1. Trang chủ
  2. » Giáo Dục - Đào Tạo

Lý thuyết Bất phương trình và hệ bất phương trình một ẩn

1 534 2

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 1
Dung lượng 4,77 KB

Nội dung

Khái niệm bất phương trình một ẩn... 1. Khái niệm bất phương trình một ẩn. Bất phương trình một ẩn là một mệnh đề chứa biến có một trong các dạng f(x) > g(x), f(x) < g(x), f(x) ≥ g(x), f(x) ≤ g(x), trong đó f(x), g(x) là các biểu thức chứa cùng một biến x. Điều kiện xác định của bất phương trình (ĐKXĐ) là điều kiện của biến số x để các biểu thức f(x), g(x) có nghĩa. Giá trị x0 thỏa mãn ĐKXĐ làm cho f(x0) < g(x0) là một mệnh đề đúng thì x0 là một nghiệm cảu bất phương trình f(x) < g(x). 2. Hệ bất phương trình một ẩn Việc tìm tập hợp các nghiệm chung của một tập hợp các bất phương trình một ản, ki hiệu   là xét một hệ bất phương trình một ẩn. Giải hệ bất phương trình bằng cách tìm giao các tập hơp nghiệm của bất phương trình của hệ. 3. Bất phương trình tương đương  Hai bất phương f1(x) < g1(x) và f2(x) < g2(x) được gọi là tương đương, kí hiệu: f1(x) < g1(x) <=> f2(x) < g2(x) nếu chúng có cùng một tập hợp nghiệm. Định lí: Gọi D là ĐKXĐ của bất phương trình f(x) < g(x), h(x) là biểu thức xác định ∀ x ∈ D thì a) f(x) + h(x) < g(x) + h(x) <=> F(x) < g(x).     Hệ quả f(x) < g(x) + p(x) <=> f(x) - g(x) < p(x) b) f(x).h(x) < g(x).h(x) <=> f(x) < g(x) nếu h(x) > 0 ∀ x ∈ D     f(x).h(x) < g(x).h(x) <=> f(x) > g(x) nếu h(x) < 0 ∀ x ∈ D.

Khái niệm bất phương trình một ẩn... 1. Khái niệm bất phương trình một ẩn. Bất phương trình một ẩn là một mệnh đề chứa biến có một trong các dạng f(x) > g(x), f(x) < g(x), f(x) ≥ g(x), f(x) ≤ g(x), trong đó f(x), g(x) là các biểu thức chứa cùng một biến x. Điều kiện xác định của bất phương trình (ĐKXĐ) là điều kiện của biến số x để các biểu thức f(x), g(x) có nghĩa. Giá trị x0 thỏa mãn ĐKXĐ làm cho f(x0) < g(x0) là một mệnh đề đúng thì x0 là một nghiệm cảu bất phương trình f(x) < g(x). 2. Hệ bất phương trình một ẩn Việc tìm tập hợp các nghiệm chung của một tập hợp các bất phương trình một ản, ki hiệu là xét một hệ bất phương trình một ẩn. Giải hệ bất phương trình bằng cách tìm giao các tập hơp nghiệm của bất phương trình của hệ. 3. Bất phương trình tương đương Hai bất phương f1(x) < g1(x) và f2(x) < g2(x) được gọi là tương đương, kí hiệu: f1(x) < g1(x) f2(x) < g2(x) nếu chúng có cùng một tập hợp nghiệm. Định lí: Gọi D là ĐKXĐ của bất phương trình f(x) < g(x), h(x) là biểu thức xác định ∀ x ∈ D thì a) f(x) + h(x) < g(x) + h(x) F(x) < g(x). Hệ quả f(x) < g(x) + p(x) f(x) - g(x) < p(x) b) f(x).h(x) < g(x).h(x) f(x) < g(x) nếu h(x) > 0 ∀ x ∈ D f(x).h(x) < g(x).h(x) f(x) > g(x) nếu h(x) < 0 ∀ x ∈ D.

Ngày đăng: 09/10/2015, 13:07

TỪ KHÓA LIÊN QUAN

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN

w