanh và 7 đỏ, hộp II có 5
xanh, 7 đỏ. Chọn ngẫu nhiên 1 bi ở hộp I và 1 bi ở hộp II. Xác suất để cả 2 bi đều
xanh
a. 1/8
b. 1/4
c. 3/8
d. 1/5
Câu 8. Trong hộp bi có 6 viên đỏ và 4 viên đen (cùng kích cỡ). Rút ra ngẫu nhiên 2
viên bi. Xác suất để trong 2 viên bi rút ra có ít nhất 1 viên đỏ
a. 1/10
b. 2/15
c. 1/3
d. 13/15
Câu 9. Một lớp học có 30 sinh viên, trong đó có 5 em giỏi, 10 em khá và 10 em trung
bình. Chọn ngẫu nhiên 3 em trong lớp. Xác suất để cả 3 em được chọn đều là sinh
viên yếu
a. 1/406
b. 1/203
c. 6/203
d. 3/145
Câu 10. Một hộp bi gồm 4 bi đỏ và 6 bi xanh (cùng kích cỡ) được chia thành hai phần
bằng nhau. Xác suất để mỗi phần đều có cùng số bi đỏ và bi xanh
a. 6/25
b. 10/21
c. 1/2
d. 24/25
1
Câu 11. Một nhóm gồm 5 người ngồi trên một ghế dài. Xác suất để 2 người xác định
trước luôn ngồi cạnh nhau
a. 0,1
b. 0,2
c. 0,3
d. 0,4
Câu 12. Gieo đồng thời 2 con xúc xắc cân đối đồng chất. Xác suất để được hai mặt có
tổng số chấm bằng 7
a. 1/6
b. 1/12
c. 1/36
d. 1/18
Câu 13. Một tổ gồm 4 nam và 3 nữ. Chọn liên tiếp 2 người. Xác suất để có 1 nam và
1 nữ
a. 1/7
b. 2/7
c. 4/7
d.1/12
Câu 14. Một tổ gồm 4 nam và 3 nữ. Chọn liên tiếp 2 người. Xác suất để cả hai là nữ
a. 1/7
b. 2/7
c. 4/7
d.1/12
Câu 15. Xác suất để một thiết bị bị trục trặc trong một ngày làm việc bằng α = 0,01.
Xác suất để trong 4 ngày liên tiếp máy làm việc tốt
a. 0,95
b. 0,96
c. 0,98
d.1
Câu 16. Gieo 5 lần một đồng xu cân đối đồng chất. Xác suất để có ít nhất 1 lần mặt
sấp
a. 1/32
b. 5/16
c. 11/16
d. 31/32
Câu 17. Hai người cùng bắn vào một con thú. Khả năng bắn trúng của từng người là
0,8 và 0,9. Xác suất để thú bị trúng đạn
a. 0,98
b. 0,72
c. 0,28
d. 0,02
Câu 18. Tín hiệu thông tin được phát 3 lần với xác suất thu được mỗi lần là 0,4. Xác
suất để nguồn thu nhận được thông tin đó
a. 0,216
b. 0,784
c. 0,064
d. 0,936
Câu 19. Trong 10 sản phẩm có 2 phế phẩm. Lấy ra ngẫu nhiên 2 sản phẩm (lấy có
hoàn lại). Xác suất để cả 2 sản phẩm lấy ra đều là phế phẩm
a. 0,022
b. 0,04
c. 0,2
d. 0,622
Câu 20. Trong 10 sản phẩm có 2 phế phẩm. Lấy ra ngẫu nhiên 2 sản phẩm (lấy không
hoàn lại). Xác suất để cả 2 sản phẩm lấy ra đều là phế phẩm
a. 0,022
b. 0,04
c. 0,2
d. 0,622
Câu 21. Một đề thi trắc nghiệm có 10 câu, mỗi câu có 4 cách trả lời trong đó chỉ có 1
cách trả lời đúng. Một thí sinh chọn cách trả lời một cách ngẫu nhiên. Xác suất để
người này thi đạt, biết rằng để thi đạt phải trả
lời đúng ít nhất 8 câu.
a. 0,2
b. 0,04
c. 0,004
d. 0,0004
2
Câu 22. Một hộp có 10 vé trong đó có 3 vé trúng thưởng. Biết rằng người thứ nhất đã
bốc được 1 vé trúng thưởng. Xác suất để người thứ hai bốc được vé trúng thưởng
(mỗi người chỉ được bốc 1 vé) là
a. 1/5
b. 2/9
c. 1/3
d/ 1/2
Câu 23. A và B là hai biến cố độc lập. Xác suất P(A / B) bằng
a. P(A)
b. P(A)
c. P(B)
d. P(B)
Câu 24. Một xưởng có 2 máy hoạt động độc lập. Trong một ngày làm việc, xác suất
để 2 máy này bị hỏng tương ứng là 0,1; 0,05. Xác suất để trong một ngày làm việc
xưởng có máy hỏng
a. 0,14
b. 0,1
c. 0,05
d. 0,145
Câu 25. Xác suất để 1 con gà đẻ là 0,6. Trong chuồng có 6 con, xác suất để trong một
ngày có ít nhất 1 con gà đẻ
a. 0,9945
b. 0,9942
c. 0,9936
d. 0,9959
Câu 26. Một hộp có 9 bi trong đó có 3 bi đỏ, được chia thành 3 phần bằng nhau. Xác
suất để mỗi phần đều có bi đỏ a. 1
b. 15/28
c. 9/28
d. 3/5
Câu 27. Xác suất để một sinh viên thi hết môn đạt lần 1 là 0,6 và lần 2 là 0,8 (mỗi
sinh viên được phép thi tối đa 2 lần, các lần thi độc lập với nhau). Xác suất để sinh
viên đó thi đạt môn học
a. 0,84
b. 0,90
c. 0,92
d. 0,98
Câu 28. Một lớp học có 4 bóng đèn, mỗi bóng có xác suất bị cháy là 0,25. Lớp học đủ
ánh sáng nếu có ít nhất 3 bóng đèn sáng. Xác suất để lớp học không đủ ánh sáng
a. 0,25
b. 0,2617
c. 0,7383
d. 0,75
Câu 29. Gieo 6 lần một đồng xu cân đối đồng chất. Xác suất để có đúng 4 lần mặt
ngửa
a. 15/64
b. 2/3
c. 7/64
d. 15/32
Câu 30. Cho ba biến cố độc lập A, B, C với P(A)=1/2, P(B)=2/3, P(C)=1/4. Xác suất
để ít nhất một biến cố xảy ra
a. 1/12
b. 1/8
c. 7/8
d.11/12
Câu 31. Ba người cùng làm bài thi. Xác suất làm được bài của sinh viên A là 0,8; của
sinh viên B là 0,7; của sinh viên C là 0,6. Xác suất để có 2 sinh viên làm được bài
a. 0,452
b. 0,224
c. 0,144
d. 0,084
Câu 32. Chia ngẫu nhiên 9 hộp sữa (trong đó có 3 hộp kém phẩm chất) thành 3 phần
bằng nhau. Xác suất để trong mỗi phần đều có 1 hộp sữa kém chất lượng
a. 1
b. 9/28
c. 15/28
d. 3/5
3
Câu 33. Có 12 sinh viên trong đó có 3 nữ, được chia thành 3 nhóm đều nhau. Xác
suất để mỗi nhóm có 1 sinh viên nữ
a. 0,1309
b. 0,1667
c. 0,2909
d. 0,1455
Câu 34. Một lô hàng có 5 sản phẩm tốt và 4 phế phẩm. Lấy ngẫu nhiên từ lô hàng 3
sản phẩm. Xác suất để lấy được 2 sản phẩm tốt
a. 10/21
b. 3/7
c. 37/42
d. 17/42
Câu 35. Một lô sản phẩm gồm 8 loại I và 2 loại II. Từ lô đó lấy liên tiếp 3 lần, mỗi
lần 1 sản phẩm, sản phẩm lấy ra có hoàn lại. X là số sản phẩm loại I lấy được. Xác
suất P[X=0]
a. 0
b. 0,067
c. 0,096
d. 0,024
Câu 36. Lấy ngẫu nhiên 1 lá bài từ bộ bài 52 lá. Xác suất lấy được lá Ách hoặc lá Cơ
a. 4/13
b. 1/52
c. 17/52
d. 2/52
Câu 37. Một chuồng gà có 15 con gà mái và 10 con gà trống. Bắt ngẫu nhiên 6 con.
Xác suất để bắt được số gà trống bằng số gà mái
a. 0
b. 1
c. 0,216
d. 0,3083
Câu 38. Ngân hàng đề thi có 10 đề khó và 20 đề trung bình. Bốc ra 4 đề cho sinh viên
thi học kì. Xác suất để được ít nhất 1 đề trung bình
a. 0,0876
b. 0,9923
c. 8/81
d. 80/81
Bài 39. Trong một kỳ thi, mỗi sinh viên phải thi 2 môn. Một sinh viên A ước lượng
rằng: xác suất đạt môn thứ nhất là 0,8. Nếu đạt môn thứ nhất thì xác suất đạt môn thứ
hai là 0,6. Thì xác suất để sinh viên A đạt cả 2 môn là :
a. 0,12
b. 0,26
c. 0,24
d. 0,48
Bài 40. Trong một kỳ thi, mỗi sinh viên phải thi 2 môn. Một sinh viên A ước lượng
rằng: xác suất đạt môn thứ nhất là 0,8. Nếu đạt môn thứ nhất thì xác suất đạt môn thứ
hai là 0,6; nếu không đạt môn thứ nhất thì xác suất đạt môn thứ hai là 0,3. Thì xác
suất để sinh viên A đạt môn thứ hai là :
a. 0,12
b. 0,24
c. 0,54
d. 0,72
Bài 41. Trong một kỳ thi, mỗi sinh viên phải thi 2 môn. Một sinh viên A ước lượng
rằng: xác suất đạt môn thứ nhất là 0,8. Nếu đạt môn thứ nhất thì xác suất đạt môn thứ
hai là 0,6; nếu không đạt môn thứ nhất thì xác suất đạt môn thứ hai là 0,3. Thì xác
suất để sinh viên A đạt ít nhất một môn là :
a. 0,86
b. 0,76
c. 0,48
d. 0,52
Bài 45. Trong một kỳ thi, mỗi sinh viên phải thi 2 môn. Một sinh viên A ước lượng
rằng: xác suất đạt môn thứ nhất là 0,8. Nếu đạt môn thứ nhất thì xác suất đạt môn thứ
hai là 0,6; nếu không đạt môn thứ nhất thì xác suất đạt môn thứ hai là 0,3. Thì xác
suất để sinh viên A không đạt cả hai môn.
a. 0,86
b. 0,14
c. 0,32
d. 0,45
4
Bài 46. Ba sinh viên cùng làm bài thi. Xác suất làm được bài của sinh viên A là 0,8;
của sinh viên B là 0,7; của sinh viên C là 0,6. Thì xác suất để có đúng 2 sinh viên làm
được bài là :
a. 0,986
b. 0,914
c. 0,976
d. 0,452
Bài 47. Có 3 hộp, mỗi hộp đựng 5 viên bi, trong đó hộp thứ nhất có 1 bi trắng; hộp
thứ hai có 2 bi trắng; hộp thứ ba có 3 bi trắng. Chọn ngẫu nhiên một hộp rồi từ hộp đó
lấy ngẫu nhiên ra 3 bi (lấy không hoàn lại). Tìm xác suất để lấy được 3 bi trắng.
a. 1/6
b. 1/3
c. 1/30
d. 1/10
Bài 48. Trong một vùng dân cư tỷ lệ nữ là 55%, có một nạn dịch bệnh truyền nhiễm
với tỷ lệ mắc dịch của nam là 6%, của nữ là 2%. Thì tỷ lệ mắc dịch chung của dân cư
vùng đó là :
a. 0,028
b. 0,038
c. 0,048
d. 0,58
Bài 49. Ở một vùng dân cư, cứ 100 người có 30 người hút thuốc lá. Biết rằng tỷ lệ bị
viêm họng trong số người hút thuốc lá là 60%, còn số người không hút thuốc lá là
30%. Khám ngẫu nhiên 1 người thì thấy anh ta bị viêm họng. Thì xác suất Người đó
hút thuốc lá là :
a. 0,4615 b. 0,4617 c. 0,4618 d. 0,4619
Bài 50. Có 3 hộp, mỗi hộp đựng 5 viên bi, trong đó hộp thứ nhất có 1 bi trắng; hộp
thứ hai có 2 bi trắng; hộp thứ ba có 3 bi trắng. Lấy ngẫu nhiên từ mỗi hộp ra 1 viên
bi. Thì xác suất để lấy được 3 bi trắng là :
a. 0,048
b. 0,047
c. 0,046
d. 0,045
Bài 51. Có 3 hộp, mỗi hộp đựng 5 viên bi, trong đó hộp thứ nhất có 1 bi trắng; hộp
thứ hai có 2 bi trắng; hộp thứ ba có 3 bi trắng. Chọn ngẫu nhiên một hộp rồi từ hộp đó
lấy ngẫu nhiên ra 3 bi (lấy không hoàn lại). Tìm xác suất để lấy được 3 bi trắng.
a. 1/6
b. 1/3
c. 1/30
d. 1/10
Bài 52. Ba xạ thủ cùng bắn 1 con thú (mỗi người bắn 1 viên đạn). Xác suất bắn trúng
của từng người tương ứng là 0,6; 0,7; 0,8. Biết rằng nếu trúng 1 phát đạn thì xác suất
để con thú bị tiêu diệt là 0,5; trúng 2 phát đạn thì xác suất để con thú bị tiêu diệt là
0,8; còn nếu trúng 3 phát đạn thì chắc chắn con thú bị tiêu diệt.Tính xác suất để con
thú bị tiêu diệt.
a. 0,311
b. 0,336
c. 0,421
d. 0,526
Chuong 1 : TÍNH TRỰC TIẾP (liên tục)
kx 2 , x ∈ (0,1)
Câu 53. X là ĐLNN có hàm mật độ xác suất f (x) =
x ∉ (0,1)
0,
Thì giá trị của k là :
a. k = 0
b. k = 1
c. k = 2
d. k = 3
4x 3 , x ∈ (0,1)
f
(x)
=
Câu 54. X là ĐLNN có hàm mật độ xác suất
x ∉ (0,1)
0,
Thì giá trị của p =P(0.5 < X< 0.75) là
5
a. p = 0.16484
b. p = 0.2539 c. p = 0.875
d. p = 1
4x 3 , x ∈ (0,1)
f
(x)
=
Câu 55. X là ĐLNN có hàm mật độ xác suất
x ∉ (0,1)
0,
Thì giá trị của p =P(0.25 < X) là
a. p = 0.16484 b. p = 0.2539 c. p = 0.9961
d. p = 0
4x 3 , x ∈ (0,1)
Câu 56. X là ĐLNN có hàm mật độ xác suất f (x) =
x ∉ (0,1)
0,
Thì giá trị của p =P(0.55 > X) là
a. p = 0.0915 b. p = 0.9085 c. p = 0.9961
d. p = 0
4x 3 , x ∈ (0,1)
f
(x)
=
Câu 57. X là ĐLNN có hàm mật độ xác suất
x ∉ (0,1)
0,
Thì giá trị của p =P( X 0.3) là
a. p = 0.5139 b. p = 0.9919 c. p = 0.0.522
d. p = 0
Bài 58. Trọng lượng của một con gà 6 tháng tuổi là một ĐLNN X (đơn vị: kg) có
hàm mật độ
k(x 2 − 1), x ∈ [1,3]
f (x) =
x ∉ [1,3]
0,
Thì giá trị của k là :
a. k = 1/3 b. k = 3/20 c. k = 20/3 d. k = 25/3
20000
, x>100
Bài 59. X là ĐLNN có hàm mật độ xác suất f (x) = x 3
0,
x ≤ 100
Thì giá trị của p =P(100 < X < 500) là
a. p = 0.96 b. p = 0.04 c. p = 0
d. p = 1
20000
3 , x>100
f
(x)
=
Bài 60. X là ĐLNN có hàm mật độ xác suất
x
0,
x ≤ 100
Thì giá trị của p =P(X > 450) là
a. p = 0.96 b. p = 0.04 c. p = 0.04938
Câu 61
d. p = 0.95062
2 ( x + 2)
, 0< x X>-0.25)
a. p = 0.21875
b. p = 0.65625
c. p = 0.34375 d. p = 0.78125
CHUONG 3 XÁC SUẤT CÓ ĐIỀU KIỆN –DẦY ĐỦ
Bài 62. Có hai kiện hàng, kiện thứ nhất có 8 sản phẩm, trong đó có 3 sản phẩm loại
A; kiện thứ hai có 6 sản phẩm, trong đó có 2 sản phẩm loại A. Lần đầu lấy ngẫu
nhiên 1 sản phẩm ở kiện thứ nhất bỏ vào kiện thứ hai, sau đó từ kiện thứ hai lấy ra 2
sản phẩm (lấy không hoàn lại). Gọi X là số sản phẩm loại A có trong 2 sản phẩm lấy
ra từ kiện thứ hai. Thì luật phân phối xác suất của X là :
a.
X
0
1
2
X
17
43
1
P
42
84
12
0
1
2
17
42
23
42
2
42
0
1
2
17
42 1/2
43
84 8/15
b.
X
PX
c.
X
PX
1/15
3
1
12
d. Tất cả đều sai.
Câu 64. Có 3 nhóm học sinh. Nhóm I có 5 nam 2 nữ, nhóm II có 4 nam 1 nữ, nhóm
III có 3 nam 2 nữ. Chọn ngẫu nhiên 1 sinh viên trong nhóm thì được sinh viên nam.
Xác suất để sinh viên đó thuộc nhóm II
a. 4/17
b. 12/17
c. 14/37
d. 1/3
P(B2|A)= (1/3.4/5):1/3(5/7+4/5+3/5) =
Câu65. Một phân xưởng có 40 nữ công nhân và 20 nam công nhân. Tỷ lệ tốt nghiệp
phổ thông trung học đối với nữ là 15%, với nam là 20%. Chọn ngẫu nhiên 1 công
nhân của phân xưởng. Xác suất để chọn được công nhân tốt nghiệp phổ thông trung
học
a. 2/3
b. 1/3
c. 1/6
d. 5/6
7
Câu 66. Trong hộp I có 4 bi trắng và 2 bi đen, hộp II có 3 bi trắng và 3 bi đen. Các bi
có kích cỡ như nhau. Chuyển 1 bi từ hộp II sang hộp I, sau đó lấy ngẫu nhiên 1 bi ở
hộp I. Xác suất để bi lấy ra là bi trắng.2/3
a. 9/14
b. 5/14
c. 5/7
d. 4/7
Câu 67. Một lô hàng do ba nhà máy I, II, III sản xuất. Tỷ lệ sản phẩm do nhà máy I,
II, III sản xuất tương ứng là 30%, 20%, 50% và tỷ lệ phế phẩm tương ứng là 1%, 2%,
3%. Chọn ngẫu nhiên sản phẩm từ lô hàng. Xác suất để sản phẩm này là phế phẩm
a. 0,022
b. 0,018
c. 0,038
d. 0.06
Câu 68. Có ba hộp thuốc, hộp I có 5 ống tốt và 2 ống xấu, hộp II có 4 ống tốt và 1
ống xấu, hộp III có 3 ống tốt và 2 ống xấu. Lấy ngẫu nhiên 1 hộp và từ đó rút ra 1 ống
thuốc thì được ống tốt. Xác suất để ống này thuộc hộp II
a. 0,8
b. 0,7052
c. 0,2631
d. 0,3784
Câu 69. Một hộp bi gồm 3 trắng, 7 đen. Các bi có kích cỡ như nhau. Lấy lần lượt 2
bi, mỗi lần 1 bi (lấy không hoàn lại). Xác suất để lần hai lấy được bi trắng
a. 0,6667
b. 0,7
c. 0,3
d. 0,3333
Câu 70. Một hộp bi gồm 3 đỏ, 7 trắng. Các bi có kích cỡ như nhau. Rút ngẫu nhiên 1
bi (không hoàn lại) và 1 bi khác màu (trong hai màu đỏ và trắng) được bỏ vào hộp,
rồi lại rút ra 1 bi. Xác suất để bi rút ra lần hai là bi đỏ
a. 0,7
b. 0,3
c. 0,66
d. 0,34
Câu 71. Có ba hộp đựng bi, các bi có kích cỡ như nhau. Hộp I có 20 trắng, hộp II có
10 trắng và 10 xanh, hộp III có 20 xanh. Chọn ngẫu nhiên 1 hộp rồi từ hộp đó rút ra 1
bi thì được bi trắng. Xác suất để bi đó của hộp I (2/5)
a. 1/3
b. 2/3
c. 1/6
d. 5/6
Câu 72. Một nhà máy sản xuất bóng đèn có hai phân xưởng I và II. Biết rằng phân
xưởng II sản xuất gấp 4 lần phân xưởng I, tỷ lệ bóng hư của phân xưởng I là 10%,
phân xưởng II là 20%. Mua 1 bóng đèn của nhà máy thì được bóng hư. Xác suất để
bóng này thuộc phân xưởng I
a. 1/9
b. 8/9
c. 1/10
d. 1/5
Câu 73. Một nhà máy sản xuất bóng đèn có hai phân xưởng I và II. Biết rằng phân
xưởng II sản xuất gấp 4 lần phân xưởng I, tỷ lệ bóng hư của phân xưởng I là 10%,
phân xưởng II là 20%. Mua 1 bóng đèn của nhà máy thì được bóng hư. Xác suất để
cbóng này thuộc phân xưởng II
a. 1/9
b. 8/9
c. 1/10
d. 1/5
Bài 74. Ba sinh viên cùng làm bài thi. Xác suất làm được bài của sinh viên A là 0,8;
của sinh viên B là 0,7; của sinh viên C là 0,6. Nếu có 2 sinh viên làm được bài, Thì
xác suất để sinh viên A không làm được bài là :
a. 0,086
b. 0,091
c. 0,097
d. 0,344
8
Bài 75. Trong một vùng dân cư tỷ lệ nữ là 55%, có một nạn dịch bệnh truyền nhiễm
với tỷ lệ mắc dịch của nam là 6%, của nữ là 2%. Chọn ngẫu nhiên một người của
vùng đó, được người mắc bệnh. Thì tỷ lệ mắc bệnh nam là :
a. 0,069
b. 0,070
c. 0,71
d. 0,72
Bài 76. Ở một vùng dân cư, cứ 100 người có 30 người hút thuốc lá. Biết rằng tỷ lệ bị
viêm họng trong số người hút thuốc lá là 60%, còn số người không hút thuốc lá là
30%. Khám ngẫu nhiên 1 người thì thấy anh ta bị viêm họng. Nếu người đó không bị
viêm họng thì xác suất người đó hút thuốc lá là :
a. 0,4316 b. 0.1967 c. 0,4562 d. 0,4615
Bài 77. Có 3 hộp, mỗi hộp đựng 5 viên bi, trong đó hộp thứ nhất có 1 bi trắng; hộp
thứ hai có 2 bi trắng; hộp thứ ba có 3 bi trắng. Lấy ngẫu nhiên từ mỗi hộp ra 1 viên
bi. Nếu trong 3 bi lấy ra có 1 bi trắng. Thì xác suất để viên bi trắng đó là của hộp thứ
nhất.
a. 1/25
b. 6/125
c. 6/25
d. 1/6
Bài 78. Một cửa hàng bán một loại sản phẩm trong đó 40% do phân xưởng 1 sản
xuất, còn lại do phân xưởng 2 sản xuất. Tỷ lệ sản phẩm A do phân xưởng 1 và 2 sản
xuất tương ứng là 0,8; 0,9. Mua ngẫu nhiên 1 sản phẩm từ cửa hàng và thấy đó
không phải sản phẩm loại A. Hỏi sản phẩm đó có khả năng do phân xưởng nào sản
xuất nhiều hơn.
a. Nhà máy I ( vì p(A1/B ) = 0,57 > p(A2/B ) = 0,43)
b. Nhà máy II ( vì p(A2/B ) = 0,57 > p(A1/B ) = 0,43)
c. Nhà máy II ( vì p(A2/B ) = 0,43 > p(A1/B ) = 0,57)
d. Khả năng sản phẩm của nhà máy I và II là như nhau .
( Với A1, A2 là biến cố mua được sp ở phân xưởng I, II; B là biến cố mua được sp
loại A )
Bài 79. Một người có 3 chỗ ưa thích như nhau để câu cá. Xác suất câu được một con
cá ở chỗ thứ nhất, thứ hai, thứ ba tương ứng là 0,6; 0,7; 0,8. Biết rằng ở mỗi chỗ,
người đó đã thả câu 3 lần và có một lần câu được cá. Tính xác suất để đó là chỗ thứ
nhất.
a. 2/7
b. 1/3
c. 8/21
d. 2/21
Bài 88. Ba xạ thủ cùng bắn 1 con thú (mỗi người bắn 1 viên đạn). Xác suất bắn trúng
của từng người tương ứng là 0,6; 0,7; 0,8. Biết rằng nếu trúng 1 phát đạn thì xác suất
để con thú bị tiêu diệt là 0,5; trúng 2 phát đạn thì xác suất để con thú bị tiêu diệt là
0,8; còn nếu trúng 3 phát đạn thì chắc chắn con thú bị tiêu diệt.Tính xác suất để con
thú bị tiêu diệt do trúng 2 phát đạn.
a. 0,421
b. 0,450
c. 0,452
d. 0,3616
Bài 82. Trong kỳ thi trắc nghiệm môn Toán, mỗi thí sinh trả lời 10 câu, mỗi câu có 4
cách trả lời, trong đó chỉ có 1 cách trả lời đúng. Kết quả trả lời các câu hỏi không ảnh
hưởng đến các kết quả câu khác. Điểm bài thi bằng tổng số câu trả lời đúng. Thí sinh
B trả lời đúng 3 câu đầu, các câu còn lại trả lời một cách ngẫu nhiên. Tìm xác suất để
thí sinh này được 5 hoặc 6 điểm. C510*4^5 C610*4^4
9
Câu 83. Một xưởng sản xuất có 100 người trong đó có 40 nữ , 10 người ở vị trí quản
lý , có 5 người vừa là quản lý vừa là nữ . Gọi ngẫu nhiên 1 người . Tính xác suất để
gọi được người quản lý với điều kiện là nữ ( ds : 1/8) 5/40//90/100
Câu 84.Tại hội chợ có 3 loại cửa hàng. Cưả hàng I phục vụ cho những người may
mắn, bán hàng có tỷ lệ phế phẩm là 1%. Cưả hàng II phục vụ cho những người bình
thường, bán hàng có tỷ lệ phế phẩm là 5%. Cưả hàng III phục vụ cho những người rủi
ro, bán hàng có tỷ lệ phế phẩm là 10%. Một người vào hội chợ phải gieo 2 đồng xu.
Người đó là may mắn nếu cả hai đều sấp, là ruỉ ro nếu cả hai đều ngửa. Còn lại là
bình thường. Một người vào hội chợ nếu phải mua phải hàng phế phẩm. Thì theo bạn
người đó may mắn hay rủi ro, hay bình thường?.
CÂU 85
Trong nhóm gồm 10 Sv đi thi có 3 Sv chuẩn bị tốt, 4 Sv chuẩn bị khá, 2 Sv chuẩn bị
trung bình và một chuẩn bị kém. Trong các phiếu thi có 20 câu hỏi. Sv chuẩn bị tốt
có thể trả lời được cả 20 câu, chuẩn bị khá trả lời được 16 câu, chuẩn bị trung bình
trả lời được 10 câu, Còn Sv kém có thể trả lời 5 câu. Một Sv được gọi NN trả lời
được 3 câu hỏi tùy ý. Tính Xs để Sv đó được chuẩn bị tốt.
0.57868
Câu 86Có 2 cây súng cùng bắn vào một bia, XS súng I bắn trúng bia là 70%, XS súng
II bắn trúng bia là 80%.Sau khi bắn hai phát , đặt A là biến cố “ trong hai viên có
một viên trúng “ , B là biến cố “ viên của súng II trúng “ , C là biến cố “ cả hai
viên trúng “ . Chọn đáp án đúng
a)
P(B)= 0.24 , P(C) = 0.56 , P(B/C) = 0.25
b)
P(B)= 0.8 , P(C) = 0.56 , P(B/C) = 1/7
c)
P(B)= 0.8 , P(C) = 0.56 , P(B/C) = 1
d)
P(B)= 0.8 , P(C) = 0.56 , P(B/C) = 0
Câu 87 . Có 2 cây súng cùng bắn vào một bia, XS súng I bắn trúng bia là 70%, XS
súng II bắn trúng bia là 80%. Sau khi bắn hai phát , đặt A là biến cố “ trong hai viên
chỉ có một viên trúng “ , B là biến cố “ viên của súng I trúng “ , C là biến cố “ cả
hai viên trúng “ . Chọn đáp án đúng
a)
P(A/C) = 0 , P(B/C) = 1 , P(B/A) = 7/19
b)
P(A/C) = 1 , P(B/C) = 0 , P(B/A) = 0.5
c)
P(A/C) = 19/28 , P(B/C) = 1/8 , P(B/A) = 7/38
d)
P(A/C) = 0 , P(B/C) = 1/8 , P(B/A) = 7/38
Câu 88 Một bình chứa 10 bi, và có 5 bi đỏ, 3 bi vàng. Lấy NN lần I ra 1 bi để trên
bàn, sau đó lấy lần II ra 2 bi nữa để trên bàn. Tính XS để lần II lấy ra chỉ được 2 bi
đỏ.
a)
C51C42 C31C52 C21C52
+ 1 2 + 1 2 (d)
C101 C92 C10
C9 C10C9
C51C42 C31C51 C21C42
c) 1 2 + 1 2 + 1 2
C10C9 C10C9 C10C9
d)
b)
C51C42 C32C52 C21C42
+
+
C101 C92 C101 C92 C101 C92
C51C42
C31C51
C21C42
+
+
1
C101 C102 C101 C102 C10
C102
CHUONG 4 : LUẬT PHÂN PHỐI
10
Câu 89 Phải gieo ít nhất bao nhiêu con xúc xắc cân đối đồng chất để xác suất “có ít
nhất 1 con xúc xắc xuất hiện mặt 6 chấm” lớn hơn hay bằng 0,9
a. 14
b.13
c. 12
d. 11
Câu 90. Một người bắn bia với khả năng bắn trúng của mỗi viên là 0,6. Người đó
phải bắn ít nhất bao nhiêu viên để xác suất “có ít nhất 1 viên trúng bia” lớn hơn hay
bằng 0,99
a. 8
b. 7
c. 6
d. 5
Câu 91 Gieo 6 lần một đồng xu cân đối đồng chất. Xác suất để đồng xu sấp không
quá 3 lần
a. 21/32
b. 5/8
c. 15/32
d. 3/16
Câu 92. Một trò chơi có xác suất thắng ở mỗi ván là 1/50. Nếu một người chơi 50 ván
thì xác suất để người này thắng ít nhất 1 ván
0.6358
Câu 93. Tổng đài điện thoại phục vụ 100 máy điện thoại. Xác suất để trong
mỗi phút mỗi máy gọi đến tổng đài là 0,02. Số máy gọi đến tổng đài trung bình trong
1 phút
a. 1
b. 2
c. 3
d. 4
Câu 94. Một bà mẹ sinh 2 con (mỗi lần sinh 1 con). Xác suất sinh con trai là 0,51.
Gọi X là số con trai trong 2 lần sinh. Kỳ vọng của X
a. 0,98
b. 1,02
c. 1,05
d. 1,03
Câu 95. Trong kho có 10 máy lốp xe, trong đó có 3 cái hỏng. Lấy ngẫu nhiên 4 cái
lốp để lắp cho một xe. X là số lốp xe hỏng có thể được lấy ra thì X tuân theo quy luật
a. chuẩn
b. Poisson
c. nhị thức d. siêu bội
Câu 96. Một máy sản xuất sản phẩm với xác suất tạo phế phẩm là 0,005. Cho máy
sản xuất 1000 sản phẩm và gọi X là số phế phẩm tạo được. X có thể xấp xỉ bằng phân
phối
a. Poisson
a. 1/50
b. chuẩn
b. 0,6358
c. siêu bội
d. Student
c. 0,0074 d. 0,3642
Câu 97. Một đề thi trắc nghiệm có 10 câu, mỗi câu có 4 lựa chọn và chỉ có 1 lựa chọn
đúng. Mỗi câu sinh viên làm đúng được 1 điểm. Xác suất để sinh viên làm được đúng
5 điểm
a. 0,0584
b. 0,25
c. 0,0009
d. 5/10
P10(5)=
11
Câu 98. Xác suất để một người bị phản ứng từ việc tiêm huyết thanh là 0,001. Xác
suất để trong 2000 người tiêm huyết thanh, có đúng 3 người bị phản ứng
a. 10−9
b. 0,003
c. 0,1804
d. 0.0664
Bài 99. Trong kỳ thi trắc nghiệm môn Toán, mỗi thí sinh trả lời 10 câu, mỗi câu có 4
cách trả lời, trong đó chỉ có 1 cách trả lời đúng. Kết quả trả lời các câu hỏi không ảnh
hưởng đến các kết quả câu khác. Điểm bài thi bằng tổng số câu trả lời đúng.
Thí sinh A trả lời các câu hỏi một cách ngẫu nhiên. Tìm xác suất để bài thi của
thí sinh đó không quá 2 điểm.
0.5256
Bài 100. Một bài thi trắc nghiệm gồm 12 câu hỏi, mỗi câu có 4 cách trả lời, trong đó
chỉ có 1 cách trả lời đúng. Giả sử mỗi câu trả lời đúng, thí sinh được 4 điểm; mỗi câu
trả lời sai, thí sinh bị trừ 1 điểm. Một thí sinh làm bài bằng cách chọn ngẫu nhiên các
câu trả lời. Tìm xác suất để thí sinh được 13 điểm.
0,1032 tra loi dung 5 cau C
Bài 101 Một bài thi trắc nghiệm gồm 12 câu hỏi, mỗi câu có 4 cách trả lời, trong đó
chỉ có 1 cách trả lời đúng. Giả sử mỗi câu trả lời đúng, thí sinh được 4 điểm; mỗi câu
trả lời sai, thí sinh bị trừ 1 điểm. Một thí sinh làm bài bằng cách chọn ngẫu nhiên các
câu trả lời. Tìm xác suất để thí sinh bị điểm âm.
0,39068 tra loi dung nhieu nhat 2 cau
Bài 102. Theo lý thuyết, nếu X và Y là hai ĐLNN độc lập có phân phối chuẩn thì
aX+bY cũng có phân phối chuẩn. Cho X ∈ N(7;0,04), Y ∈ N(4;0,09). Tính xác suất
P(2X + 3Y < 25), P(10 ≤ 3X − 2Y ≤ 12). 11/16, 1/8
103/ Năng suất lúa ở một địa phương là biến ngẫu nhiên có phân phối chuẩn với kỳ
vọng 42tạ/ha và σ = 3tạ/ha. Tìm xác suất để khi gặt ngẫu nhiên 3 thửa ruộng thì có 2
thửa có năng suất sai lệch so với trung bình không quá 1tạ/ha.
0,14874
104/ Kiểm tra chất lượng 1000 sản phẩm với tỷ lệ chính phẩm 0,95. Tìm xác suất để
số sản phẩm đạt tiêu chuẩn trong khoảng từ 900 đến 980.
0.99999
Câu 105 Một viên đạn có tầm xa trung bình là µ = 300m. Giả sử tầm xa đó là một
biến ngẫu nhiên tuân theo luật chuẩn với σ = 10. Hãy tìm tỷ lệ đạn bay quá tầm xa
trung bình từ 15 đến 30m.
0,065
Câu 106. Trọng lượng các sản phẩm là một đại lượng ngẫu nhiên với trung bình 50g
và phương sai 100g2. Sản phẩm được đóng thành lô, mỗi lô 100 sản phẩm. Lô có
trọng lượng trên 5,1kg là loại A. Tính tỷ lệ lô loại A.
(
)
(
)
2
2
107 Cho X ∈ N 7,1.2 vaø Y ∈ N 5, 0.9 , X, Y laø ñoäc laäp. Biết aX+ bY có phân
phối chuẩn ( a ,b là các hằng số thực ) .Tính P(X+Y 0, y > 0
f ( x , y ) = e
.
0
Tìm fY ( y )
Câu 203. (X,Y) laø caëp BNN coù haøm maät ñoä ñoàng thôøi:
−( x + y ) , x > 0, y > 0
f ( x , y ) = e
.
0
Tính P ( 0 < X < 1 Y = 2 ) .
Câu 204. (X,Y) laø caëp BNN coù haøm maät ñoä ñoàng thôøi:
6 − x − y
, 0 < x < 2, 2 < y < 4
f ( x, y ) =
8
.
0
Tính P ( 1 < Y < 3 X = 2 ) .
Câu 205. (X,Y) laø caëp BNN coù haøm maät ñoä ñoàng thôøi:
3x − y
, 1 < x < 3, 1 < y < 2
f ( x, y ) = 9
0
Tìm f X ( x ) .
Câu 206. (X,Y) laø caëp BNN coù haøm maät ñoä ñoàng thôøi:
3x − y
, 1 < x < 3, 1 < y < 2
f ( x, y ) = 9
0
Tìm fY ( y ) .
Câu 207.
(X,Y) laø caëp BNN coù haøm maät ñoä ñoàng thôøi:
4 xy , 0 < x < 1, 0 < y < 1
f ( x, y ) =
0
35
Tính P 0 ≤ X ≤ 2 ∧ 4 ≤ Y ≤ 2 ÷.
Câu 208. X, Y laø hai BNN coù haøm maät ñoä ñoàng thôøi laø:
1
1
1
1
, 0≤ y ≤ x ≤1
f ( x, y ) = x
0
Tìm haøm maät ñoä leà cuûa X,
Câu 210. X, Y laø hai BNN coù haøm maät ñoä ñoàng thôøi laø:
1
, 0≤ y ≤ x ≤1
f ( x, y ) = x
0
Tìm haøm maät ñoä leà cuûa Y,
Câu 211. X, Y laø hai BNN coù haøm maät ñoä ñoàng thôøi laø:
1
, 0≤ y ≤ x ≤1
f ( x, y ) = x
0
( )
Tìm haøm maät ñoä coù ñieàu kieän f X x y .
Câu 212. X, Y laø hai BNN coù haøm maät ñoä ñoàng thôøi laø:
1
, 0≤ y ≤ x ≤1
f ( x, y ) = x
0
( )
y
Tìm haøm maät ñoä coù ñieàu kieän fY x .
Câu 213. X, Y laø hai BNN coù haøm maät ñoä ñoàng thôøi laø:
1
, 0≤ y ≤ x ≤1
f ( x, y ) = x
0
(
2
2
Tính P X + Y ≤ 1
)
Câu 214. Cho haøm maät ñoä ñoàng thôøi cuûa BNN X, Y nhö sau
(
)
x 1 + 3 y2
, 0 < x < 2, 0 < y < 1
f ( x, y ) =
4
0
Tìm f X ( x ) , fY ( y )
Câu 210. Cho haøm maät ñoä ñoàng thôøi cuûa BNN X, Y nhö sau
(
)
x 1 + 3 y2
, 0 < x < 2, 0 < y < 1
f ( x, y ) =
4
0
36
1
Tính P < X <
4
1
1
Y = ÷.
2
3
Câu 211. (X,Y) laø caëp BNN coù haøm maät ñoä ñoàng thôøi:
4 xy , 0 < x < 1, 0 < y < 1
f ( x, y ) =
0
Tính P ( X < Y ) .
Câu 212. (X,Y) laø caëp BNN coù haøm maät ñoä ñoàng thôøi:
3x − y
, 1 < x < 3, 1 < y < 2
f ( x, y ) = 9
0
Tính P ( X > 2 ) .
Câu 213. Cho haøm maät ñoä ñoàng thôøi cuûa BNN X, Y nhö sau
10 xy 2 , 0 < x < y < 1
f ( x, y ) =
0
TÌM fY ( y x )
Câu 213. Cho haøm maät ñoä ñoàng thôøi cuûa BNN X, Y nhö sau
10 xy 2 , 0 < x < y < 1
f ( x, y ) =
0
Tìm f X ( x y )
Câu 214. Cho haøm maät ñoä ñoàng thôøi cuûa BNN X, Y nhö sau
10 xy 2 , 0 < x < y < 1
1
f ( x, y ) =
. Tính P < Y
0
2
1
X = ÷.
4
Câu 215. Cho hàm mật độ đồng thời của X và Y
6 2 xy
x + ÷, 0 < x < 1, 0 < y ≤ 2
f ( x , y ) = 7
2
0, noi khac
Tìm mật độ phân phối lề của X và của Y.
Câu 216. Cho hàm mật độ đồng thời của X và Y
6 2 xy
x + ÷, 0 < x < 1, 0 < y ≤ 2
f ( x , y ) = 7
2
0, noi khac
Tính kỳ vọng M(X),
Câu 216. Cho hàm mật độ đồng thời của X và Y
6 2 xy
x + ÷, 0 < x < 1, 0 < y ≤ 2
f ( x , y ) = 7
2
0, noi khac
Tính kỳ vọng M(Y).
37
Câu 217. Cho hàm mật độ đồng thời của X và Y
6 2 xy
x + ÷, 0 < x < 1, 0 < y ≤ 2
f ( x , y ) = 7
2
0, noi khac
Tính xác suất P ( X > Y ) ,
Câu 218. Cho hàm mật độ đồng thời của X và Y
6 2 xy
x + ÷, 0 < x < 1, 0 < y ≤ 2
f ( x , y ) = 7
2
0, noi khac
P ( X + Y < 2) .
PHẦN II. THỐNG KÊ ỨNG DỤNG( chung đại học –cao đẳng )
Bài 1. X(kg) là chỉ tiêu của một loại sản phẩm. Điều tra một số sản phẩm, ta có kết
quả
X 50-55 55-60 60-65 65-70 70-75 75-80
ni
5
10
25
30
18
12
Khỏang ước lượng trung bình chỉ tiêu X với độ tin cậy 98% là.
a) [ 65.0610; 68.1389]
b) [ 64.0610; 69.1389]
c) [ 63.0610; 69.1389]
d) [ 65; 68] .
Bài 2. X(kg) là chỉ tiêu của một loại sản phẩm. Điều tra một số sản phẩm, ta có kết
quả
X 50-55 55-60 60-65 65-70 70-75 75-80
ni
5
10
25
30
18
12
Có tài liệu nói rằng trung bình chỉ tiêu X là 70kg. Cho nhận xét về tài liệu này với
mức ý nghĩa 5%.
a) Tài liệu này nói đúng.
b) Tài liệu này nói không đúng.
c) Tài liệu này nói không đúng vì trung bình lớn hơn 70kg.
d) Tài liệu này nói không đúng vì trung bình nhỏ hơn 70kg.
Bài 3. X(cm) là chỉ tiêu của sản phẩm. Điều tra một số sản phẩm, ta có kết quả
xi
ni
200250
5
250300
20
300350
25
350400
30
400450
30
450500
23
500550
14
Nếu chỉ tiêu trung bình X không lớn hơn 380cm thì phải điều chỉnh lại quy trình sản
xuất. Từ bảng số liệu trên ta phải:
a)Điều chỉnh lại quy trình sản xuất .
38
b)Không cần điều chỉnh lại quy trình sản xuất .
c)Điều chỉnh lại quy trình sản xuất, vì chỉ tiêu trung bình X không lớn hơn 380cm.
d)Không cần điều chỉnh lại quy trình sản xuất, vì chỉ tiêu trung bình X lớn hơn
380cm.
Bài 4. X(cm) là chỉ tiêu của sản phẩm. Điều tra một số sản phẩm, ta có kết quả
xi
ni
200250
5
250300
20
300350
25
350400
30
400450
30
450500
23
500550
14
Các sản phẩm cỏ chỉ tiêu X > 450cm là loại A. Để ước lượng tỷ lệ sản phẩm loại A
với độ tin cậy 95% và độ chính xác 3% thì nên điều tra thêm ít nhất bao nhiêu sản
phẩm nữa?
a) 790
b) 795
c) 804
d) 815.
Bài 5. X(cm) là chỉ tiêu của sản phẩm. Điều tra một số sản phẩm, ta có kết quả
xi
ni
200250
5
250300
20
300350
25
350400
30
400450
30
450500
23
500550
14
Khỏang ước lượng trung bình chỉ tiêu X của các sản phẩm với độ tin cậy 93%
là:
a) [ 366.6867; 411.1634]
b) [ 365.6867; 410.1634]
c) [ 370.6867; 400.1634]
d) [ 375.6867; 400.1634] .
Bài 6. Khảo sát chỉ tiêu X (triệu đồng/người - năm) - thu nhập bình quân một người
trong hộ của một số hộ gia đình ở TP năm 1990, người ta thu được kết quả
X
2–3
Số hộ
5
33,5
8
3,5 4
18
44,5
30
4,5 5
24
55,5
16
5,5 6
10
67
6
79
4
Khỏang ước lượng trung bình chỉ tiêu X với độ tin cậy 95% là:
a) [ 3.4344; 3.8215]
b) [ 4.4344; 4.8215]
c) [ 4.4344; 5.8215]
d) [ 4.0344; 4.4215] .
Bài 7. Khảo sát chỉ tiêu X (triệu đồng/người - năm) - thu nhập bình quân một người
trong hộ của một số hộ gia đình ở TP năm 1990, người ta thu được kết quả
X
2–3
Số hộ
5
33,5
8
3,5 4
18
44,5
30
4,5 5
24
55,5
16
5,5 6
10
67
6
79
4
Những hộ có thu nhập trên 5 triệu đồng/người-năm là những hộ có thu nhập cao.
Khỏang ước lượng tỷ lệ hộ có thu nhập cao của TP với độ tin cậy 96% là:
39
a) [ 0.1119; 0.2831]
b) [ 0.0119; 0.0831]
c) [ 0.2119; 0.3831]
d) [ 0.3119; 0.4831] .
Bài 8. Khảo sát chỉ tiêu X (triệu đồng/người - năm) - thu nhập bình quân một người
trong hộ của một số hộ gia đình ở TP năm 1990, người ta thu được kết quả
X
2–3
Số hộ
5
33,5
8
3,5 4
18
44,5
30
4,5 5
24
55,5
16
5,5 6
10
67
6
79
4
Nếu nói rằng trung bình của chỉ tiêu X là 5 triệu đồng/ người - năm thì có đáng tin
cậy không với mức ý nghĩa 5%.
a)Đáng tin cậy.
b)Không đáng tin cậy.
c)Không đáng tin cậy, vì thu nhập trung bình X lớn hơn 5 triệu đồng/ người - năm.
d)Không đáng tin cậy, vì thu nhập trung bình X nhỏ hơn 5 triệu đồng/ người - năm.
Bài 9. Khảo sát về thời gian tự học X (giờ/tuần) trong tuần của một số sinh viên hệ
chính quy ở trường đại học A trong thời gian gần đây, người ta thu được bảng số liệu
X
3
4
5
6
7
8
Số SV 7
1
0
3
0
35 25 16
1
0
1
0
11 12
8
3
Khỏang ước lượng giờ tự học trung bình trong tuần của một sinh viên hệ chính quy
của trường đại học A với độ tin cậy 95% là:
a) [ 6.0175; 6.0390]
b) [ 6.0055; 6.1290]
c) [ 6.1375; 6.2290]
d) [ 6.2375; 6.9290] .
Bài 10. Khảo sát về thời gian tự học X (giờ/tuần) trong tuần của một số sinh viên hệ
chính quy ở trường đại học A trong thời gian gần đây, người ta thu được bảng số liệu
X
3
4
5
6
7
8
Số SV 7
1
0
3
0
35 25 16
1
0
1
0
11 12
8
3
Những sinh viên có giờ tự học từ 10 giờ/tuần trở lên là những sinh viên chăm học.
Giả thiết giờ tự học của sinh viên chăm học là ĐLNN có phân phối chuẩn.Khỏang
ước lượng tỷ lệ sinh viên chăm học hệ chính quy trường đại học A với độ tin cậy 98%
là:
a) [ 0.0773; 0.2143]
b) [ 0.0773; 0.1143]
c) [ 0.1773; 0.2143]
d) [ 0.0073; 0.3143] .
40
Bài 11. Khảo sát về thời gian tự học X (giờ/tuần) trong tuần của một số sinh viên hệ
chính quy ở trường đại học A trong thời gian gần đây, người ta thu được bảng số liệu
X
3
4
5
6
7
8
Số SV 7
1
0
3
0
35 25 16
1
0
1
0
11 12
8
3
Trước đây, giờ tự học trung bình của sinh viên hệ chính quy trường đại học A là 8
giờ/tuần. Hãy cho nhận xét về tình hình tự học của sinh viên hệ chính quy trường đại
học A trong thời gian gần đây với mức ý nghĩa 5%.
a) Không thay đổi gì so với trước đây.
b) Có thay đổi gì so với trước đây.
c) Có thay đổi gì so với trước đây, vì giờ tự học tăng thêm.
d) Có thay đổi gì so với trước đây, vì giờ tự học giảm đi.
Bài 12. Điều tra năng suất của 100 ha lúa trong một vùng, ta có bảng số liệu sau
Năng suất
3(tấn/ha)
3,5
Diện tích (ha)
7
3,5 4
12
44,5
18
4,5 5
27
55,5
20
5,5 6
8
66,5
5
6,5 7
3
Khỏang ước lượng năng suất lúa trung bình ở vùng này với độ tin cậy 95% là:
a) [ 4.6869; 4.9130]
b) [ 4.5869; 4.9130]
c) [ 4.5869; 5.0130]
d) [ 4.1869; 4.4130] .
Bài 13. Điều tra năng suất của 100 ha lúa trong một vùng, ta có bảng số liệu sau
Năng suất
3(tấn/ha)
3,5
Diện tích (ha)
7
3,5 4
12
44,5
18
4,5 5
27
55,5
20
5,5 6
8
66,5
5
6,5 7
3
Những thửa ruộng có năng suất trên 5,5 tấn/ha là những thửa ruộng có năng suất cao.
Cho biết diện tích gieo trồng lúa ở vùng này là 8000 ha. Diện tích lúa có năng suất
cao ở vùng này với độ tin cậy 98% vào khảng:
a) Từ 596 ha đến 1964 ha.
b) Từ 500 ha đến 1964 ha.
c) Từ 496 ha đến 1970 ha.
d) Từ 566 ha đến 1864 ha.
Bài 14. Điều tra năng suất của 100 ha lúa trong một vùng, ta có bảng số liệu sau
Năng suất
3(tấn/ha)
3,5
Diện tích (ha)
7
3,5 4
12
44,5
18
4,5 5
27
55,5
20
5,5 6
8
66,5
5
6,5 7
3
Năng suất lúa trung bình của vụ trước là 4,5 tấn/ha. Vụ lúa năm nay người ta áp dụng
một biện pháp kỹ thuật mới cho toàn bộ diện tích trồng lúa ở trong vùng.Với mức ý
41
nghĩa 5%, hãy kết luận xem biện pháp kỹ thuật mới có tác dụng đến năng suất lúa
trung bình của vùng này hay không?
a) Không thay đổi gì so với mùa trước đây.
b) Có thay đổi gì so với mùa trước đây.
c) Có thay đổi gì so với trước đây, vì năng suất trung bình tăng thêm.
d) Có thay đổi gì so với trước đây, vì năng suất trung bình giảm đi.
Bài 15. Một công ty tiến hành khảo sát nhu cầu tiêu dùng về một loại sản phẩm do
công ty sản xuất. Tiến hành khảo sát 500 hộ gia đình ở một thành phố thì thấy có 400
hộ dùng loại sản phẩm do công ty công ty sản xuất với số liệu thống kê sau
Số lượng (kg/ tháng) 0,5 – 1 1 - 1,5 1,5 - 2 2 - 2,5 2,5 - 3 3 - 4
Số hộ
40
70
110
90
60
30
Khỏang ước lượng tổng số lượng sản phẩm công ty tiêu thụ được ở thành phố này
trong một tháng với độ tin cậy 95%. Biết tổng số hộ gia đình ở thành phố là 600000
hộ.
a) Từ 1 130 000 kg đến 1 216 000 kg, b) Từ 1 030 520 kg đến 1 216 860 kg,
c) Từ 1 100 520 kg đến 1 200 860 kg, d) Từ 1 130 520 kg đến 1 216 860 kg.
Bài 16. Một công ty tiến hành khảo sát nhu cầu tiêu dùng về một loại sản phẩm do
công ty sản xuất. Tiến hành khảo sát 500 hộ gia đình ở một thành phố thì thấy có 400
hộ dùng loại sản phẩm do công ty công ty sản xuất với số liệu thống kê sau
Số lượng (kg/ tháng) 0,5 – 1 1 - 1,5 1,5 - 2 2 - 2,5 2,5 - 3 3 - 4
Số hộ
40
70
110
90
60
30
Để ước lượng tỷ lệ hộ gia đình có nhu cầu về loại sản phẩm này với độ tin cậy 98%
và độ chính xác 4% thì số hộ gia đình cần khảo sát thêm tối thiểu là:
a) 39
b) 43
c) 50
d) 60.
Bài 17. Một công ty tiến hành khảo sát nhu cầu tiêu dùng về một loại sản phẩm do
công ty sản xuất. Tiến hành khảo sát 500 hộ gia đình ở một thành phố thì thấy có 400
hộ dùng loại sản phẩm do công ty công ty sản xuất với số liệu thống kê sau
Số lượng (kg/ tháng) 0,5 – 1 1 - 1,5 1,5 - 2 2 - 2,5 2,5 - 3 3 - 4
Số hộ
40
70
110
90
60
30
Một tài liệu nói rằng: mức tiêu thụ trung bình loại sản phẩm này ở thành phố là 750
tấn/tháng. Tài liệu này có chấp nhận được hay không với mức ý nghĩa 5%.
a) Chấp nhận được.
b) Không chấp nhận được.
c) Không chấp nhận được, vì mức tiêu thụ trung bình lớn hơn 750 tấn/tháng.
d) Không chấp nhận được, vì mức tiêu thụ trung bình nhỏ hơn 750 tấn/tháng.
42
Bài 18. Khảo sát về thu nhập của một số người làm việc ở một công ty, người ta thu
được số liệu sau (đơn vị: triệu đồng/năm) 12; 14; 8;
10; 16; 11;
12; 14; 13; 17; 13; 16; 12; 10; 13; 14; 15; 14;
14; 13; 13; 12; 14; 11; 15; 11; 14; 12; 11; 12;
14; 14; 15; 13; 16; 16; 10; 13; 13; 16; 14; 14;
12; 12; 11; 13; 14; 11; 16; 10.
Có thể nói thu nhập trung bình của một người trên một năm là:
a) 13 trệu
b) 13.06 trệu
c) 14 trệu
d) 14.06 trệu.
Bài 19. Khảo sát về thu nhập của một số người làm việc ở một công ty, người ta thu
được số liệu sau (đơn vị: triệu đồng/năm) 12; 14; 8;
10; 16; 11;
12; 14; 13; 17; 13; 16; 12; 10; 13; 14; 15; 14;
14; 13; 13; 12; 14; 11; 15; 11; 14; 12; 11; 12;
14; 14; 15; 13; 16; 16; 10; 13; 13; 16; 14; 14;
12; 12; 11; 13; 14; 11; 16; 10
Biết số tiền thu nhập của một người trên một năm là đại lượng ngẫu nhiên tuân theo
luật phân phối chuẩn có phương sai là 2. Khỏang ước lượng thu nhập trung bình của
một người trên một năm với độ tin cậy 94% là:
a) [ 12;13]
b) [ 12.5254;13.5945]
c) [ 12.0004;13.0005]
d) [ 11.5254;13.5945] .
Bài 20. Khảo sát về thu nhập của một số người làm việc ở một công ty, người ta thu
được số liệu sau (đơn vị: triệu đồng/năm) 12; 14; 8;
10; 16; 11;
12; 14; 13; 17; 13; 16; 12; 10; 13; 14; 15; 14;
14; 13; 13; 12; 14; 11; 15; 11; 14; 12; 11; 12;
14; 14; 15; 13; 16; 16; 10; 13; 13; 16; 14; 14;
12; 12; 11; 13; 14; 11; 16; 10
Những người có mức thu nhập dưới 900 ngàn đồng/tháng là những người có thu nhập
thấp. Hãy ước lượng số lượng người có thu nhập thấp ở công ty này với độ tin cậy
90%. Biết công ty có 1200 người.
a) Từ 500 người đến 600 người,
b) Từ 550 người đến 600 người,
c) Từ 300 người đến 400 người,
d) Từ 128 người đến 352 người.
Bài 21. Khảo sát về thu nhập của một số người làm việc ở một công ty, người ta thu
được số liệu sau (đơn vị: triệu đồng/năm) 12; 14; 8;
10; 16; 11;
12; 14; 13; 17; 13; 16; 12; 10; 13; 14; 15; 14;
14; 13; 13; 12; 14; 11; 15; 11; 14; 12; 11; 12;
14; 14; 15; 13; 16; 16; 10; 13; 13; 16; 14; 14;
12; 12; 11; 13; 14; 11; 16; 10
Trước đây thu nhập trung bình của một người ở công ty này là 1 triệu/tháng. Hãy cho
nhận xét về mức thu nhập trung bình của công ty hiện nay với mức ý nghĩa 5%.
43
a) Không thay đổi gì so với trước đây.
b) Có thay đổi gì so với trước đây.
c) Có thay đổi gì so với trước đây, vì thu nhập trung bình tăng thêm.
d) Có thay đổi gì so với trước đây, vì thu nhập trung bình giảm đi.
Bài 22. Theo dõi mức nguyên liệu hao phí để sản xuất ra một đơn vị sản phẩm ở một
nhà máy, ta thu được các số liệu sau (đơn vị: gam) 20; 22; 21; 20; 22;
22; 20; 19; 20; 22; 21; 19; 19; 20; 18; 19; 20;
20; 18; 19; 20; 20; 21; 20; 18; 19; 19; 21; 22;
21; 21; 20; 19; 20; 22; 21; 21; 22; 20; 20; 20;
19; 20; 21; 19; 19; 20; 21; 21; 22.
Khoảng ước lượng về số tiền trung bình dùng để mua loại nguyên liệu này trong từng
quý của nhà máy với độ tin cậy 98%. Biết giá loại nguyên liệu này là 800 ngàn
đồng/kg và sản lượng của nhà máy trong một quý là 40000 sản phẩm.
a) Từ 634 348 800 đồng đến 658 448 000 đồng,
b) Từ 600 348 800 đồng đến 658 448 000 đồng,
c) Từ 634 348 800 đồng đến 658 000 000 đồng,
d) Từ 534 348 800 đồng đến 658 448 000 đồng.
Bài 23. Theo dõi mức nguyên liệu hao phí để sản xuất ra một đơn vị sản phẩm ở một
nhà máy, ta thu được các số liệu sau (đơn vị: gam) 20; 22; 21; 20; 22;
22; 20; 19; 20; 22; 21;
19; 19; 20; 18; 19; 20;
20; 18; 19; 20; 20; 21; 20; 18;
19; 19; 21; 22;
21; 21; 20; 19; 20; 22; 21; 21; 22; 20;
20; 20;
19; 20; 21; 19; 19; 20; 21; 21; 22
Trước đây, mức hao phí nguyên liệu này trung bình là 21 gam/sản phẩm. Số liệu mẫu
trên được thu nhập khi nhà máy sử dụng công nghệ sản xuất mới. Hãy cho nhận xét
về công nghệ sản xuất mới với mức ý nghĩa 4%.
a) Không thay đổi gì so với trước đây.
b) Có thay đổi gì so với trước đây.
c) Có thay đổi gì so với trước đây, vì hao phí trung bình tăng thêm.
d) Có thay đổi gì so với trước đây, vì hao phí trung bình giảm đi.
Bài 24. Khảo sát về thu nhập của một số người ở một công ty, ta thu được bảng số
liệu sau
Thu nhập (triệu
đ/ năm)
Số người
610
5
1012
15
1214
22
1416
34
1618
25
1820
20
2022
14
2226
9
44
Những người có thu nhập từ 12 triệu đ/năm trở xuống là những người có thu nhập
thấp. Khỏang ước lượng số người có thu nhập thấp ở công ty này với độ tin cậy 98%.
Biết rằng tổng số người làm việc tại công ty này là 3000 người.
a) Từ 500 người đến 600 người,
b) Từ 611 người đến 1140 người,
c) Từ 600 người đến 1400 người,
d) Từ 28 người đến 352 người.
Bài 25. Khảo sát về thu nhập của một số người ở một công ty, ta thu được bảng số
liệu sau
Thu nhập (triệu
đ/ năm)
Số người
610
5
1012
15
1214
22
1416
34
1618
25
1820
20
2022
14
2226
9
Nếu công ty báo cáo mức thu nhập bình quân của một người là 1,3 triệu đ/năm thì có
chấp nhận được không (với mức ý nghĩa 5%).
a) Chấp nhận được.
b) Không chấp nhận được.
c) Không chấp nhận được, vì mức thu nhập trung bình lớn hơn 1,3 triệu
đ/năm.
d) Không chấp nhận được, vì mức thu nhập trung bình nhỏ hơn 1,3 triệu
đ/năm.
Bài 26. Khảo sát về thu nhập của một số người ở một công ty, ta thu được bảng số
liệu sau
Thu nhập (triệu
đ/ năm)
Số người
610
5
1012
15
1214
22
1416
34
1618
25
1820
20
2022
14
2226
9
Nếu dùng mẫu trên để ước lượng thu nhập trung bình của một người ở công ty với độ
chính xác 600 ngàn đồng thì độ tin cậy là:
a) 73%
b) 83%
c) 93%
d)
95%.
Bài 27. Tại một nông trường, để điều tra trọng lượng của một loại trái cây, người ta
cân thử một số trái cây và được kết quả cho trong bảng sau
Trọng
lượng (g)
Số trái cây
4550
2
5055
11
5560
25
6065
74
6570
187
7075
43
7580
16
8085
2
8590
1
Khỏang ước lượng trọng lượng trung bình của loại trái cây ở nông trường với độ tin
cậy 99% là:
a) [ 55.6513; 67.1324]
b) [ 65.6513; 77.1324]
45
c) [ 65.6513; 67.1324]
d) [ 55.6513; 77.1324] .
Bài 28. Tại một nông trường, để điều tra trọng lượng của một loại trái cây, người ta
cân thử một số trái cây và được kết quả cho trong bảng sau
Trọng
lượng (g)
Số trái cây
4550
2
5055
11
5560
25
6065
74
6570
187
7075
43
7580
16
8085
2
8590
1
Để ước lượng trọng lượng trung bình của loại trái cây ở nông trường với độ tin cậy
99% và độ chính xác 0,22g thì cần cân thêm tối thiểu là:
a) 2730 trái,
b) 3730 trái,
c) 4730 trái,
d) 5730 trái.
Bài 29. Tại một nông trường, để điều tra trọng lượng của một loại trái cây, người ta
cân thử một số trái cây và được kết quả cho trong bảng sau
Trọng
lượng (g)
Số trái cây
4550
2
5055
11
5560
25
6065
74
6570
187
7075
43
7580
16
8085
2
8590
1
Người ta qui ước những trái cây có trọng lượng nhỏ hơn 60g là thuộc loại II. Khỏang
ước lượng tỉ lệ trái cây loại II với độ tin cậy 95% là:
a) [ 0.1736; 0.4369]
b) [ 0.1736; 0.1369]
c) [ 0.0736; 0.3369]
d) [ 0.0736; 0.1369] .
Bài 30. Tại một nông trường, để điều tra trọng lượng của một loại trái cây, người ta
cân thử một số trái cây và được kết quả cho trong bảng sau
Trọng
lượng (g)
Số trái cây
4550
2
5055
11
5560
25
6065
74
6570
187
7075
43
7580
16
8085
2
8590
1
Sau đợt kiểm tra, người ta bón thêm một loại phân hóa học mới làm cho trọng lượng
trung bình một trái cây là 70g. Hãy cho kết luận về tác dụng của loại phân này với
mức ý nghĩa 1%.
a) Không thay đổi gì so với trước đây.
b) Có thay đổi gì so với trước đây.
c) Có thay đổi gì so với trước đây, vì trọng lượng trung bình tăng thêm.
d) Có thay đổi gì so với trước đây, vì trọng lượng trung bình giảm đi.
Bài 31. Trọng lượng trung bình khi xuất chuồng ở một trại chăn nuôi trước là 3,3
kg/con. Năm nay, người ta sử dụng một loại thức ăn mới, cân thử 15 con khi xuất
chuồng được các số liệu sau: 3,25; 2,50; 4,00; 3,75; 3,80; 3,90; 4,02; 3,60;
3,80; 3,20; 3,82; 3,40; 3,75; 4,00;
3,50
Giả thiết trọng lượng gà là ĐLNN có phân phối chuẩn.
46
Với mức ý nghĩa 5%, hãy cho kết luận về tác dụng của loại thức ăn này:
a) Không thay đổi gì so với trước đây.
b) Có thay đổi gì so với trước đây.
c) Có thay đổi gì so với trước đây, vì trọng lượng trung bình tăng thêm.
d) Có thay đổi gì so với trước đây, vì trọng lượng trung bình giảm đi.
Bài 32. Trọng lượng trung bình khi xuất chuồng ở một trại chăn nuôi trước là 3,3
kg/con. Năm nay, người ta sử dụng một loại thức ăn mới, cân thử 15 con khi xuất
chuồng được các số liệu sau: 3,25; 2,50; 4,00; 3,75; 3,80; 3,90; 4,02; 3,60;
3,80; 3,20; 3,82; 3,40; 3,75; 4,00;
3,50
Giả thiết trọng lượng gà là ĐLNN có phân phối chuẩn. Nếu trại chăn nuôi báo cáo
trọng lượng trung bình khi xuất chuồng là 3,5 kg/con thì có chấp nhận được không
(với mức ý nghĩa 5%).
a) Chấp nhận được.
b) Không chấp nhận được.
c) Không chấp nhận được, vì trọng lượng trung bình lớn hơn 3,5 kg/con .
d) Không chấp nhận được, vì trọng lượng trung bình nhỏ hơn 3,5 kg/con.
Bài33. Kiểm tra các sản phẩm do hai phân xưởng sản xuất ta có số liệu
Phân
xưởng
I
II
Số sản phẩm được
kiểm
900
800
Trọng lượng trung
bình
50,2
50,1
Phương sai hiệu
chỉnh
0,16
0,20
Số phế
phẩm
18
16
Với mức ý nghĩa 5% có thể xem tỷ lệ phế phẩm của hai phân xưởng là như
nhau?
a)Chấp nhận được.
b)Không chấp nhận được.
c)Không chấp nhận được, vì tỷ lệ phế phẩm phân xưởng I nhiều hơn phân xưởng II .
d)Không chấp nhận được, vì tỷ lệ phế phẩm phân xưởng I ít hơn phân xưởng II .
Bài 34. Kiểm tra các sản phẩm do hai phân xưởng sản xuất ta có số liệu
Phân
xưởng
I
II
Số sản phẩm được
kiểm
900
800
Trọng lượng trung
bình
50,2
50,1
Phương sai hiệu
chỉnh
0,16
0,20
Số phế
phẩm
18
16
Với mức ý nghĩa 1% có thể coi trọng lượng trung bình sản phẩm do hai phân
xưởng sản xuất là bằng nhau?
a) Chấp nhận được.
47
b) Không chấp nhận được.
c) Không chấp nhận được, vì trọng lượng trung bình do phân xưởng I sản xuất
lớn hơn phân xưởng II .
d) Không chấp nhận được, vì trọng lượng trung bình do phân xưởng I sản xuất
nhỏ hơn phân xưởng II.
Bài 35. Đo đường kính 20 trục máy do máy tiện thứ nhất sản xuất, ta được kết quả
(giả thiết đường kính của các trục máy là ĐLNN có phân phối chuẩn)
25
0
24
8
249 251 253 24
8
247 249 249 25
0
25
0
28
0
25
0
25
0
252 257 245
247 253 256
Khỏang ước lượng đường kính trung bình của các trục máy do máy thứ nhất tiện ra
với độ tin cậy 98% là:
a) [ 247.5726; 255.8273]
b) [ 227.5726; 255.8273]
c) [ 247.5726; 265.8273]
d) [ 237.5726; 265.8273] .
Bài 36. Đo đường kính 20 trục máy do máy tiện thứ nhất sản xuất, ta được kết quả
(giả thiết đường kính của các trục máy là ĐLNN có phân phối chuẩn)
25
0
24
8
249 251 253 24
8
247 249 249 25
0
25
0
28
0
25
0
25
0
252 257 245
247 253 256
Đo đường kính 22 trục máy do máy tiện thứ hai sản xuất ta tính được trung bình mẫu
là 249,8 và phương sai mẫu có hiệu chỉnh là 56,2. Có thể xem đường kính trung bình
của các trục máy giống nhau ở hai máy tiện không (với mức ý nghĩa 5%)?
a)Chấp nhận được.
b)Không chấp nhận được.
c)Không chấp nhận được, vì đường kính trung bình do máy I sản xuất lớn hơn máy
II .
d)Không chấp nhận được, vì đường kính trung bình do máy I sản xuất nhỏ hơn máy
II.
Bài 37. Khảo sát về thu nhập và tỷ lệ thu nhập chi cho giáo dục ở một số gia đình trên
địa bàn thành phố, người ta thu được bảng số liệu sau
Y
X 10-15 15-20 20-25 25-35
200-400
40
60
400-600
90
80
600-800
30
50
20
48
800-1200
20
10
trong đó X là tỷ lệ thu nhập chi cho giáo dục (đơn vị: %), Y là thu nhập bình quân
một người trong hộ (đơn vị: ngàn đồng/tháng). Khỏang ước lượng tỷ lệ thu nhập chi
cho giáo dục trung bình của một hộ gia đình ở thành phố với độ tin cậy 95% là:
a) [ 18.3933; 20.2316]
b) [ 19.3933; 21.2316]
c) [ 19.3933; 20.2316]
d) [ 18.3933; 21.2316] .
Bài 38. Khảo sát về thu nhập và tỷ lệ thu nhập chi cho giáo dục ở một số gia đình trên
địa bàn thành phố, người ta thu được bảng số liệu sau
Y
X 10-15 15-20 20-25 25-35
200-400
40
60
400-600
90
80
600-800
30
50
20
800-1200
20
10
trong đó X là tỷ lệ thu nhập chi cho giáo dục (đơn vị: %), Y là thu nhập bình quân
một người trong hộ (đơn vị: ngàn đồng/tháng).
Những hộ có thu nhập bình quân một người trên 800 ngàn đồng/tháng là những hộ có
thu nhập cao. Nếu cho rằng tỷ lệ hộ có thu nhập cao ở thành phố là 10% thì có tin cậy
được không (với mức ý nghĩa 5%).
a) Chấp nhận được.
b) Không chấp nhận được.
c) Không chấp nhận được, tỷ lệ hộ có thu nhập cao ở thành phố lớn hơn10%.
d) Không chấp nhận được, tỷ lệ hộ có thu nhập cao ở thành phố nhỏ hơn10%.
Bài 39. Khảo sát về thu nhập và tỷ lệ thu nhập chi cho giáo dục ở một số gia đình trên
địa bàn thành phố, người ta thu được bảng số liệu sau
Y
X 10-15 15-20 20-25 25-35
200-400
40
60
400-600
90
80
600-800
30
50
20
800-1200
20
10
trong đó X là tỷ lệ thu nhập chi cho giáo dục (đơn vị: %), Y là thu nhập bình quân
một người trong hộ (đơn vị: ngàn đồng/tháng).
Để ước lượng tỷ lệ thu nhập chi cho giáo dục trung bình của một hộ gia đình với độ
chính xác 0,5% (với số liệu bảng trên) thì đảm bảo độ tin cậy là:
a) 99%
98%.
b) 90%
c) 95%
d)
49
Bài 40. Khảo sát về thu nhập và tỷ lệ thu nhập chi cho giáo dục ở một số gia đình trên
địa bàn thành phố, người ta thu được bảng số liệu sau
Y
X 10-15 15-20 20-25 25-35
200-400
40
60
400-600
90
80
600-800
30
50
20
800-1200
20
10
trong đó X là tỷ lệ thu nhập chi cho giáo dục (đơn vị: %), Y là thu nhập bình quân
một người trong hộ (đơn vị: ngàn đồng/tháng).
Phương trình hồi quy biểu diễn trung bình của Y theo X là:
a) Y = 29.8437 X − 53.7768
b) Y = −53.7768 X + 29.8437
c) Y = 53.7768 X + 29.8437
d) Y = −53.7768 X − 29.8437 .
Bài 41. Khảo sát về thu nhập và tỷ lệ thu nhập chi cho giáo dục ở một số gia đình trên
địa bàn thành phố, người ta thu được bảng số liệu sau
Y
X 10-15 15-20 20-25 25-35
200-400
40
60
400-600
90
80
600-800
30
50
20
800-1200
20
10
trong đó X là tỷ lệ thu nhập chi cho giáo dục (đơn vị: %), Y là thu nhập bình quân
một người trong hộ (đơn vị: ngàn đồng/tháng).
Hệ số tương quan rxy là:
a) 0.6569
b) 0.65
c) 0.6575
d) 1.
Bài 42. X (đơn vị: %) và Y (đơn vị: cm) là hai chỉ tiêu của một loại sản phẩm. Điều
tra một mẫu ta có bảng số liệu sau
X
Y 80-84 84-88 88-92 92-96
1
8
3
12
9
4
6
5
11
15
10
7
12
7
3
Những sản phẩm có chỉ tiêu dưới 92cm là sản phẩm loại A. Khỏang ước lượng tỷ
lệ sản phẩm loại A với độ tin cậy 99% là:
a) [ 0.7001; 0.9080]
b) [ 0.6001; 0.9080]
c) [ 0.7001;1]
d) [ 0.6001; 0.9999] .
50
Bài 43. X (đơn vị: %) và Y (đơn vị: cm) là hai chỉ tiêu của một loại sản phẩm. Điều
tra một mẫu ta có bảng số liệu sau
X
Y 80-84 84-88 88-92 92-96
1
8
3
12
9
4
6
5
11
15
10
7
12
7
3
Có tài liệu nói rằng: trung bình của chỉ tiêu X của sản phẩm loại A là 6%. Cho
nhận xét về tài liệu này với mức ý nghĩa 1%. Giả thiết X có phân phối chuẩn.
a) Tài liệu này nói đúng.
b) Tài liệu này nói không đúng.
c) Tài liệu này nói không đúng vì trung bình của chỉ tiêu X lớn hơn 6%.
d) Tài liệu này nói không đúng vì trung bình của chỉ tiêu X nhỏ hơn 6%.
Bài 44. X (đơn vị: %) và Y (đơn vị: cm) là hai chỉ tiêu của một loại sản phẩm. Điều
tra một mẫu ta có bảng số liệu sau
X
Y 80-84 84-88 88-92 92-96
1
8
3
12
9
4
6
5
11
15
10
7
12
7
3
Phương trình hồi quy tuyến tính biểu diễn trung bình của Y theo X là:
a) Y = 83.6653 X + 0.9251
b) Y = 0.9251X + 83.6653
c) Y = −0.9251X + 83.6653
d) Y = 0.9251X − 83.6653 .
Bài 45. X(%) và Y(kg/mm2) là hai chỉ tiêu chất lượng của một loại sản phẩm. Điều
tra ở một số sản phẩm về (X,Y) ta có kết quả (2,5);
(8,15);
(4,15);
(4,10);
(2,10);
(8,25);
(2,5);
(6,10);
(4,10);
(8,20);
(6,10);
(8,15);
(6,10);
(6,15);
(4,15);
(6,15);
(8,20);
(6,15);
(6,20);
(6,10);
(6,20);
(6,15);
(6,25);
(8,20);
(6,15);
(6,20);
(8,15);
(6,15);
(8,25);
(8,15)
Khỏang ước lượng trung bình chỉ tiêu Y với độ tin cậy 98%.
a) [ 11.8988;18.4343]
b) [ 12.8988;19.4343]
c) [ 10.8988;17.4343]
d) [ 12.8988;17.4343] .
51
Bài 46. X(%) và Y(kg/mm2) là hai chỉ tiêu chất lượng của một loại sản phẩm. Điều
tra ở một số sản phẩm về (X,Y) ta có kết quả (2,5);
(8,15);
(4,15);
(4,10);
(2,10);
(8,25);
(2,5);
(6,10);
(4,10);
(8,20);
(6,10);
(8,15);
(6,10);
(6,15);
(4,15);
(6,15);
(8,20);
(6,15);
(6,20);
(6,10);
(6,20);
(6,15);
(6,25);
(8,20);
(6,15);
(6,20);
(8,15);
(6,15);
(8,25);
(8,15)
Có tài liệu nói rằng: trung bình chỉ tiêu X là 6.5%. Cho nhận xét với mức ý nghĩa 5%.
a) Tài liệu này nói đúng.
b) Tài liệu này nói không đúng.
c) Tài liệu này nói không đúng vì trung bình của chỉ tiêu X lớn hơn 6.5%.
d) Tài liệu này nói không đúng vì trung bình của chỉ tiêu X nhỏ hơn 6.5%.
Bài 47. X(%) và Y(kg/mm2) là hai chỉ tiêu chất lượng của một loại sản phẩm. Điều
tra ở một số sản phẩm về (X,Y) ta có kết quả (2,5);
(8,15);
(4,15);
(4,10);
(2,10);
(8,25);
(2,5);
(6,10);
(4,10);
(8,20);
(6,10);
(8,15);
(6,10);
(6,15);
(4,15);
(6,15);
(8,20);
(6,15);
(6,20);
(6,10);
(6,20);
(6,15);
(6,25);
(8,20);
(6,15);
(6,20);
(8,15);
(6,15);
(8,25);
(8,15)
Phương trình hồi quy tuyến tính biểu diễn trung bình của Y theo X là:
a) Y = 4.8584 X + 1.9058
b) Y = 3.8584 X + 1.9058
c) Y = 1.9058 X + 3.8584
d) Y = 0.9251X − 83.6653 .
Bài 48. X(kg) là chỉ tiêu của một loại sản phẩm. Điều tra một số sản phẩm, ta có kết
quả
X 50-55 55-60 60-65 65-70 70-75 75-80
ni
2
3
2
10
8
2
Khỏang ước lượng trung bình chỉ tiêu X với độ tin cậy 98% là.
a) [ 61.8947; 70.3644]
b) [ 63.8947; 70.3644]
c) [ 63.8947; 72.3644]
d) [ 60.8947; 70.3644] .
Bài 49. X(kg) là chỉ tiêu của một loại sản phẩm. Điều tra một số sản phẩm, ta có kết
quả
52
X 50-55 55-60 60-65 65-70 70-75 75-80
ni
2
3
2
10
8
2
Có tài liệu nói rằng trung bình chỉ tiêu X là 68kg. Cho nhận xét về tài liệu này với
mức ý nghĩa 5%.
a) Tài liệu này nói đúng.
b) Tài liệu này nói không đúng.
c) Tài liệu này nói không đúng vì trung bình lớn hơn 70kg.
d) Tài liệu này nói không đúng vì trung bình nhỏ hơn 70kg.
Bài 50. X(cm) là chỉ tiêu của sản phẩm. Điều tra một số sản phẩm, ta có kết quả
xi
ni
200250
2
250300
4
300350
3
350400
4
400450
4
450500
4
500550
4
Nếu chỉ tiêu trung bình X không lớn hơn 380cm thì phải điều chỉnh lại quy trình sản
xuất. Từ bảng số liệu trên ta phải:
a) Điều chỉnh lại quy trình sản xuất .
b) Không cần điều chỉnh lại quy trình sản xuất .
c) Điều chỉnh lại quy trình sản xuất, vì chỉ tiêu trung bình X không lớn hơn
380cm.
d) Không cần điều chỉnh lại quy trình sản xuất, vì chỉ tiêu trung bình X lớn hơn
380cm.
Bài 51. X(cm) là chỉ tiêu của sản phẩm. Điều tra một số sản phẩm, ta có kết quả
xi
ni
200250
2
250300
4
300350
3
350400
4
400450
4
450500
4
500550
4
Giả thiết X có phân phối chuẩn với phương sai là 95. Khỏang ước lượng trung bình X
với độ tin cậy 95% là:
a) [ 339.8030; 428.1970]
b) [ 349.8030; 448.1970]
c) [ 351.7600; 426.2400]
d) [ 339.8030; 448.1970] .
Bài 52. X(cm) là chỉ tiêu của sản phẩm. Điều tra một số sản phẩm, ta có kết quả
xi
ni
200250
5
250300
4
300350
3
350400
4
400450
5
450500
4
500550
3
Khỏang ước lượng trung bình chỉ tiêu X của các sản phẩm với độ tin cậy 99% là:
a) [ 301.6845; 421.0296]
b) [ 314.6845; 421.0296]
53
c) [ 314.6845; 441.0296]
d) [ 214.6845; 421.0296] .
Bài 53. Khảo sát chỉ tiêu X (triệu đồng/người - năm) - thu nhập bình quân một người
trong hộ của một số hộ gia đình ở TP năm 1990, người ta thu được kết quả
X
2–3
Số hộ
5
33,5
3
3,5 4
3
44,5
4
4,5 5
4
55,5
5
5,5 6
3
67
1
79
1
Khỏang ước lượng trung bình chỉ tiêu X với độ tin cậy 95% là:
a) [ 3.8867; 4.9062]
b) [ 4.4344; 4.8215]
c) [ 4.4344; 5.8215]
d) [ 2.8867; 4.9062] .
Bài 54. Khảo sát chỉ tiêu X (triệu đồng/người - năm) - thu nhập bình quân một người
trong hộ của một số hộ gia đình ở TP năm 1990, người ta thu được kết quả
X
2–3
Số hộ
5
33,5
3
3,5 4
3
44,5
4
4,5 5
4
55,5
5
5,5 6
3
67
1
79
1
Có ý kiến cho rằng phương sai của X là 2. Với mức ý nghĩa 5%, ý kiến này có đáng
tin cậy hay không.
a) Đáng tin cậy.
b) Không đáng tin cậy.
c) Không đáng tin cậy, vì phương sai của X lớn hơn 2.
d) Không đáng tin cậy, vì phương sai của X nhỏ hơn 2.
Bài 55. Khảo sát chỉ tiêu X (triệu đồng/người - năm) - thu nhập bình quân một người
trong hộ của một số hộ gia đình ở TP năm 1990, người ta thu được kết quả
X
2–3
Số hộ
5
33,5
3
3,5 4
3
44,5
4
4,5 5
4
55,5
5
5,5 6
3
67
1
79
1
Nếu nói rằng trung bình của chỉ tiêu X là 5 triệu đồng/ người - năm thì có đáng tin
cậy không với mức ý nghĩa 5%.
a)Đáng tin cậy.
b)Không đáng tin cậy.
c)Không đáng tin cậy, vì thu nhập trung bình X lớn hơn 5 triệu đồng/ người - năm.
d)Không đáng tin cậy, vì thu nhập trung bình X nhỏ hơn 5 triệu đồng/ người - năm.
Bài 56. Khảo sát về thời gian tự học X (giờ/tuần) trong tuần của một số sinh viên hệ
chính quy ở trường đại học A trong thời gian gần đây, người ta thu được bảng số liệu
X
3 4 5 6 7 8
1
11 12
54
0
3
Số SV 1 3 4 5 5 4
3
1
Khỏang ước lượng giờ tự học trung bình trong tuần của một sinh viên hệ chính quy
của trường đại học A với độ tin cậy 95% là:
a) [ 6.0175; 6.0390]
b) [ 6.2079; 8.0678]
c) [ 6.1375; 7.2290]
d) [ 6.2375; 6.9290] .
Bài 57. Khảo sát về thời gian tự học X (giờ/tuần) trong tuần của một số sinh viên hệ
chính quy ở trường đại học A trong thời gian gần đây, người ta thu được bảng số liệu
X
3 4
5
6
7
Số SV 1 3 14 15
2
0
8
1 11 12
0
19 13 13 2
Những sinh viên có giờ tự học từ 10 giờ/tuần trở lên là những sinh viên chăm học.
Giả thiết giờ tự học của sinh viên chăm học là ĐLNN có phân phối chuẩn. Khỏang
ước lượng tỷ lệ sinh viên chăm học hệ chính quy trường đại học A với độ tin cậy 98%
là:
a) [ 0.0773; 0.2143]
b) [ 0.2753; 0.3846]
c) [ 0.1753; 0.2846]
d) [ 0.1753; 0.3846] .
Bài 58. Khảo sát về thời gian tự học X (giờ/tuần) trong tuần của một số sinh viên hệ
chính quy ở trường đại học A trong thời gian gần đây, người ta thu được bảng số liệu
X
3 4
5
6
7
Số SV 1 3 14 15
2
0
8
1 11 12
0
19 13 13 2
Trước đây, giờ tự học trung bình của sinh viên hệ chính quy trường đại học A là 8
giờ/tuần. Hãy cho nhận xét về tình hình tự học của sinh viên hệ chính quy trường đại
học A trong thời gian gần đây với mức ý nghĩa 5%.
a) Không thay đổi gì so với trước đây.
b) Có thay đổi gì so với trước đây.
c) Có thay đổi gì so với trước đây, vì giờ tự học tăng thêm.
d) Có thay đổi gì so với trước đây, vì giờ tự học giảm đi.
Bài 59. Điều tra năng suất của 100 ha lúa trong một vùng, ta có bảng số liệu sau
Năng suất (tấn/ha) 3 - 4 4 - 5 5 - 6 6 - 7 7 - 8 8 - 9
Diện tích (ha)
7
16
18
27
24
8
Khỏang ước lượng năng suất lúa trung bình ở vùng này với độ tin cậy 95% là:
55
a) [ 5.9174; 6.4625]
b) [ 4.9174; 6.4625]
c) [ 5.9174; 7.4625]
d) [ 5.0174; 6.0625] .
Bài 60. Điều tra năng suất của 100 ha lúa trong một vùng, ta có bảng số liệu sau
Năng suất (tấn/ha) 3 - 4 4 - 5 5 - 6 6 - 7 7 - 8 8 - 9
Diện tích (ha)
7
16
18
27
24
8
Biết năng suất lúa của vùng này là một đại lượng ngẫu nhiên có phân phối chuẩn với
phương sai là 1.75. Khỏang ước lượng năng suất lúa trung bình ở vùng này với độ tin
cậy 95% là:
a) [ 5.9174; 6.4625]
b) [ 5.8470; 6.5330]
c) [ 5.9174; 7.4625]
d) [ 4.8470; 6.5330] .
Bài 61. Điều tra năng suất của 100 ha lúa trong một vùng, ta có bảng số liệu sau
Năng suất (tấn/ha) 3 - 4 4 - 5 5 - 6 6 - 7 7 - 8 8 - 9
Diện tích (ha)
7
16
18
27
24
8
Những thửa ruộng có năng suất trên 6 tấn/ha là những thửa ruộng có năng suất cao.
Cho biết diện tích gieo trồng lúa ở vùng này là 8000 ha. Diện tích lúa có năng suất
cao ở vùng này với độ tin cậy 98% vào khảng:
a) Từ 596 ha đến 1964 ha.
b) Từ 3804 ha đến 5637 ha.
c) Từ 3009 ha đến 5970 ha.
d) Từ 3112 ha đến 5864 ha.
Bài 62. Điều tra năng suất của 100 ha lúa trong một vùng, ta có bảng số liệu sau
Năng suất (tấn/ha) 3 - 4 4 - 5 5 - 6 6 - 7 7 - 8 8 - 9
Diện tích (ha)
7
16
18
27
24
8
Năng suất lúa trung bình của vụ trước là 4,5 tấn/ha. Vụ lúa năm nay người ta áp dụng
một biện pháp kỹ thuật mới cho toàn bộ diện tích trồng lúa ở trong vùng. Với mức ý
nghĩa 5%, hãy kết luận xem biện pháp kỹ thuật mới có tác dụng đến năng suất lúa
trung bình của vùng này hay không?
a) Không thay đổi gì so với mùa trước đây.
b) Có thay đổi gì so với mùa trước đây.
c) Có thay đổi gì so với trước đây, vì năng suất trung bình tăng thêm.
d) Có thay đổi gì so với trước đây, vì năng suất trung bình giảm đi.
Bài 63. Điều tra năng suất của 100 ha lúa trong một vùng, ta có bảng số liệu sau
Năng suất (tấn/ha) 3 - 4 4 - 5 5 - 6 6 - 7 7 - 8 8 - 9
Diện tích (ha)
7
16
18
27
24
8
56
Biết năng suất lúa của vùng này là một đại lượng ngẫu nhiên có phân phối chuẩn với
phương sai là σ 2 = 1.75 . Khỏang ước lượng năng suất lúa trung bình ở vùng này với
độ tin cậy 95% là:
a) [ 6.1557; 6.2243]
b) [ 6.2557; 6.5243]
c) [ 5.1557; 6.2243]
d) [ 4.8470; 6.5330] .
Bài 64. Một công ty tiến hành khảo sát nhu cầu tiêu dùng về một loại sản phẩm do
công ty sản xuất. Tiến hành khảo sát 500 hộ gia đình ở một thành phố thì thấy có 400
hộ dùng loại sản phẩm do công ty công ty sản xuất với số liệu thống kê sau: (nhu cầu
tiêu dùng sản phẩm này là đại lượng ngẫu nhiên tuân theo luật phân phối chuẩn có
phương sai σ 2 = 0.64 )
Số lượng (kg/ tháng) 0,5 – 1 1 - 1,5 1,5 - 2 2 - 2,5 2,5 - 3 3 - 4
Số hộ
40
70
110
90
60
30
Khỏang ước lượng tổng số lượng sản phẩm công ty tiêu thụ được ở thành phố này
trong một tháng với độ tin cậy 95%. Biết tổng số hộ gia đình ở thành phố là 600000
hộ.
a) Từ 1 130 000 kg đến 1 216 000 kg, b) Từ 1 130 520 kg đến 1 216 860 kg,
c) Từ 1 100 520 kg đến 1 400 860 kg, d) Từ 1 171 320 kg đến 1 176 060 kg.
Bài 65. Một công ty tiến hành khảo sát nhu cầu tiêu dùng về một loại sản phẩm do
công ty sản xuất. Tiến hành khảo sát 500 hộ gia đình ở một thành phố thì thấy có 400
hộ dùng loại sản phẩm do công ty công ty sản xuất với số liệu thống kê sau
Số lượng (kg/ tháng) 0,5 – 1 1 - 1,5 1,5 - 2 2 - 2,5 2,5 - 3 3 - 4
Số hộ
40
70
110
90
60
30
Để ước lượng tỷ lệ hộ gia đình có nhu cầu về loại sản phẩm này với độ tin cậy 99%
và độ chính xác 2% thì số hộ gia đình cần khảo sát thêm tối thiểu là:
a) 3000
b) 2584
c) 2756
d) 2663.
Bài 66. Một công ty tiến hành khảo sát nhu cầu tiêu dùng về một loại sản phẩm do
công ty sản xuất. Tiến hành khảo sát 500 hộ gia đình ở một thành phố thì thấy có 400
hộ dùng loại sản phẩm do công ty công ty sản xuất với số liệu thống kê sau: (nhu cầu
tiêu dùng sản phẩm này là đại lượng ngẫu nhiên tuân theo luật phân phối chuẩn có
phương sai σ 2 = 0.64 )
Số lượng (kg/ tháng) 0,5 – 1 1 - 1,5 1,5 - 2 2 - 2,5 2,5 - 3 3 - 4
Số hộ
40
70
110
90
60
30
Một tài liệu nói rằng: mức tiêu thụ trung bình loại sản phẩm này ở thành phố là 750
tấn/tháng. Tài liệu này có chấp nhận được hay không với mức ý nghĩa 4%.
a) Chấp nhận được.
b) Không chấp nhận được.
57
c) Không chấp nhận được, vì mức tiêu thụ trung bình lớn hơn 750 tấn/tháng.
d) Không chấp nhận được, vì mức tiêu thụ trung bình nhỏ hơn 750 tấn/tháng.
Bài 67. Khảo sát về thu nhập của một số người làm việc ở một công ty, người ta thu
được số liệu sau (đơn vị: triệu đồng/năm) 12; 14; 8;
10; 16; 11;
12; 14; 13; 17; 13; 16; 12; 10; 13; 14; 15; 14;
14; 13; 13; 12; 14; 11; 15.
Có thể nói thu nhập trung bình của một người trên một năm là:
a) 13.04 trệu
b) 13.06 trệu
c) 14.05 trệu
d) 14.06 trệu.
Bài 68. Khảo sát về thu nhập của một số người làm việc ở một công ty, người ta thu
được số liệu sau (đơn vị: triệu đồng/năm) 12; 14; 8;
10; 16; 11;
12; 14; 13; 17; 13; 16; 12; 10; 13; 14; 15; 14;
14; 13; 13; 12; 14; 11; 15.
Biết số tiền thu nhập của một người trên một năm là đại lượng ngẫu nhiên tuân theo
luật phân phối chuẩn . Khỏang ước lượng thu nhập trung bình của một người trên một
năm với độ tin cậy 98% là:
a) [ 12.0077;14.0722]
b) [ 12.5254;13.5945]
c) [ 12.0004;13.0005]
d) [ 12.0077;13.0722] .
Bài 69. Khảo sát về thu nhập của một số người làm việc ở một công ty, người ta thu
được số liệu sau (đơn vị: triệu đồng/năm) 12; 14; 8;
10; 16; 11;
12; 14; 13; 17; 13; 16; 12; 10; 13; 14; 15; 14;
14; 13; 13; 12; 14; 11; 15.
Trước đây thu nhập trung bình của một người ở công ty này là 1 triệu/tháng. Hãy cho
nhận xét về mức thu nhập trung bình của công ty hiện nay với mức ý nghĩa 4%.
a)Không thay đổi gì so với trước đây.
b)Có thay đổi gì so với trước đây.
c)Có thay đổi gì so với trước đây, vì thu nhập trung bình tăng thêm.
d)Có thay đổi gì so với trước đây, vì thu nhập trung bình giảm đi.
Bài 70. Theo dõi mức nguyên liệu hao phí để sản xuất ra một đơn vị sản phẩm ở một
nhà máy, ta thu được các số liệu sau (đơn vị: gam) 20; 22; 21; 20; 22;
22; 20; 19; 20; 22; 21; 19; 19; 20; 18; 19; 20;
20; 18; 19; 20; 20;
21; 22; 23. (Giả sử mức nguyên
liệu hao phí là đại lượng ngẫu nhiên tuân theo luật phân phối chuẩn với phương sai
σ 2 = 2.25 ). Khoảng ước lượng về số tiền trung bình dùng để mua loại nguyên liệu này
trong từng quý của nhà máy với độ tin cậy 98%. Biết giá loại nguyên liệu này là 800
ngàn đồng/kg và sản lượng của nhà máy trong một quý là 40000 sản phẩm.
a) Từ 634 348 800 đồng đến 658 448 000 đồng,
58
b) Từ 600 348 800 đồng đến 658 448 000 đồng,
c) Từ 625 036 800 đồng đến 672 883 200 đồng,
d) Từ 534 348 800 đồng đến 658 448 000 đồng.
Bài 71. Theo dõi mức nguyên liệu hao phí để sản xuất ra một đơn vị sản phẩm ở một
nhà máy, ta thu được các số liệu sau (đơn vị: gam) 20; 22; 21; 20; 22;
22; 20; 19; 20; 22; 21; 19; 19; 20; 18; 19; 20;
20; 18; 19; 20; 20;
21; 22; 23. (Giả sử mức nguyên
liệu hao phí là đại lượng ngẫu nhiên tuân theo luật phân phối chuẩn với phương sai
σ 2 = 2.25 ).Trước đây mức hao phí nguyên liệu này trung bình là 21 gam/sản phẩm. Số
liệu mẫu trên được thu nhập khi nhà máy sử dụng công nghệ sản xuất mới. Hãy cho
nhận xét về công nghệ sản xuất mới với mức ý nghĩa 5%.
a)Không thay đổi gì so với trước đây.
b)Có thay đổi gì so với trước đây.
c)Có thay đổi gì so với trước đây, vì hao phí trung bình tăng thêm.
d)Có thay đổi gì so với trước đây, vì hao phí trung bình giảm đi.
Bài 72. Khảo sát về thu nhập của một số người ở một công ty, ta thu được bảng số
liệu sau
Thu nhập (triệu đ/ năm) 7 11 13 15 17 19 21 22
Số người
5 15 22 34 25 2 14 9
0
Những người có thu nhập từ 13 triệu đ/năm trở xuống là những người có thu nhập
thấp. Khỏang ước lượng số người có thu nhập thấp ở công ty này với độ tin cậy 95%.
Biết rằng tổng số người làm việc tại công ty này là 4000 người.
a) Từ 500 người đến 600 người,
c) Từ 600 người đến 1400 người,
b) Từ 611 người đến 1140 người,
d) Từ 593 người đến 1130 người.
Bài 73. Khảo sát về thu nhập của một số người ở một công ty, ta thu được bảng số
liệu sau
Thu nhập (triệu đ/ năm) 7 11 13 15 17 19 21 22
Số người
5 15 22 34 25 2 14 9
0
Nếu công ty báo cáo mức thu nhập bình quân của một người là 1,3 triệu đ/năm thì có
chấp nhận được không (với mức ý nghĩa 5%).
a)Chấp nhận được.
b)Không chấp nhận được.
c)Không chấp nhận được, vì mức thu nhập trung bình lớn hơn 1,3 triệu đ/năm.
d)Không chấp nhận được, vì mức thu nhập trung bình nhỏ hơn 1,3 triệu đ/năm.
59
Bài 74. Khảo sát về thu nhập của một số người ở một công ty, ta thu được bảng số
liệu sau
Thu nhập (triệu đ/ năm) 7 11 13 15 17 19 21 22
Số người
5 15 22 34 25 2 14 9
0
Nếu dùng mẫu trên để ước lượng thu nhập trung bình của một người ở công ty với độ
chính xác 600 ngàn đồng thì độ tin cậy là:
a) 73%
b) 99.9%
c) 93%
d) 95%.
Bài 75. Tại một nông trường, để điều tra trọng lượng của một loại trái cây, người ta
cân thử một số trái cây và được kết quả cho trong bảng sau
Trọng lượng (g) 45
Số trái cây
2
5
0
3
55
2
6
0
4
65
7
7
0
4
75
6
Khỏang ước lượng trọng lượng trung bình của loại trái cây ở nông trường với độ tin
cậy 99% là:
a) [ 55.6513; 67.1324]
b) [ 58.4546; 68.3309]
c) [ 65.6513; 67.1324]
d) [ 55.6513; 77.1324] .
Bài 76. Tại một nông trường, để điều tra trọng lượng của một loại trái cây, người ta
cân thử một số trái cây và được kết quả cho trong bảng sau
Trọng lượng (g) 45
Số trái cây
8
5
0
1
0
55
6 65
0
25 44 45
7
0
9
75
3
Để ước lượng trọng lượng trung bình của loại trái cây ở nông trường với độ tin cậy
99% và độ chính xác 0,22g thì cần cân thêm tối thiểu là:
a) 5890 trái,
b) 3730 trái,
c) 7730 trái,
d) 5730 trái.
Bài 77. Tại một nông trường, để điều tra trọng lượng của một loại trái cây, người ta
cân thử một số trái cây và được kết quả cho trong bảng sau
Trọng lượng (g) 45
Số trái cây
8
5
0
1
0
55
6 65
0
25 44 45
7
0
9
75
3
Người ta qui ước những trái cây có trọng lượng nhỏ hơn 60g là thuộc loại II. Khỏang
ước lượng tỉ lệ trái cây loại II với độ tin cậy 95% là:
a) [ 0.1736; 0.4369]
b) [ 0.2604; 0.3367]
60
c) [ 0.2604; 0.4367]
d) [ 0.0736; 0.1369] .
Bài 78. Tại một nông trường, để điều tra trọng lượng của một loại trái cây, người ta
cân thử một số trái cây và được kết quả cho trong bảng sau
Trọng lượng (g) 45
Số trái cây
8
5
0
1
0
55
6 65
0
25 44 45
7
0
9
75
3
Sau đợt kiểm tra, người ta bón thêm một loại phân hóa học mới làm cho trọng lượng
trung bình một trái cây là 70g. Hãy cho kết luận về tác dụng của loại phân này với
mức ý nghĩa 1%.
a)Không thay đổi gì so với trước đây.
b)Có thay đổi gì so với trước đây.
c)Có thay đổi gì so với trước đây, vì trọng lượng trung bình tăng thêm.
d)Có thay đổi gì so với trước đây, vì trọng lượng trung bình giảm đi.
Bài 79. Trọng lượng trung bình khi xuất chuồng ở một trại chăn nuôi trước là 3.10
kg/con. Năm nay, người ta sử dụng một loại thức ăn mới, cân thử 19 con khi xuất
chuồng được các số liệu sau: 3,25; 2,50; 4,00; 3,75; 3,80; 3,90; 4,02; 3,60;
3,80; 3,20; 3,82; 3,40; 3,75; 4,00;
3,50; 3,40; 3,75; 4,00;
3,50. Giả thiết trọng lượng gà là ĐLNN có phân phối chuẩn.
Với mức ý nghĩa 3%, hãy cho kết luận về tác dụng của loại thức ăn này:
a)Không thay đổi gì so với trước đây.
b)Có thay đổi gì so với trước đây.
c)Có thay đổi gì so với trước đây, vì trọng lượng trung bình tăng thêm.
d)Có thay đổi gì so với trước đây, vì trọng lượng trung bình giảm đi.
Bài 80. Trọng lượng trung bình khi xuất chuồng ở một trại chăn nuôi trước là 3,3
kg/con. Năm nay, người ta sử dụng một loại thức ăn mới, cân thử 19 con khi xuất
chuồng được các số liệu sau: 3,25; 2,50; 4,00; 3,75; 3,80; 3,90; 4,02; 3,60;
3,80; 3,20; 3,82; 3,40; 3,75; 4,00;
3,50; 3,40; 3,75; 4,00;
3,50.
Giả thiết trọng lượng gà là ĐLNN có phân phối chuẩn. Nếu trại chăn nuôi báo cáo
trọng lượng trung bình khi xuất chuồng là 3,2 kg/con thì có chấp nhận được không
(với mức ý nghĩa 5%).
a)Chấp nhận được.
b)Không chấp nhận được.
c)Không chấp nhận được, vì trọng lượng trung bình lớn hơn 3,5 kg/con .
d)Không chấp nhận được, vì trọng lượng trung bình nhỏ hơn 3,5 kg/con.
61
Bài 81. Kiểm tra các sản phẩm do hai phân xưởng sản xuất ta có số liệu
Phân
xưởng
I
II
Số sản phẩm được
kiểm
850
900
Trọng lượng trung
bình
52,2
54,1
Phương sai hiệu
chỉnh
0,16
0,22
Số phế
phẩm
15
19
Với mức ý nghĩa 5% có thể xem tỷ lệ phế phẩm của hai phân xưởng là như nhau?
a)Chấp nhận được.
b)Không chấp nhận được.
c)Không chấp nhận được, vì tỷ lệ phế phẩm phân xưởng I nhiều hơn phân xưởng II .
d)Không chấp nhận được, vì tỷ lệ phế phẩm phân xưởng I ít hơn phân xưởng II .
Bài 82. Kiểm tra các sản phẩm do hai phân xưởng sản xuất ta có số liệu
Phân
xưởng
I
II
Số sản phẩm được
kiểm
850
900
Trọng lượng trung
bình
52,2
54,1
Phương sai hiệu
chỉnh
0,16
0,22
Số phế
phẩm
15
19
Với mức ý nghĩa 1% có thể coi trọng lượng trung bình sản phẩm do hai phân xưởng
sản xuất là bằng nhau?
a)Chấp nhận được.
b)Không chấp nhận được.
c)Không chấp nhận được, vì trọng lượng trung bình do phân xưởng I sản xuất lớn
hơn phân xưởng II .
d)Không chấp nhận được, vì trọng lượng trung bình do phân xưởng I sản xuất nhỏ
hơn phân xưởng II.
Bài 83. Đo đường kính 20 trục máy do máy tiện thứ nhất sản xuất, ta được kết quả
(giả thiết đường kính của các trục máy là ĐLNN có phân phối chuẩn với phương sai
σ 2 = 64 )
25
0
24
8
249 251 253 24
8
247 249 249 25
0
25
0
28
0
25
0
25
0
252 257 245
247 253 256
Khỏang ước lượng đường kính trung bình của các trục máy do máy thứ nhất tiện ra
với độ tin cậy 95% là:
a) [ 247.5726; 255.8273]
b) [ 248.1938; 255.2061]
c) [ 247.5726; 265.8273]
d) [ 237.5726; 265.8273] .
62
Bài 84. Đo đường kính 20 trục máy do máy tiện thứ nhất sản xuất, ta được kết quả
(giả thiết đường kính của các trục máy là ĐLNN có phân phối chuẩn)
25
0
25
0
249 251 253 24
8
247 249 249 25
0
25
0
28
0
25 252 257 245
0
254 247 253 256
Đo đường kính 22 trục máy do máy tiện thứ hai sản xuất ta tính được trung bình mẫu
là 249,8 và phương sai mẫu có hiệu chỉnh là 56,2. Có thể xem đường kính trung bình
của các trục máy giống nhau ở hai máy tiện không (với mức ý nghĩa 5%)?
a)Chấp nhận được.
b)Không chấp nhận được.
c)Không chấp nhận được, vì đường kính trung bình do máy I sản xuất lớn hơn máy
II .
d)Không chấp nhận được, vì đường kính trung bình do máy I sản xuất nhỏ hơn máy
II.
Bài 85. Khảo sát về thu nhập và tỷ lệ thu nhập chi cho giáo dục ở một số gia đình trên
địa bàn thành phố, người ta thu được bảng số liệu sau
Y
X 12.5 17.5 22.5 30
300
40
60
500
90
80
700
30
50 20
1000
20 10
trong đó X là tỷ lệ thu nhập chi cho giáo dục (đơn vị: %), Y là thu nhập bình quân
một người trong hộ (đơn vị: ngàn đồng/tháng).
Khỏang ước lượng tỷ lệ thu nhập chi cho giáo dục trung bình của một hộ gia đình ở
thành phố với độ tin cậy 99% là:
a) [ 18.3933; 20.2316]
b) [ 19.3933; 20.2316]
c) [ 19.3933; 21.2316]
d) [ 18.3933; 21.2316] .
Bài 86. Khảo sát về thu nhập và tỷ lệ thu nhập chi cho giáo dục ở một số gia đình trên
địa bàn thành phố, người ta thu được bảng số liệu sau
Y
X 12.5 17.5 22.5 30
300
40
60
500
90
80
700
30
50 20
1000
20 10
63
trong đó X là tỷ lệ thu nhập chi cho giáo dục (đơn vị: %), Y là thu nhập bình quân
một người trong hộ (đơn vị: ngàn đồng/tháng). Những hộ có thu nhập bình quân một
người trên 800 ngàn đồng/tháng là những hộ có thu nhập cao. Nếu cho rằng tỷ lệ hộ
có thu nhập cao ở thành phố là 10% thì có tin cậy được không (với mức ý nghĩa 5%).
a)Chấp nhận được.
b)Không chấp nhận được.
c)Không chấp nhận được, tỷ lệ hộ có thu nhập cao ở thành phố lớn hơn10%.
d)Không chấp nhận được, tỷ lệ hộ có thu nhập cao ở thành phố nhỏ hơn10%.
Bài 87. Khảo sát về thu nhập và tỷ lệ thu nhập chi cho giáo dục ở một số gia đình trên
địa bàn thành phố, người ta thu được bảng số liệu sau
Y
X 12.5 17.5 22.5 30
300
40
60
500
90
80
700
30
50 20
1000
20 10
trong đó X là tỷ lệ thu nhập chi cho giáo dục (đơn vị: %), Y là thu nhập bình quân
một người trong hộ (đơn vị: ngàn đồng/tháng).
Để ước lượng tỷ lệ thu nhập chi cho giáo dục trung bình của một hộ gia đình với độ
chính xác 0,5% (với số liệu bảng trên) thì đảm bảo độ tin cậy là:
a) 99%
b) 95%
c) 90%
d) 98%.
Bài 88. Khảo sát về thu nhập và tỷ lệ thu nhập chi cho giáo dục ở một số gia đình trên
địa bàn thành phố, người ta thu được bảng số liệu sau
Y
X 12.5 17.5 22.5 30
300
40
60
500
90
80
700
30
50 20
1000
20 10
trong đó X là tỷ lệ thu nhập chi cho giáo dục (đơn vị: %), Y là thu nhập bình quân
một người trong hộ (đơn vị: ngàn đồng/tháng).
Phương trình hồi quy biểu diễn trung bình của Y theo X là:
a) Y = −53.7768 X − 29.8437
b) Y = −53.7768 X + 29.8437
c) Y = 53.7768 X + 29.8437
d) Y = 29.8437 X − 53.7768 .
Bài 89. Khảo sát về thu nhập và tỷ lệ thu nhập chi cho giáo dục ở một số gia đình trên
địa bàn thành phố, người ta thu được bảng số liệu sau
Y
X 12.5 17.5 22.5 30
300
40
60
64
500
700
1000
90
30
80
50
20
20
10
trong đó X là tỷ lệ thu nhập chi cho giáo dục (đơn vị: %), Y là thu nhập bình quân
một người trong hộ (đơn vị: ngàn đồng/tháng).
Hệ số tương quan rxy là:
a) 0.6569
b) 0.65
c) 0.6575
d) 1.
Bài 90. X (đơn vị: %) và Y (đơn vị: cm) là hai chỉ tiêu của một loại sản phẩm. Điều
tra một mẫu ta có bảng số liệu sau
X
Y
1
3
5
7
8
2
8
12
8
6
90 94
9 4 6
11 15 10
12 7 3
Những sản phẩm có chỉ tiêu dưới 92cm là sản phẩm loại A. Khỏang ước lượng tỷ lệ
sản phẩm loại A với độ tin cậy 99% là:
a) [ 0.7001; 0.9080]
b) [ 0.6001; 0.9999] .
c) [ 0.7001;1]
d) [ 0.6001; 0.9080]
Bài 91. X (đơn vị: %) và Y (đơn vị: cm) là hai chỉ tiêu của một loại sản phẩm. Điều
tra một mẫu ta có bảng số liệu sau
X
Y
1
3
5
7
8
2
8
12
8
6
90 94
9 4 6
11 15 10
12 7 3
Có tài liệu nói rằng: trung bình của chỉ tiêu X của sản phẩm loại A là 6%. Cho nhận
xét về tài liệu này với mức ý nghĩa 1%. Giả thiết X có phân phối chuẩn.
a)Tài liệu này nói đúng.
b)Tài liệu này nói không đúng.
c)Tài liệu này nói không đúng vì trung bình của chỉ tiêu X lớn hơn 6%.
d)Tài liệu này nói không đúng vì trung bình của chỉ tiêu X nhỏ hơn 6%.
Bài 92. X (đơn vị: %) và Y (đơn vị: cm) là hai chỉ tiêu của một loại sản phẩm. Điều
tra một mẫu ta có bảng số liệu sau
65
X
Y
1
3
5
7
8
2
8
12
8
6
90 94
9 4 6
11 15 10
12 7 3
Phương trình hồi quy tuyến tính biểu diễn trung bình của Y theo X là:
a) Y = 83.6653 X + 0.9251
b) Y = −0.9251X + 83.6653
c) Y = 0.9251X + 83.6653
d) Y = 0.9251X − 83.6653 .
Bài 93. X(%) và Y(kg/mm2) là hai chỉ tiêu chất lượng của một loại sản phẩm. Điều
tra ở một số sản phẩm về (X,Y) ta có kết quả (2,5);
(8,15);
(4,15);
(4,10);
(2,10);
(8,25);
(2,5);
(6,10);
(4,10);
(8,20);
(6,10);
(8,15);
(6,10);
(6,15);
(4,15);
(6,15);
(8,20);
(6,15);
(6,20);
(6,10);
(6,20);
(6,15);
(6,25);
(8,20);
(6,15);
(6,20);
(8,15);
(6,15);
(8,25);
(8,15)
Có tài liệu nói rằng: trung bình chỉ tiêu X là 6.0%. Cho nhận xét với mức ý nghĩa 4%.
a)Tài liệu này nói đúng.
b)Tài liệu này nói không đúng.
c)Tài liệu này nói không đúng vì trung bình của chỉ tiêu X lớn hơn 6.5%.
d)Tài liệu này nói không đúng vì trung bình của chỉ tiêu X nhỏ hơn 6.5%.
Bài 94. X(%) và Y(kg/mm2) là hai chỉ tiêu chất lượng của một loại sản phẩm. Điều
tra ở một số sản phẩm về (X,Y) ta có kết quả (2,5);
(8,15);
(4,15);
(4,10);
(2,10);
(8,25);
(2,5);
(6,10);
(4,10);
(8,20);
(6,10);
(8,15);
(6,10);
(6,15);
(4,15);
(6,15);
(8,20);
(6,15);
(6,20);
(6,10);
(6,20);
(6,15);
(6,25);
(8,20);
(6,15);
(6,20);
(8,15);
(6,15);
(8,25);
(8,15)
Có tài liệu nói rằng: trung bình chỉ tiêu Y là 18.5 kg/mm2. Cho nhận xét với mức ý
nghĩa 4%.
a) Tài liệu này nói đúng.
b) Tài liệu này nói không đúng.
c) Tài liệu này nói không đúng vì trung bình của chỉ tiêu X lớn hơn 6.5%.
66
d) Tài liệu này nói không đúng vì trung bình của chỉ tiêu X nhỏ hơn 6.5%.
67
[...]... đạn súng trường bắn trúng máy bay với xác suất 0,001 Có 5000 khẩu bắn lên một lượt Ngưởi ta biết rằng máy bay chắc chắn bị hạ nếu có ít nhất 2 viên đạn trúng Nếu có 1 viên trúng thì xác suất bị hạ chỉ là 80% Tính xác suất để máy bay bị hạ DS : P(A)=0,9856 Câu 178 Một máy sản xuất sản phẩm, xác suất tạo phế phẩm là 0,005 Sản xuất 1000 sản phẩm Tính xác suất để có 1 phế phẩm; khơng q 2 phế phẩm Tính... ở lần thứ nhất, Y là số bi đỏ chọn được ở lần thứ hai Đặt Z=X+2Y Xác suất của biến cố [Z=0] là: a)0.002 b) 0.05 c) 0.005 d) Cả ba a), b), c) đều sai 1 Một đề thi xác suất có 15 câu hỏi, mỗi câu hỏi có 4 phương án lựa chọn, ch ỉ có một phương án đúng Một thí sinh dự thi mà chưa bao giờ học hay nghiên cứu gì về xác suất Khả năng (xác suất) mà thí sinh này trả lời đúng 8 câu là (Chỉ đúng 8 câu): a) 0.01310... d 3/16 Câu 92 Một trò chơi có xác suất thắng ở mỗi ván là 1/50 Nếu một người chơi 50 ván thì xác suất để người này thắng ít nhất 1 ván 0.6358 Câu 93 Tổng đài điện thoại phục vụ 100 máy điện thoại Xác suất để trong mỗi phút mỗi máy gọi đến tổng đài là 0,02 Số máy gọi đến tổng đài trung bình trong 1 phút a 1 b 2 c 3 d 4 Câu 94 Một bà mẹ sinh 2 con (mỗi lần sinh 1 con) Xác suất sinh con trai là 0,51 Gọi... thưởng Giả sử đối với cơng nhân A, xác suất để sản xuất được sản phẩm loại I tương ứng với hai máy là 0,5 và 0,6 Tính xác suất để cơng nhân A được thưởng Bài 188 Một trường đại học có chỉ tiêu tuyển sinh là 300 Giả sử có 325 người dự thi và xác suất thi đậu của mỗi người là 90% Tính xác suất để số người trúng tuyển khơng vượt q chỉ tiêu.0,0267 Bài 189 Một trường đại học có chỉ tiêu tuyển sinh là 300 Cần... tiêu chuẩn 1,8 năm 1 Một đề thi xác suất có 15 câu hỏi, mỗi câu hỏi có 4 phương án lựa chọn, ch ỉ có một phương án đúng Một thí sinh dự thi mà chưa bao giờ học hay nghiên cứu gì về xác suất Khả năng (xác suất) mà thí sinh này trả lời đúng 6 câu là (Chỉ đúng 6 câu): a) 0.01310 b) 0.091747 c) 0.00125 d) 0.001501 2 − 2 x 2 x ∈ [0;1] f ( x ) = 2 Cho biến ngẫu nhiên X liên tục có hàm mật độ x ∉ (0;1) 0... nhat 2 cau Bài 102 Theo lý thuyết, nếu X và Y là hai ĐLNN độc lập có phân phối chuẩn thì aX+bY cũng có phân phối chuẩn Cho X ∈ N(7;0,04), Y ∈ N(4;0,09) Tính xác suất P(2X + 3Y < 25), P(10 ≤ 3X − 2Y ≤ 12) 11/16, 1/8 103/ Năng suất lúa ở một địa phương là biến ngẫu nhiên có phân phối chuẩn với kỳ vọng 42tạ/ha và σ = 3tạ/ha Tìm xác suất để khi gặt ngẫu nhiên 3 thửa ruộng thì có 2 thửa có năng suất sai lệch... đề thi trắc nghiệm có 10 câu, mỗi câu có 4 lựa chọn và chỉ có 1 lựa chọn đúng Mỗi câu sinh viên làm đúng được 1 điểm Xác suất để sinh viên làm được đúng 5 điểm a 0,0584 b 0,25 c 0,0009 d 5/10 P10(5)= 11 Câu 98 Xác suất để một người bị phản ứng từ việc tiêm huyết thanh là 0,001 Xác suất để trong 2000 người tiêm huyết thanh, có đúng 3 người bị phản ứng a 10−9 b 0,003 c 0,1804 d 0.0664 Bài 99 Trong kỳ thi... 10 câu, mỗi câu có 4 cách trả lời, trong đó chỉ có 1 cách trả lời đúng Kết quả trả lời các câu hỏi khơng ảnh hưởng đến các kết quả câu khác Điểm bài thi bằng tổng số câu trả lời đúng Thí sinh A trả lời các câu hỏi một cách ngẫu nhiên Tìm xác suất để bài thi của thí sinh đó khơng q 2 điểm 0.5256 Bài 100 Một bài thi trắc nghiệm gồm 12 câu hỏi, mỗi câu có 4 cách trả lời, trong đó chỉ có 1 cách trả lời... MODE Bài 116 Một bài thi trắc nghiệm gồm 12 câu hỏi, mỗi câu có 4 cách trả lời, trong đó chỉ có 1 cách trả lời đúng Giả sử mỗi câu trả lời đúng, thí sinh được 4 điểm; mỗi câu trả lời sai, thí sinh bị trừ 1 điểm Một thí sinh làm bài bằng cách chọn ngẫu nhiên các câu trả lời Tính kỳ vọng và phương sai của X M(X)= 3 , D(X) =56,25 Câu 117 Theo thống kê, một người Mỹ 25 tuổi sẽ sống thêm trên 1 năm có xác suất. .. 1 1 15 Một hộp có 3 bi đỏ và 2 bi xanh Lần thứ nhất lấy ngẫu nhiên 1 bi, sau đó lấy tiếp 2 bi (lấy khơng hòan lại) Gọi X là số bi đỏ chọn được ở lần thứ nhất, Y là số bi đỏ chọn được ở lần thứ hai Đặt Z=X+2Y Xác suất của biến cố [Z=4] là: 0.6 a) 0.2 b) 0.1 c) 0.4 d) Cả ba a), b), c) đều sai 1 Một đề thi xác suất có 15 câu hỏi, mỗi câu hỏi có 4 phương án lựa chọn, ch ỉ có một phương án đúng Một thí ... 0,90 c 0,92 d 0,98 Câu 28 Một lớp học có bóng đèn, bóng có xác suất bị cháy 0,25 Lớp học đủ ánh sáng có bóng đèn sáng Xác suất để lớp học khơng đủ ánh sáng a 0,25 b 0,2617 c 0,7383 d 0,75 Câu... 0,145 Câu 25 Xác suất để gà đẻ 0,6 Trong chuồng có con, xác suất để ngày có gà đẻ a 0,9945 b 0,9942 c 0,9936 d 0,9959 Câu 26 Một hộp có bi có bi đỏ, chia thành phần Xác suất để phần có bi đỏ a... tiêu chuẩn 1,8 năm Một đề thi xác suất có 15 câu hỏi, câu hỏi có phương án lựa chọn, ch ỉ có phương án Một thí sinh dự thi mà chưa học hay nghiên cứu xác suất Khả (xác suất) mà thí sinh trả lời câu