1. Trang chủ
  2. » Giáo Dục - Đào Tạo

Lý thuyết bất phương trình bậc nhất hai ẩn

1 283 1

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 1
Dung lượng 3,99 KB

Nội dung

Bất phương trình bậc nhất hai ẩn x, y là mệnh đề... 1. Bất phương trình bậc nhất hai ẩn x, y là mệnh đề chứa hai biến có một trong các dạng:       ax + by > c,      ax + by ≥ c,      ax + by < c,       ax + by ≤ c trong đó a, b, c là các số đã cho với a, b ≠ 0.     Cặp số (x0, y0) sao cho ax0 + by0 > c là một mệnh đề đúng (bất đẳng thức đúng) được gọi là một nghiệm của bất phương trình ax + by > c. 2. Mệnh đề      Định lí. Đường thẳng ax + by = c (d) chia mặt phẳng tọa độ thành hai nửa mặt phẳng bờ là (d). Một trong hai nửa mặt phẳng đó (không kể bờ) gồm các điểm có tọa độ là nghiệm của bất phương trình ax + by > c.     Nửa mặt phẳng còn lại gồm các điểm có tọa độ là nghiệm của bất phương trình ax + by < c.     Nửa mặt phẳng còn lại gồm các điểm có tọa độ là nghiệm của bất phương trình ax + by > c gọi là miền của bất phương trình đó. 3. Hệ bất phương trình bậc nhất hai ẩn     Việc tìm tất cả các nghiệm chung của một tập hợp các bất phương trình có cùng hai ẩn gọi là giải hệ bất phương trình hai ẩn.     Miền nghiên cứu của một hệ bất phương trình hai ẩn là giao của các miền nghiệm của các bất phương trình của hệ đó.

Trang 1

Bất phương trình bậc nhất hai ẩn x, y là mệnh đề

1 Bất phương trình bậc nhất hai ẩn x, y là mệnh đề chứa hai biến có một trong các dạng: ax + by > c,

ax + by ≥ c, ax + by < c, ax + by ≤ c

trong đó a, b, c là các số đã cho với a, b ≠ 0

Cặp số (x0, y0) sao cho ax0 + by0 > c là một mệnh đề đúng (bất đẳng thức đúng) được gọi là một nghiệm của bất phương trình ax + by > c

2 Mệnh đề

Định lí Đường thẳng ax + by = c (d) chia mặt phẳng tọa độ thành hai nửa mặt phẳng bờ là (d) Một trong hai nửa mặt phẳng đó (không kể bờ) gồm các điểm có tọa độ là nghiệm của bất phương trình ax +

by > c

Nửa mặt phẳng còn lại gồm các điểm có tọa độ là nghiệm của bất phương trình ax + by < c

Nửa mặt phẳng còn lại gồm các điểm có tọa độ là nghiệm của bất phương trình ax + by > c gọi là miền của bất phương trình đó

3 Hệ bất phương trình bậc nhất hai ẩn

Việc tìm tất cả các nghiệm chung của một tập hợp các bất phương trình có cùng hai ẩn gọi là giải hệ bất phương trình hai ẩn

Miền nghiên cứu của một hệ bất phương trình hai ẩn là giao của các miền nghiệm của các bất phương trình của hệ đó

Ngày đăng: 09/10/2015, 13:07

TỪ KHÓA LIÊN QUAN

w