Novel biochemical and functional properties of the HPV 16 oncoprotein e6

139 400 0
Novel biochemical and functional properties of the HPV 16 oncoprotein e6

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

Thông tin tài liệu

NOVEL BIOCHEMICAL AND FUNCTIONAL PROPERTIES OF THE HPV16 ONCOPROTEIN E6 ROLAND DEGENKOLBE (M.Sc. (chemistry), University of Cologne) A THESIS SUBMITTED FOR THE DEGREE OF DOCTOR OF PHILOSOPHY INSTITUTE OF MOLECULAR AND CELL BIOLOGY NATIONAL UNIVERSITY OF SINGAPORE 2003 for me mum and me dad II Acknowledgements First and foremost I would like to thank my supervisor Hans-Ulrich Bernard for his unwavering support and guidance throughout all the years I spent in his laboratory. A big thank you goes to Holger Zimmermann and Mark O’Connor for the advice, the help, the discussions and for giving me the chance to contribute to (and profit from) their work. Thank you! Many thanks to Walter Stünkel and Tan Shih-Han for discussions and advice. More thanks to: John McCarty for giving me all the essential advice about protein purification and, occasionally, cheese-cakes. Patrick Clement Gilligan for inspiring conversations and the (only partially successful) degermanization of my writing (and thinking). Sanjay Gupta for an auspicious collaboration and many laughs in the lab. Sushma Badal for an unending supply of coins keeping me fed and healthy. Param Parkash Singh Takhar (one person) for technical support and so many wuffs in the lab. Thank You, Eyleen. I would also like to thank (in no particular order): Apple (great hard- and software), honda (hardware), homer (in memoriam), at-the-drive-in, KTM, tool, monster magnet, chikako, sunnydale real estate, sonic youth, tim & honey (bad III influences), michael, haruki murakami, yuki (doreen that is; and yesyou’rerightandI’mwrong), IPA, the exploited, jarkko, snapcase, kumiko, the kfc at ginza plaza, pj harvey, toothbrush, NOFX, handlebar, the johor circuit, the economist-style guide, you know who (for showing again and again that obvious things can be made complex, nothing should be taken for granted, there’s always more brand-new rules than you thought there could be and never forget that you must not question), kemistry and storm, takagi, unity trading, the deftones, asiapacific-brewery (kept them firmly in the black), insomnia and, of course, all my …… IV Table of contents Acknowledgements III Table of contents .V List of figures .VIII Abbreviations and Acronyms X - SUMMARY 13 - INTRODUCTION . 14 2.1 Classification and history 14 2.2 Cervical cancer . 15 2.3 Virion structure 17 2.4 Genome organization . 18 2.5 The early proteins . 19 2.5.1 The E1 protein 19 2.5.2 The E2 protein 20 2.5.3 The E4 protein 20 2.5.4 The E5 protein 21 2.5.5 The E7 protein 21 2.5.6 The E6 protein 25 2.6 The E6 protein as a drug target 30 - RESULTS (PART 1): BIOPHYSICAL PROPERTIES OF E6 AND E7 . 33 3.1 Biophysical properties of the E6 and E7 proteins: Previous data and concept of this study. . 33 3.2 Biophysical properties of the E7 protein: Experimental data . 35 3.3 Biophysical properties of the E7 protein: Conclusion 42 3.4 Biophysical properties of the E6 protein: Previous reports and considerations for this study. . 43 3.5 Biophysical properties of the E6 protein: Experimental data . 45 3.6 Biophysical properties of the E6 protein: Discussion . 57 - RESULTS (PART 2): BIOLOGICAL PROPERTIES OF E6 60 V 4.1 Interaction of E6 with CBP/p300: Previous publications and considerations for this study 60 4.2 Interaction of E6 with CBP/p300: Experimental data 63 4.3 Interaction of E6 with CBP/p300: Discussion 76 - CONCLUSION 81 5.1 Concluding remarks . 86 - EXPERIMENTAL PROCEDURES . 88 6.1 Bacterial culture . 88 6.1.1 Growth of bacteria in liquid or solid media . 88 6.1.2 Preparation of competent cells 90 6.1.3 Transformation of competent cells 91 6.2 DNA 92 6.2.1 Quantitation of DNA and RNA 93 6.2.2 DNA amplification and purification 93 6.2.3 Gene assembly 96 6.2.4 Cloning of DNA fragments 98 6.2.4.1 Separation of DNA fragments with agarose gels .98 6.2.4.2 Restriction digest .99 6.2.4.3 Ligation . 100 6.2.4 Preparation of plasmid DNA .100 6.2.5 Site-directed mutagenesis 103 6.3 Protein .105 6.3.1 Expression of recombinant protein .105 6.3.2 Uniform labeling of protein .106 6.3.3 Lysis of bacteria .108 6.3.4 Metal affinity chromatography 109 6.3.5 Anionexchange chromatography .110 6.3.6 Size-exclusion chromatography .111 6.3.7 Hydroxyl-apatite chromatography 112 6.3.8 Dialysis .113 6.3.9 Renaturation (for E7 only) 113 VI 6.3.10 Protein quantitation .114 6.3.11 Discontinuous sodium dodecyl sulphate polyacrylamide gel electrophoresis 115 6.3.12 Zinc (II)-ion quantitation .119 6.3.12.1 TSQ-assay . 119 6.3.12.2 Determination of zinc content by Inductively Coupled Plasma/Optical Emission Spectroscopy (ICP/OES) 120 6.4 Protein-protein interaction assay with GST- “micro-columns” .121 6.5 in vitro p53 degradation assay .123 6.6 in vivo p53 degradation assay 123 - REFERENCES .125 VII List of figures Figure 1: Prevalence of different cancers in cancer related deaths in women. Figure 2: Picture of the capsid of human papillomavirus. Figure 3: Organization of the genome of HPV16. Figure 4: Schematic diagram of the HPV16 E7 protein. Figure 5: Schematic diagram of the HPV16 E6 protein. Figure 6: Expression and metal-affinity purification of HPV16 E7. Figure 7: Apparent size distribution of HPV16 E7. Figure 8: No evidence for covalently linked dimers or multimers of HPV16 E7. Figure 9: The influence of chelating agents on the agglomeration of E7. Figure 10: Agglomeration of renatured E7 protein is pH dependent. Figure 11: Solubility of S-E6 after expression in E.coli is pH dependent. Figure 12: Purification of S-E6 expressed in E. coli. Figure 13: Apparent size distribution of purified S-E6 (after anionexchange chromatography and dialysis). Figure 14: Zinc(II) ions interfere with binding of E6 to an E6AP peptide. Figure 15: Differences in the proportion of multimeric to monomeric S-E6 after dialysis in the presence of a small variety of chelating agents. Figure 16: Competition for zinc by three different chelating agents. Figure 17: Monomeric S-E6 is biologically more active compared with its multimeric form in catalysis of p53 degradation. Figure 18: Agglomerated protein is destabilized by addition of a chelating agent. VIII Figure 19: Medium-scale preparation of S-E6. Figure 20: HPV16 E6 interacts with the transcriptional coactivator CBP/p300. Figure 21: Identification of an HPV16 E6 binding site on CBP/p300. Figure 22: Interactions of HPV16 E6 with the cellular protein p300. Figure 23: The E6-CBP/p300 interaction is specific for E6 proteins of highrisk HPVs. Figure 24: Mapping of the E6 domain interacting with CBP. Figure 25: The 16E6 mutant L50G binds CBP but is unable to interact with E6AP or p53 and cannot degrade p53 in vitro or in vivo. Figure 26: Amino acid sequence of HPV16 E6 and predicted secondary structure. Figure 27: Model of combinatorial binding modes of domains of E6 Table 1: Stoichiometric ratios of zinc to S-E6 after individual steps of purification and dialysis with different chelating agents. IX Abbreviations and Acronyms µ micro, 10-6 a atto, 10-18 AP alkaline phosphatase ATP adenosine triphosphate ATCC American Type Culture Collection AU absorbance units ßME beta-mercapto-ethanol bp base pair BSA bovine serum albumin CD circular dichroism cpm counts per minute CTP cytosine triphosphate Da Dalton, atomic mass unit, 1.67377 x 10 –27 kg ddH2O double-destilled water DMSO dimethyl sulfoxide DNase deoxyribonuclease dNTP deoxynucleoside triphosphate DTT dithiothreitol EDTA ethylenediamine- N,N,N’,N’-tetraacetic acid EGTA ethyleneglycol-bis-(b-aminoethyl)-N,N,N’,N’-tetraacetic acid f femto, 10-15 X – EXPERIMENTAL PROCEDURES 124 h after cycloheximide treatment and lysed. Cell lysates were subjected to SDSPAGE (Laemmli, 1970) and analyzed by Western blotting using the anti-p53 antibody DO-1 (Santa Cruz, CA, USA). 125 - References Ait-Si-Ali, S., Ramirez, S., Barre, F. X., Dkhissi, F., Magnaghi-Jaulin, L., Girault, J. A., Robin, P., Knibiehler, M., Pritchard, L. L., Ducommun, B., Trouche, D., and Harel-Bellan, A. (1998). Histone acetyltransferase activity of CBP is controlled by cycle-dependent kinases and oncoprotein E1A. Nature 396(6707), 184-6. Androphy, E. J., Hubbert, N. L., Schiller, J. T., and Lowy, D. R. (1987). Identification of the HPV-16 E6 protein from transformed mouse cells and human cervical carcinoma cell lines. Embo J 6(4), 989-92. Androphy, E. J., Schiller, J. T., and Lowy, D. R. (1985). Identification of the protein encoded by the E6 transforming gene of bovine papillomavirus. Science 230(4724), 442-5. Arany, Z., Newsome, D., Oldread, E., Livingston, D. M., and Eckner, R. (1995). A family of transcriptional adaptor proteins targeted by the E1A oncoprotein. Nature 374(6517), 81-4. Ashcroft, M., and Vousden, K. H. (1999). Regulation of p53 stability. Oncogene 18(53), 7637-43. Avantaggiati, M. L., Ogryzko, V., Gardner, K., Giordano, A., Levine, A. S., and Kelly, K. (1997). Recruitment of p300/CBP in p53-dependent signal pathways. Cell 89(7), 1175-84. Baker, T. S., Newcomb, W. W., Olson, N. H., Cowsert, L. M., Olson, C., and Brown, J. C. (1991). Structures of bovine and human papillomaviruses. Analysis by cryoelectron microscopy and three-dimensional image reconstruction. Biophys J 60(6), 1445-56. Band, V., Dalal, S., Delmolino, L., and Androphy, E. J. (1993). Enhanced degradation of p53 protein in HPV-6 and BPV-1 E6-immortalized human mammary epithelial cells. Embo J 12(5), 1847-52. Banks, L., Spence, P., Androphy, E., Hubbert, N., Matlashewski, G., Murray, A., and Crawford, L. (1987). Identification of human papillomavirus type 18 E6 polypeptide in cells derived from human cervical carcinomas. J Gen Virol 68 ( Pt 5), 1351-9. Bannister, A. J., and Kouzarides, T. (1996). The CBP co-activator is a histone acetyltransferase. Nature 384(6610), 641-3. Barbosa, M. S., Lowy, D. R., and Schiller, J. T. (1989). Papillomavirus polypeptides E6 and E7 are zinc-binding proteins. J Virol 63(3), 1404-7. Barbosa, M. S., Vass, W. C., Lowy, D. R., and Schiller, J. T. (1991). In vitro biological activities of the E6 and E7 genes vary among human papillomaviruses of different oncogenic potential. J Virol 65(1), 292-8. Beer-Romero, P., Glass, S., and Rolfe, M. (1997). Antisense targeting of E6AP elevates p53 in HPV-infected cells but not in normal cells. Oncogene 14(5), 595-602. Beerheide, W., Sim, M. M., Tan, Y. J., Bernard, H. U., and Ting, A. E. (2000). Inactivation of the human papillomavirus-16 E6 oncoprotein by organic disulfides. Bioorg Med Chem 8(11), 2549-60. – REFERENCES 126 Berezutskaya, E., and Bagchi, S. (1997). The human papillomavirus E7 oncoprotein functionally interacts with the S4 subunit of the 26 S proteasome. J Biol Chem 272(48), 30135-40. Berezutskaya, E., Yu, B., Morozov, A., Raychaudhuri, P., and Bagchi, S. (1997). Differential regulation of the pocket domains of the retinoblastoma family proteins by the HPV16 E7 oncoprotein. Cell Growth Differ 8(12), 1277-86. Berg, J. M. (1990). Zinc fingers and other metal-binding domains. Elements for interactions between macromolecules. J Biol Chem 265(12), 6513-6. Bosch, F. X., Manos, M. M., Munoz, N., Sherman, M., Jansen, A. M., Peto, J., Schiffman, M. H., Moreno, V., Kurman, R., and Shah, K. V. (1995). Prevalence of human papillomavirus in cervical cancer: a worldwide perspective. International biological study on cervical cancer (IBSCC) Study Group. J Natl Cancer Inst 87(11), 796-802. Boyer, S. N., Wazer, D. E., and Band, V. (1996). E7 protein of human papilloma virus-16 induces degradation of retinoblastoma protein through the ubiquitin-proteasome pathway. Cancer Res 56(20), 4620-4. Braspenning, J., Marchini, A., Albarani, V., Levy, L., Ciccolini, F., Cremonesi, C., Ralston, R., Gissmann, L., and Tommasino, M. (1998). The CXXC Zn binding motifs of the human papillomavirus type 16 E7 oncoprotein are not required for its in vitro transforming activity in rodent cells. Oncogene 16(8), 1085-9. Bream, G. L., Ohmstede, C. A., and Phelps, W. C. (1993). Characterization of human papillomavirus type 11 E1 and E2 proteins expressed in insect cells. J Virol 67(5), 2655-63. Chen, J. J., Reid, C. E., Band, V., and Androphy, E. J. (1995). Interaction of papillomavirus E6 oncoproteins with a putative calcium-binding protein. Science 269(5223), 529-31. Ciccolini, F., Di Pasquale, G., Carlotti, F., Crawford, L., and Tommasino, M. (1994). Functional studies of E7 proteins from different HPV types. Oncogene 9(9), 2633-8. Clemens, K. E., Brent, R., Gyuris, J., and Munger, K. (1995). Dimerization of the human papillomavirus E7 oncoprotein in vivo. Virology 214(1), 289-93. Clements, A., Johnston, K., Mazzarelli, J. M., Ricciardi, R. P., and Marmorstein, R. (2000). Oligomerization properties of the viral oncoproteins adenovirus E1A and human papillomavirus E7 and their complexes with the retinoblastoma protein. Biochemistry 39(51), 16033-45. Cole, S. T., and Danos, O. (1987). Nucleotide sequence and comparative analysis of the human papillomavirus type 18 genome. Phylogeny of papillomaviruses and repeated structure of the E6 and E7 gene products. J Mol Biol 193(4), 599-608. Crook, T., Fisher, C., Masterson, P. J., and Vousden, K. H. (1994). Modulation of transcriptional regulatory properties of p53 by HPV E6. Oncogene 9(4), 1225-30. Crook, T., Tidy, J. A., and Vousden, K. H. (1991). Degradation of p53 can be targeted by HPV E6 sequences distinct from those required for p53 binding and trans-activation. Cell 67(3), 547-56. Daniels, P. R., Sanders, C. M., Coulson, P., and Maitland, N. J. (1997). Molecular analysis of the interaction between HPV type 16 E6 and human E6associated protein. FEBS Lett 416(1), 6-10. – REFERENCES 127 DeCaprio, J. A., Ludlow, J. W., Figge, J., Shew, J. Y., Huang, C. M., Lee, W. H., Marsilio, E., Paucha, E., and Livingston, D. M. (1988). SV40 large tumor antigen forms a specific complex with the product of the retinoblastoma susceptibility gene. Cell 54(2), 275-83. Degenkolbe, R., Gilligan, P., Gupta, S., and Bernard, H. U. (2003). Chelating agents stabilize the monomeric state of the zinc binding human papillomavirus 16 e6 oncoprotein. Biochemistry 42(13), 3868-73. Demers, G. W., Halbert, C. L., and Galloway, D. A. (1994). Elevated wild-type p53 protein levels in human epithelial cell lines immortalized by the human papillomavirus type 16 E7 gene. Virology 198(1), 169-74. Dick, F. A., Sailhamer, E., and Dyson, N. J. (2000). Mutagenesis of the pRB pocket reveals that cell cycle arrest functions are separable from binding to viral oncoproteins. Mol Cell Biol 20(10), 3715-27. DiPaolo, J. A., Woodworth, C. D., Popescu, N. C., Notario, V., and Doniger, J. (1989). Induction of human cervical squamous cell carcinoma by sequential transfection with human papillomavirus 16 DNA and viral Harvey ras. Oncogene 4(4), 395-9. Donehower, L. A., Harvey, M., Slagle, B. L., McArthur, M. J., Montgomery, C. A., Jr., Butel, J. S., and Bradley, A. (1992). Mice deficient for p53 are developmentally normal but susceptible to spontaneous tumours. Nature 356(6366), 215-21. Doorbar, J., Ely, S., Sterling, J., McLean, C., and Crawford, L. (1991). Specific interaction between HPV-16 E1-E4 and cytokeratins results in collapse of the epithelial cell intermediate filament network. Nature 352(6338), 824-7. Doorbar, J., Parton, A., Hartley, K., Banks, L., Crook, T., Stanley, M., and Crawford, L. (1990). Detection of novel splicing patterns in a HPV16containing keratinocyte cell line. Virology 178(1), 254-62. Du, M., Fan, X., Hong, E., and Chen, J. J. (2002). Interaction of oncogenic papillomavirus E6 proteins with fibulin-1. Biochem Biophys Res Commun 296(4), 962-9. Durst, M., Gallahan, D., Jay, G., and Rhim, J. S. (1989). Glucocorticoid-enhanced neoplastic transformation of human keratinocytes by human papillomavirus type 16 and an activated ras oncogene. Virology 173(2), 767-71. Dyson, N. (1998). The regulation of E2F by pRB-family proteins. Genes Dev 12(15), 2245-62. Dyson, N., Howley, P. M., Munger, K., and Harlow, E. (1989). The human papilloma virus-16 E7 oncoprotein is able to bind to the retinoblastoma gene product. Science 243(4893), 934-7. Eckner, R., Ludlow, J. W., Lill, N. L., Oldread, E., Arany, Z., Modjtahedi, N., DeCaprio, J. A., Livingston, D. M., and Morgan, J. A. (1996). Association of p300 and CBP with simian virus 40 large T antigen. Mol Cell Biol 16(7), 3454-64. el-Deiry, W. S., Tokino, T., Velculescu, V. E., Levy, D. B., Parsons, R., Trent, J. M., Lin, D., Mercer, W. E., Kinzler, K. W., and Vogelstein, B. (1993). WAF1, a potential mediator of p53 tumor suppression. Cell 75(4), 817-25. Elmore, L. W., Hancock, A. R., Chang, S. F., Wang, X. W., Chang, S., Callahan, C. P., Geller, D. A., Will, H., and Harris, C. C. (1997). Hepatitis B virus X protein and p53 tumor suppressor interactions in the modulation of apoptosis. Proc Natl Acad Sci U S A 94(26), 14707-12. – REFERENCES 128 Eluf-Neto, J., Booth, M., Munoz, N., Bosch, F. X., Meijer, C. J., and Walboomers, J. M. (1994). Human papillomavirus and invasive cervical cancer in Brazil. Br J Cancer 69(1), 114-9. Filippova, M., Song, H., Connolly, J. L., Dermody, T. S., and Duerksen-Hughes, P. J. (2002). The human papillomavirus 16 E6 protein binds to tumor necrosis factor (TNF) R1 and protects cells from TNF-induced apoptosis. J Biol Chem 277(24), 21730-9. Florin, L., Sapp, C., Streeck, R. E., and Sapp, M. (2002a). Assembly and translocation of papillomavirus capsid proteins. J Virol 76(19), 10009-14. Florin, L., Schafer, F., Sotlar, K., Streeck, R. E., and Sapp, M. (2002b). Reorganization of nuclear domain 10 induced by papillomavirus capsid protein l2. Virology 295(1), 97-107. Foster, S. A., Demers, G. W., Etscheid, B. G., and Galloway, D. A. (1994). The ability of human papillomavirus E6 proteins to target p53 for degradation in vivo correlates with their ability to abrogate actinomycin D-induced growth arrest. J Virol 68(9), 5698-705. Francis, D. A., Schmid, S. I., and Howley, P. M. (2000). Repression of the integrated papillomavirus E6/E7 promoter is required for growth suppression of cervical cancer cells. J Virol 74(6), 2679-86. Frankel, A. D., Chen, L., Cotter, R. J., and Pabo, C. O. (1988). Dimerization of the tat protein from human immunodeficiency virus: a cysteine-rich peptide mimics the normal metal-linked dimer interface. Proc Natl Acad Sci U S A 85(17), 6297-300. Freedman, D. A., and Levine, A. J. (1998). Nuclear export is required for degradation of endogenous p53 by MDM2 and human papillomavirus E6. Mol Cell Biol 18(12), 7288-93. Funk, J. O., Waga, S., Harry, J. B., Espling, E., Stillman, B., and Galloway, D. A. (1997). Inhibition of CDK activity and PCNA-dependent DNA replication by p21 is blocked by interaction with the HPV-16 E7 oncoprotein. Genes Dev 11(16), 2090-100. Gao, Q., Kumar, A., Srinivasan, S., Singh, L., Mukai, H., Ono, Y., Wazer, D. E., and Band, V. (2000). PKN binds and phosphorylates human papillomavirus E6 oncoprotein. J Biol Chem 275(20), 14824-30. Gao, Q., Srinivasan, S., Boyer, S. N., Wazer, D. E., and Band, V. (1999). The E6 oncoproteins of high-risk papillomaviruses bind to a novel putative GAP protein, E6TP1, and target it for degradation. Mol Cell Biol 19(1), 733-44. Gardiol, D., Kuhne, C., Glaunsinger, B., Lee, S. S., Javier, R., and Banks, L. (1999). Oncogenic human papillomavirus E6 proteins target the discs large tumour suppressor for proteasome-mediated degradation. Oncogene 18(40), 5487-96. Georgiou, G., and Valax, P. (1996). Expression of correctly folded proteins in Escherichia coli. Curr Opin Biotechnol 7(2), 190-7. Giarre, M., Caldeira, S., Malanchi, I., Ciccolini, F., Leao, M. J., and Tommasino, M. (2001). Induction of pRb degradation by the human papillomavirus type 16 E7 protein is essential to efficiently overcome p16INK4a-imposed G1 cell cycle Arrest. J Virol 75(10), 4705-12. Giles, R. H., Peters, D. J., and Breuning, M. H. (1998). Conjunction dysfunction: CBP/p300 in human disease. Trends Genet 14(5), 178-83. – REFERENCES 129 Glaunsinger, B. A., Lee, S. S., Thomas, M., Banks, L., and Javier, R. (2000). Interactions of the PDZ-protein MAGI-1 with adenovirus E4-ORF1 and high-risk papillomavirus E6 oncoproteins. Oncogene 19(46), 5270-80. Gloss, B., Chong, T., and Bernard, H. U. (1989). Numerous nuclear proteins bind the long control region of human papillomavirus type 16: a subset of of 23 DNase I-protected segments coincides with the location of the cell-typespecific enhancer. J Virol 63(3), 1142-52. Gonzalez, S. L., Stremlau, M., He, X., Basile, J. R., and Munger, K. (2001). Degradation of the retinoblastoma tumor suppressor by the human papillomavirus type 16 E7 oncoprotein is important for functional inactivation and is separable from proteasomal degradation of E7. J Virol 75(16), 7583-91. Gross-Mesilaty, S., Reinstein, E., Bercovich, B., Tobias, K. E., Schwartz, A. L., Kahana, C., and Ciechanover, A. (1998). Basal and human papillomavirus E6 oncoprotein-induced degradation of Myc proteins by the ubiquitin pathway. Proc Natl Acad Sci U S A 95(14), 8058-63. Grossman, S. R., Mora, R., and Laimins, L. A. (1989). Intracellular localization and DNA-binding properties of human papillomavirus type 18 E6 protein expressed with a baculovirus vector. J Virol 63(1), 366-74. Gu, W., and Roeder, R. G. (1997). Activation of p53 sequence-specific DNA binding by acetylation of the p53 C-terminal domain. Cell 90(4), 595-606. Gu, W., Shi, X. L., and Roeder, R. G. (1997). Synergistic activation of transcription by CBP and p53. Nature 387(6635), 819-23. Hagensee, M. E., Yaegashi, N., and Galloway, D. A. (1993). Self-assembly of human papillomavirus type capsids by expression of the L1 protein alone or by coexpression of the L1 and L2 capsid proteins. J Virol 67(1), 315-22. Harper, J. W., Adami, G. R., Wei, N., Keyomarsi, K., and Elledge, S. J. (1993). The p21 Cdk-interacting protein Cip1 is a potent inhibitor of G1 cyclindependent kinases. Cell 75(4), 805-16. Hawley-Nelson, P., Vousden, K. H., Hubbert, N. L., Lowy, D. R., and Schiller, J. T. (1989). HPV16 E6 and E7 proteins cooperate to immortalize human foreskin keratinocytes. Embo J 8(12), 3905-10. Heck, D. V., Yee, C. L., Howley, P. M., and Munger, K. (1992). Efficiency of binding the retinoblastoma protein correlates with the transforming capacity of the E7 oncoproteins of the human papillomaviruses. Proc Natl Acad Sci U S A 89(10), 4442-6. Hegde, R. S. (2002). The papillomavirus E2 proteins: structure, function, and biology. Annu Rev Biophys Biomol Struct 31, 343-60. Helt, A. M., and Galloway, D. A. (2001). Destabilization of the retinoblastoma tumor suppressor by human papillomavirus type 16 E7 is not sufficient to overcome cell cycle arrest in human keratinocytes. J Virol 75(15), 6737-47. Hengstermann, A., Linares, L. K., Ciechanover, A., Whitaker, N. J., and Scheffner, M. (2001). Complete switch from Mdm2 to human papillomavirus E6mediated degradation of p53 in cervical cancer cells. Proc Natl Acad Sci U S A 98(3), 1218-23. Herber, R., Liem, A., Pitot, H., and Lambert, P. F. (1996). Squamous epithelial hyperplasia and carcinoma in mice transgenic for the human papillomavirus type 16 E7 oncogene. J Virol 70(3), 1873-81. – REFERENCES 130 Hermonat, P. L., and Howley, P. M. (1987). Mutational analysis of the 3' open reading frames and the splice junction at nucleotide 3225 of bovine papillomavirus type 1. J Virol 61(12), 3889-95. Hickman, E. S., Picksley, S. M., and Vousden, K. H. (1994). Cells expressing HPV16 E7 continue cell cycle progression following DNA damage induced p53 activation. Oncogene 9(8), 2177-81. Holak, T. A. (2001). unpublished communication. Honda, R., Tanaka, H., and Yasuda, H. (1997). Oncoprotein MDM2 is a ubiquitin ligase E3 for tumor suppressor p53. FEBS Lett 420(1), 25-7. Horning, M. S., Blakemore, L. J., and Trombley, P. Q. (2000). Endogenous mechanisms of neuroprotection: role of zinc, copper, and carnosine. Brain Res 852(1), 56-61. Howley, P. M., Scheffner, M., Huibregtse, J., and Munger, K. (1991). Oncoproteins encoded by the cancer-associated human papillomaviruses target the products of the retinoblastoma and p53 tumor suppressor genes. Cold Spring Harb Symp Quant Biol 56, 149-55. Huang, P. S., Patrick, D. R., Edwards, G., Goodhart, P. J., Huber, H. E., Miles, L., Garsky, V. M., Oliff, A., and Heimbrook, D. C. (1993). Protein domains governing interactions between E2F, the retinoblastoma gene product, and human papillomavirus type 16 E7 protein. Mol Cell Biol 13(2), 953-60. Huibregtse, J. M., Scheffner, M., and Howley, P. M. (1991). A cellular protein mediates association of p53 with the E6 oncoprotein of human papillomavirus types 16 or 18. Embo J 10(13), 4129-35. Huibregtse, J. M., Scheffner, M., and Howley, P. M. (1993a). Cloning and expression of the cDNA for E6-AP, a protein that mediates the interaction of the human papillomavirus E6 oncoprotein with p53. Mol Cell Biol 13(2), 775-84. Huibregtse, J. M., Scheffner, M., and Howley, P. M. (1993b). Localization of the E6-AP regions that direct human papillomavirus E6 binding, association with p53, and ubiquitination of associated proteins. Mol Cell Biol 13(8), 4918-27. Hwang, E. S., Riese, D. J., 2nd, Settleman, J., Nilson, L. A., Honig, J., Flynn, S., and DiMaio, D. (1993). Inhibition of cervical carcinoma cell line proliferation by the introduction of a bovine papillomavirus regulatory gene. J Virol 67(7), 3720-9. Iftner, T., Elbel, M., Schopp, B., Hiller, T., Loizou, J. I., Caldecott, K. W., and Stubenrauch, F. (2002). Interference of papillomavirus E6 protein with single-strand break repair by interaction with XRCC1. Embo J 21(17), 4741-8. Imai, Y., Tsunokawa, Y., Sugimura, T., and Terada, M. (1989). Purification and DNA-binding properties of human papillomavirus type 16 E6 protein expressed in Escherichia coli. Biochem Biophys Res Commun 164(3), 1402-10. Janknecht, R., and Hunter, T. (1996a). Transcription. A growing coactivator network. Nature 383(6595), 22-3. Janknecht, R., and Hunter, T. (1996b). Versatile molecular glue. Transcriptional control. Curr Biol 6(8), 951-4. Jones, D. L., Alani, R. M., and Munger, K. (1997). The human papillomavirus E7 oncoprotein can uncouple cellular differentiation and proliferation in – REFERENCES 131 human keratinocytes by abrogating p21Cip1-mediated inhibition of cdk2. Genes Dev 11(16), 2101-11. Jones, D. L., and Munger, K. (1997). Analysis of the p53-mediated G1 growth arrest pathway in cells expressing the human papillomavirus type 16 E7 oncoprotein. J Virol 71(4), 2905-12. Kanda, T., Watanabe, S., Zanma, S., Sato, H., Furuno, A., and Yoshiike, K. (1991). Human papillomavirus type 16 E6 proteins with glycine substitution for cysteine in the metal-binding motif. Virology 185(2), 53643. Katich, S. C., Zerfass-Thome, K., and Hoffmann, I. (2001). Regulation of the Cdc25A gene by the human papillomavirus Type 16 E7 oncogene. Oncogene 20(5), 543-50. Kessis, T. D., Slebos, R. J., Nelson, W. G., Kastan, M. B., Plunkett, B. S., Han, S. M., Lorincz, A. T., Hedrick, L., and Cho, K. R. (1993). Human papillomavirus 16 E6 expression disrupts the p53-mediated cellular response to DNA damage. Proc Natl Acad Sci U S A 90(9), 3988-92. Kirnbauer, R., Booy, F., Cheng, N., Lowy, D. R., and Schiller, J. T. (1992). Papillomavirus L1 major capsid protein self-assembles into virus-like particles that are highly immunogenic. Proc Natl Acad Sci U S A 89(24), 12180-4. Kitabayashi, I., Eckner, R., Arany, Z., Chiu, R., Gachelin, G., Livingston, D. M., and Yokoyama, K. K. (1995). Phosphorylation of the adenovirus E1Aassociated 300 kDa protein in response to retinoic acid and E1A during the differentiation of F9 cells. Embo J 14(14), 3496-509. Kiyono, T., Hiraiwa, A., Fujita, M., Hayashi, Y., Akiyama, T., and Ishibashi, M. (1997). Binding of high-risk human papillomavirus E6 oncoproteins to the human homologue of the Drosophila discs large tumor suppressor protein. Proc Natl Acad Sci U S A 94(21), 11612-6. Konig, C., Roth, J., and Dobbelstein, M. (1999). Adenovirus type E4orf3 protein relieves p53 inhibition by E1B-55-kilodalton protein. J Virol 73(3), 225362. Koutsky, L. A., Ault, K. A., Wheeler, C. M., Brown, D. R., Barr, E., Alvarez, F. B., Chiacchierini, L. M., and Jansen, K. U. (2002). A controlled trial of a human papillomavirus type 16 vaccine. N Engl J Med 347(21), 1645-51. Kubbutat, M. H., and Vousden, K. H. (1998). New HPV E6 binding proteins: dangerous liaisons? Trends Microbiol 6(5), 173-5. Kukimoto, I., Aihara, S., Yoshiike, K., and Kanda, T. (1998). Human papillomavirus oncoprotein E6 binds to the C-terminal region of human minichromosome maintenance protein. Biochem Biophys Res Commun 249(1), 258-62. Kumar, A., Zhao, Y., Meng, G., Zeng, M., Srinivasan, S., Delmolino, L. M., Gao, Q., Dimri, G., Weber, G. F., Wazer, D. E., Band, H., and Band, V. (2002). Human papillomavirus oncoprotein E6 inactivates the transcriptional coactivator human ADA3. Mol Cell Biol 22(16), 5801-12. Laemmli, U. K. (1970). Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227(259), 680-5. Lamb, A. L., Torres, A. S., O'Halloran, T. V., and Rosenzweig, A. C. (2000). Heterodimer formation between superoxide dismutase and its copper chaperone. Biochemistry 39(48), 14720-7. – REFERENCES 132 Lamb, A. L., Torres, A. S., O'Halloran, T. V., and Rosenzweig, A. C. (2001). Heterodimeric structure of superoxide dismutase in complex with its metallochaperone. Nat Struct Biol 8(9), 751-5. Lechner, M. S., and Laimins, L. A. (1994). Inhibition of p53 DNA binding by human papillomavirus E6 proteins. J Virol 68(7), 4262-73. Lechner, M. S., Mack, D. H., Finicle, A. B., Crook, T., Vousden, K. H., and Laimins, L. A. (1992). Human papillomavirus E6 proteins bind p53 in vivo and abrogate p53-mediated repression of transcription. Embo J 11(8), 3045-52. Lee, J. O., Russo, A. A., and Pavletich, N. P. (1998). Structure of the retinoblastoma tumour-suppressor pocket domain bound to a peptide from HPV E7. Nature 391(6670), 859-65. Lee, J. S., Galvin, K. M., See, R. H., Eckner, R., Livingston, D., Moran, E., and Shi, Y. (1995). Relief of YY1 transcriptional repression by adenovirus E1A is mediated by E1A-associated protein p300. Genes Dev 9(10), 1188-98. Lee, S. S., Weiss, R. S., and Javier, R. T. (1997). Binding of human virus oncoproteins to hDlg/SAP97, a mammalian homolog of the Drosophila discs large tumor suppressor protein. Proc Natl Acad Sci U S A 94(13), 6670-5. Leechanachai, P., Banks, L., Moreau, F., and Matlashewski, G. (1992). The E5 gene from human papillomavirus type 16 is an oncogene which enhances growth factor-mediated signal transduction to the nucleus. Oncogene 7(1), 19-25. Leptak, C., Ramon y Cajal, S., Kulke, R., Horwitz, B. H., Riese, D. J., 2nd, Dotto, G. P., and DiMaio, D. (1991). Tumorigenic transformation of murine keratinocytes by the E5 genes of bovine papillomavirus type and human papillomavirus type 16. J Virol 65(12), 7078-83. Li, S., Labrecque, S., Gauzzi, M. C., Cuddihy, A. R., Wong, A. H., Pellegrini, S., Matlashewski, G. J., and Koromilas, A. E. (1999). The human papilloma virus (HPV)-18 E6 oncoprotein physically associates with Tyk2 and impairs Jak-STAT activation by interferon-alpha. Oncogene 18(42), 572737. Lill, N. L., Grossman, S. R., Ginsberg, D., DeCaprio, J., and Livingston, D. M. (1997). Binding and modulation of p53 by p300/CBP coactivators. Nature 387(6635), 823-7. Lin, J., Chen, J., Elenbaas, B., and Levine, A. J. (1994). Several hydrophobic amino acids in the p53 amino-terminal domain are required for transcriptional activation, binding to mdm-2 and the adenovirus E1B 55kD protein. Genes Dev 8(10), 1235-46. Lipari, F., McGibbon, G. A., Wardrop, E., and Cordingley, M. G. (2001). Purification and biophysical characterization of a minimal functional domain and of an N-terminal Zn2+-binding fragment from the human papillomavirus type 16 E6 protein. Biochemistry 40(5), 1196-204. Liu, Z., Ghai, J., Ostrow, R. S., McGlennen, R. C., and Faras, A. J. (1994). The E6 gene of human papillomavirus type 16 is sufficient for transformation of baby rat kidney cells in cotransfection with activated Ha-ras. Virology 201(2), 388-96. Llobet, J. M., Domingo, J. L., and Corbella, J. (1988). Antidotes for zinc intoxication in mice. Arch Toxicol 61(4), 321-3. – REFERENCES 133 Lorincz, A. T., Reid, R., Jenson, A. B., Greenberg, M. D., Lancaster, W., and Kurman, R. J. (1992). Human papillomavirus infection of the cervix: relative risk associations of 15 common anogenital types. Obstet Gynecol 79(3), 328-37. Lowe, S. W., Jacks, T., Housman, D. E., and Ruley, H. E. (1994). Abrogation of oncogene-associated apoptosis allows transformation of p53-deficient cells. Proc Natl Acad Sci U S A 91(6), 2026-30. Lundblad, J. R., Kwok, R. P., Laurance, M. E., Harter, M. L., and Goodman, R. H. (1995). Adenoviral E1A-associated protein p300 as a functional homologue of the transcriptional co-activator CBP. Nature 374(6517), 85-8. Mantovani, F., and Banks, L. (1999). Inhibition of E6 induced degradation of p53 is not sufficient for stabilization of p53 protein in cervical tumour derived cell lines. Oncogene 18(22), 3309-15. Massimi, P., Pim, D., Bertoli, C., Bouvard, V., and Banks, L. (1999). Interaction between the HPV-16 E2 transcriptional activator and p53. Oncogene 18(54), 7748-54. Matlashewski, G., Banks, L., Pim, D., and Crawford, L. (1986). Analysis of human p53 proteins and mRNA levels in normal and transformed cells. Eur J Biochem 154(3), 665-72. Matlashewski, G., Schneider, J., Banks, L., Jones, N., Murray, A., and Crawford, L. (1987). Human papillomavirus type 16 DNA cooperates with activated ras in transforming primary cells. Embo J 6(6), 1741-6. Mavromatis, K. O., Jones, D. L., Mukherjee, R., Yee, C., Grace, M., and Munger, K. (1997). The carboxyl-terminal zinc-binding domain of the human papillomavirus E7 protein can be functionally replaced by the homologous sequences of the E6 protein. Virus Res 52(1), 109-18. McGuffin, L. J., Bryson, K., and Jones, D. T. (2000). The PSIPRED protein structure prediction server. Bioinformatics 16(4), 404-5. McIntyre, M. C., Frattini, M. G., Grossman, S. R., and Laimins, L. A. (1993). Human papillomavirus type 18 E7 protein requires intact Cys-X-X-Cys motifs for zinc binding, dimerization, and transformation but not for Rb binding. J Virol 67(6), 3142-50. Mietz, J. A., Unger, T., Huibregtse, J. M., and Howley, P. M. (1992). The transcriptional transactivation function of wild-type p53 is inhibited by SV40 large T-antigen and by HPV-16 E6 oncoprotein. Embo J 11(13), 5013-20. Moran, E. (1993). DNA tumor virus transforming proteins and the cell cycle. Curr Opin Genet Dev 3(1), 63-70. Mullis, K., Faloona, F., Scharf, S., Saiki, R., Horn, G., and Erlich, H. (1986). Specific enzymatic amplification of DNA in vitro: the polymerase chain reaction. Cold Spring Harb Symp Quant Biol 51 Pt 1, 263-73. Munger, K., Phelps, W. C., Bubb, V., Howley, P. M., and Schlegel, R. (1989). The E6 and E7 genes of the human papillomavirus type 16 together are necessary and sufficient for transformation of primary human keratinocytes. J Virol 63(10), 4417-21. Munger, K., Scheffner, M., Huibregtse, J. M., and Howley, P. M. (1992). Interactions of HPV E6 and E7 oncoproteins with tumour suppressor gene products. Cancer Surv 12, 197-217. Munoz, N., Bosch, F. X., de Sanjose, S., and Shah, K. V. (1994). The role of HPV in the etiology of cervical cancer. Mutat Res 305(2), 293-301. – REFERENCES 134 Myers, G., and Androphy, E. (1995). The E6 protein. In "Human papillomaviruses" (C. Wheeler, Ed.), pp. 47-57. Los Alamos Laboratory, Los Alamos. Nakagawa, S., and Huibregtse, J. M. (2000). Human scribble (Vartul) is targeted for ubiquitin-mediated degradation by the high-risk papillomavirus E6 proteins and the E6AP ubiquitin-protein ligase. Mol Cell Biol 20(21), 824453. Nakagawa, S., Watanabe, S., Yoshikawa, H., Taketani, Y., Yoshiike, K., and Kanda, T. (1995). Mutational analysis of human papillomavirus type 16 E6 protein: transforming function for human cells and degradation of p53 in vitro. Virology 212(2), 535-42. Nakajima, T., Uchida, C., Anderson, S. F., Lee, C. G., Hurwitz, J., Parvin, J. D., and Montminy, M. (1997). RNA helicase A mediates association of CBP with RNA polymerase II. Cell 90(6), 1107-12. Neary, K., Horwitz, B. H., and DiMaio, D. (1987). Mutational analysis of open reading frame E4 of bovine papillomavirus type 1. J Virol 61(4), 1248-52. Nomine, Y., Charbonnier, S., Ristriani, T., Stier, G., Masson, M., Cavusoglu, N., Van Dorsselaer, A., Weiss, E., Kieffer, B., and Trave, G. (2003). Domain substructure of HPV E6 oncoprotein: biophysical characterization of the E6 C-terminal DNA-binding domain. Biochemistry 42(17), 4909-17. Nomine, Y., Ristriani, T., Laurent, C., Lefevre, J. F., Weiss, E., and Trave, G. (2001a). Formation of soluble inclusion bodies by hpv e6 oncoprotein fused to maltose-binding protein. Protein Expr Purif 23(1), 22-32. Nomine, Y., Ristriani, T., Laurent, C., Lefevre, J. F., Weiss, E., and Trave, G. (2001b). A strategy for optimizing the monodispersity of fusion proteins: application to purification of recombinant HPV E6 oncoprotein. Protein Eng 14(4), 297-305. O'Connor, M. J., Tan, S. H., Tan, C. H., and Bernard, H. U. (1996). YY1 represses human papillomavirus type 16 transcription by quenching AP-1 activity. J Virol 70(10), 6529-39. O'Connor, M. J., Zimmermann, H., Nielsen, S., Bernard, H. U., and Kouzarides, T. (1999). Characterization of an E1A-CBP interaction defines a novel transcriptional adapter motif (TRAM) in CBP/p300. J Virol 73(5), 357481. O'Halloran, T. V., and Culotta, V. C. (2000). Metallochaperones, an intracellular shuttle service for metal ions. J Biol Chem 275(33), 25057-60. Ogryzko, V. V., Schiltz, R. L., Russanova, V., Howard, B. H., and Nakatani, Y. (1996). The transcriptional coactivators p300 and CBP are histone acetyltransferases. Cell 87(5), 953-9. Okun, M. M., Day, P. M., Greenstone, H. L., Booy, F. P., Lowy, D. R., Schiller, J. T., and Roden, R. B. (2001). L1 interaction domains of papillomavirus l2 necessary for viral genome encapsidation. J Virol 75(9), 4332-42. Outten, C. E., and O'Halloran, T. V. (2001). Femtomolar sensitivity of metalloregulatory proteins controlling zinc homeostasis. Science 292(5526), 2488-92. Park, P., Copeland, W., Yang, L., Wang, T., Botchan, M. R., and Mohr, I. J. (1994). The cellular DNA polymerase alpha-primase is required for papillomavirus DNA replication and associates with the viral E1 helicase. Proc Natl Acad Sci U S A 91(18), 8700-4. – REFERENCES 135 Patel, D., Huang, S. M., Baglia, L. A., and McCance, D. J. (1999). The E6 protein of human papillomavirus type 16 binds to and inhibits co-activation by CBP and p300. Embo J 18(18), 5061-72. Patrick, D. R., Zhang, K., Defeo-Jones, D., Vuocolo, G. R., Maigetter, R. Z., Sardana, M. K., Oliff, A., and Heimbrook, D. C. (1992). Characterization of functional HPV-16 E7 protein produced in Escherichia coli. J Biol Chem 267(10), 6910-5. Peng, H. Q., Liu, S. L., Mann, V., Rohan, T., and Rawls, W. (1991). Human papillomavirus types 16 and 33, herpes simplex virus type and other risk factors for cervical cancer in Sichuan Province, China. Int J Cancer 47(5), 711-6. Peto, R. (1986). Introduction: geographic patterns and trends. In "Viral etiology of cervical cancer. Banbury Report 21." (R. Peto, and H. zur Hausen, Eds.), pp. 3-15. Cold Spring Harbor Laboratory, Cold Spring Harbor, New York. Phelps, W. C., Munger, K., Yee, C. L., Barnes, J. A., and Howley, P. M. (1992). Structure-function analysis of the human papillomavirus type 16 E7 oncoprotein. J Virol 66(4), 2418-27. Phelps, W. C., Yee, C. L., Munger, K., and Howley, P. M. (1988). The human papillomavirus type 16 E7 gene encodes transactivation and transformation functions similar to those of adenovirus E1A. Cell 53(4), 539-47. Pim, D., Storey, A., Thomas, M., Massimi, P., and Banks, L. (1994). Mutational analysis of HPV-18 E6 identifies domains required for p53 degradation in vitro, abolition of p53 transactivation in vivo and immortalisation of primary BMK cells. Oncogene 9(7), 1869-76. Rae, T. D., Schmidt, P. J., Pufahl, R. A., Culotta, V. C., and O'Halloran, T. V. (1999). Undetectable intracellular free copper: the requirement of a copper chaperone for superoxide dismutase. Science 284(5415), 805-8. Reznikoff, C. A., Belair, C., Savelieva, E., Zhai, Y., Pfeifer, K., Yeager, T., Thompson, K. J., DeVries, S., Bindley, C., Newton, M. A., and et al. (1994). Long-term genome stability and minimal genotypic and phenotypic alterations in HPV16 E7-, but not E6-, immortalized human uroepithelial cells. Genes Dev 8(18), 2227-40. Richart, R. M., and Barron, B. A. (1969). A follow-up study of patients with cervical dysplasia. Am J Obstet Gynecol 105(3), 386-93. Ristriani, T., Masson, M., Nomine, Y., Laurent, C., Lefevre, J. F., Weiss, E., and Trave, G. (2000). HPV oncoprotein E6 is a structure-dependent DNAbinding protein that recognizes four-way junctions. J Mol Biol 296(5), 1189-203. Roberts, S., Ashmole, I., Johnson, G. D., Kreider, J. W., and Gallimore, P. H. (1993). Cutaneous and mucosal human papillomavirus E4 proteins form intermediate filament-like structures in epithelial cells. Virology 197(1), 176-87. Ronco, L. V., Karpova, A. Y., Vidal, M., and Howley, P. M. (1998). Human papillomavirus 16 E6 oncoprotein binds to interferon regulatory factor-3 and inhibits its transcriptional activity. Genes Dev 12(13), 2061-72. Rose, R. C., Bonnez, W., Reichman, R. C., and Garcea, R. L. (1993). Expression of human papillomavirus type 11 L1 protein in insect cells: in vivo and in vitro assembly of viruslike particles. J Virol 67(4), 1936-44. Rosenzweig, A. C., and O'Halloran, T. V. (2000). Structure and chemistry of the copper chaperone proteins. Curr Opin Chem Biol 4(2), 140-7. – REFERENCES 136 PredictProtein Roth, J., Konig, C., Wienzek, S., Weigel, S., Ristea, S., and Dobbelstein, M. (1998). Inactivation of p53 but not p73 by adenovirus type E1B 55kilodalton and E4 34-kilodalton oncoproteins. J Virol 72(11), 8510-6. Ruppert, J. M., and Stillman, B. (1993). Analysis of a protein-binding domain of p53. Mol Cell Biol 13(6), 3811-20. Saiki, R. K., Scharf, S., Faloona, F., Mullis, K. B., Horn, G. T., Erlich, H. A., and Arnheim, N. (1985). Enzymatic amplification of beta-globin genomic sequences and restriction site analysis for diagnosis of sickle cell anemia. Science 230(4732), 1350-4. Sang, B. C., and Barbosa, M. S. (1992). Single amino acid substitutions in "lowrisk" human papillomavirus (HPV) type E7 protein enhance features characteristic of the "high-risk" HPV E7 oncoproteins. Proc Natl Acad Sci U S A 89(17), 8063-7. Sato, H., Furuno, A., and Yoshiike, K. (1989). Expression of human papillomavirus type 16 E7 gene induces DNA synthesis of rat 3Y1 cells. Virology 168(1), 195-9. Scharf, S. J., Horn, G. T., and Erlich, H. A. (1986). Direct cloning and sequence analysis of enzymatically amplified genomic sequences. Science 233(4768), 1076-8. Scheffner, M., Huibregtse, J. M., Vierstra, R. D., and Howley, P. M. (1993). The HPV-16 E6 and E6-AP complex functions as a ubiquitin-protein ligase in the ubiquitination of p53. Cell 75(3), 495-505. Scheffner, M., Werness, B. A., Huibregtse, J. M., Levine, A. J., and Howley, P. M. (1990). The E6 oncoprotein encoded by human papillomavirus types 16 and 18 promotes the degradation of p53. Cell 63(6), 1129-36. Schmitt, A., Harry, J. B., Rapp, B., Wettstein, F. O., and Iftner, T. (1994). Comparison of the properties of the E6 and E7 genes of low- and high-risk cutaneous papillomaviruses reveals strongly transforming and high Rbbinding activity for the E7 protein of the low-risk human papillomavirus type 1. J Virol 68(11), 7051-9. Schwarz, E., Freese, U. K., Gissmann, L., Mayer, W., Roggenbuck, B., Stremlau, A., and zur Hausen, H. (1985). Structure and transcription of human papillomavirus sequences in cervical carcinoma cells. Nature 314(6006), 111-4. Schwarz, S. E., Rosa, J. L., and Scheffner, M. (1998). Characterization of human hect domain family members and their interaction with UbcH5 and UbcH7. J Biol Chem 273(20), 12148-54. Seavey, S. E., Holubar, M., Saucedo, L. J., and Perry, M. E. (1999). The E7 oncoprotein of human papillomavirus type 16 stabilizes p53 through a mechanism independent of p19(ARF). J Virol 73(9), 7590-8. Sellers, W. R., Novitch, B. G., Miyake, S., Heith, A., Otterson, G. A., Kaye, F. J., Lassar, A. B., and Kaelin, W. G., Jr. (1998). Stable binding to E2F is not required for the retinoblastoma protein to activate transcription, promote differentiation, and suppress tumor cell growth. Genes Dev 12(1), 95-106. Seo, Y. S., Muller, F., Lusky, M., and Hurwitz, J. (1993). Bovine papilloma virus (BPV)-encoded E1 protein contains multiple activities required for BPV DNA replication. Proc Natl Acad Sci U S A 90(2), 702-6. Sherman, L., Alloul, N., Golan, I., Durst, M., and Baram, A. (1992). Expression and splicing patterns of human papillomavirus type-16 mRNAs in pre- – REFERENCES 137 cancerous lesions and carcinomas of the cervix, in human keratinocytes immortalized by HPV 16, and in cell lines established from cervical cancers. Int J Cancer 50(3), 356-64. Sherman, L., and Schlegel, R. (1996). Serum- and calcium-induced differentiation of human keratinocytes is inhibited by the E6 oncoprotein of human papillomavirus type 16. J Virol 70(5), 3269-79. Smith-McCune, K., Kalman, D., Robbins, C., Shivakumar, S., Yuschenkoff, L., and Bishop, J. M. (1999). Intranuclear localization of human papillomavirus 16 E7 during transformation and preferential binding of E7 to the Rb family member p130. Proc Natl Acad Sci U S A 96(12), 69997004. Smotkin, D., and Wettstein, F. O. (1986). Transcription of human papillomavirus type 16 early genes in a cervical cancer and a cancer-derived cell line and identification of the E7 protein. Proc Natl Acad Sci U S A 83(13), 4680-4. Somasundaram, K., and El-Deiry, W. S. (1997). Inhibition of p53-mediated transactivation and cell cycle arrest by E1A through its p300/CBPinteracting region. Oncogene 14(9), 1047-57. Song, S., Liem, A., Miller, J. A., and Lambert, P. F. (2000). Human papillomavirus types 16 E6 and E7 contribute differently to carcinogenesis. Virology 267(2), 141-50. Srivenugopal, K. S., and Ali-Osman, F. (2002). The DNA repair protein, O(6)methylguanine-DNA methyltransferase is a proteolytic target for the E6 human papillomavirus oncoprotein. Oncogene 21(38), 5940-5. Steegenga, W. T., Riteco, N., Jochemsen, A. G., Fallaux, F. J., and Bos, J. L. (1998). The large E1B protein together with the E4orf6 protein target p53 for active degradation in adenovirus infected cells. Oncogene 16(3), 34957. Storey, A., and Banks, L. (1993). Human papillomavirus type 16 E6 gene cooperates with EJ-ras to immortalize primary mouse cells. Oncogene 8(4), 919-24. Storey, A., Greenfield, I., Banks, L., Pim, D., Crook, T., Crawford, L., and Stanley, M. (1992). Lack of immortalizing activity of a human papillomavirus type 16 variant DNA with a mutation in the E2 gene isolated from normal human cervical keratinocytes. Oncogene 7(3), 45965. Straight, S. W., Hinkle, P. M., Jewers, R. J., and McCance, D. J. (1993). The E5 oncoprotein of human papillomavirus type 16 transforms fibroblasts and effects the downregulation of the epidermal growth factor receptor in keratinocytes. J Virol 67(8), 4521-32. Sundberg, J. P. (1987). Papillomavirus infections in animals. In "Papillomaviruses and human disease" (K. Syrjanen, L. Gissmann, and L. Koss, Eds.), pp. 40103. Springer-Verlag, Berlin. Talis, A. L., Huibregtse, J. M., and Howley, P. M. (1998). The role of E6AP in the regulation of p53 protein levels in human papillomavirus (HPV)-positive and HPV-negative cells. J Biol Chem 273(11), 6439-45. Tauber, B., and Dobner, T. (2001). Adenovirus early E4 genes in viral oncogenesis. Oncogene 20(54), 7847-54. Thierry, F., and Yaniv, M. (1987). The BPV1-E2 trans-acting protein can be either an activator or a repressor of the HPV18 regulatory region. Embo J 6(11), 3391-7. – REFERENCES 138 Thomas, M., and Banks, L. (1998). Inhibition of Bak-induced apoptosis by HPV18 E6. Oncogene 17(23), 2943-54. Thomas, M., Massimi, P., and Banks, L. (1996). HPV-18 E6 inhibits p53 DNA binding activity regardless of the oligomeric state of p53 or the exact p53 recognition sequence. Oncogene 13(3), 471-80. Thomas, M., Massimi, P., Jenkins, J., and Banks, L. (1995). HPV-18 E6 mediated inhibition of p53 DNA binding activity is independent of E6 induced degradation. Oncogene 10(2), 261-8. Tong, X., Boll, W., Kirchhausen, T., and Howley, P. M. (1998). Interaction of the bovine papillomavirus E6 protein with the clathrin adaptor complex AP-1. J Virol 72(1), 476-82. Tong, X., and Howley, P. M. (1997). The bovine papillomavirus E6 oncoprotein interacts with paxillin and disrupts the actin cytoskeleton. Proc Natl Acad Sci U S A 94(9), 4412-7. Ullman, C. G., Haris, P. I., Galloway, D. A., Emery, V. C., and Perkins, S. J. (1996). Predicted alpha-helix/beta-sheet secondary structures for the zincbinding motifs of human papillomavirus E7 and E6 proteins by consensus prediction averaging and spectroscopic studies of E7. Biochem J 319 ( Pt 1), 229-39. Vande Pol, S. B., Brown, M. C., and Turner, C. E. (1998). Association of Bovine Papillomavirus Type E6 oncoprotein with the focal adhesion protein paxillin through a conserved protein interaction motif. Oncogene 16(1), 4352. Vousden, K. H. (1995). Regulation of the cell cycle by viral oncoproteins. Semin Cancer Biol 6(2), 109-16. Wazer, D. E., Liu, X. L., Chu, Q., Gao, Q., and Band, V. (1995). Immortalization of distinct human mammary epithelial cell types by human papilloma virus 16 E6 or E7. Proc Natl Acad Sci U S A 92(9), 3687-91. Werness, B. A., Levine, A. J., and Howley, P. M. (1990). Association of human papillomavirus types 16 and 18 E6 proteins with p53. Science 248(4951), 76-9. Whyte, P., Buchkovich, K. J., Horowitz, J. M., Friend, S. H., Raybuck, M., Weinberg, R. A., and Harlow, E. (1988). Association between an oncogene and an anti-oncogene: the adenovirus E1A proteins bind to the retinoblastoma gene product. Nature 334(6178), 124-9. Wu, E. W., Clemens, K. E., Heck, D. V., and Munger, K. (1993). The human papillomavirus E7 oncoprotein and the cellular transcription factor E2F bind to separate sites on the retinoblastoma tumor suppressor protein. J Virol 67(4), 2402-7. Wu, X., and Levine, A. J. (1994). p53 and E2F-1 cooperate to mediate apoptosis. Proc Natl Acad Sci U S A 91(9), 3602-6. Yaciuk, P., Carter, M. C., Pipas, J. M., and Moran, E. (1991). Simian virus 40 large-T antigen expresses a biological activity complementary to the p300associated transforming function of the adenovirus E1A gene products. Mol Cell Biol 11(4), 2116-24. Yang, L., Mohr, I., Fouts, E., Lim, D. A., Nohaile, M., and Botchan, M. (1993). The E1 protein of bovine papilloma virus is an ATP-dependent DNA helicase. Proc Natl Acad Sci U S A 90(11), 5086-90. Yang, T. H., Cleland, J. L., Lam, X., Meyer, J. D., Jones, L. S., Randolph, T. W., Manning, M. C., and Carpenter, J. F. (2000). Effect of zinc binding and – REFERENCES 139 precipitation on structures of recombinant human growth hormone and nerve growth factor. J Pharm Sci 89(11), 1480-5. Yang, X. J., Ogryzko, V. V., Nishikawa, J., Howard, B. H., and Nakatani, Y. (1996). A p300/CBP-associated factor that competes with the adenoviral oncoprotein E1A. Nature 382(6589), 319-24. Zhou, J., Sun, X. Y., Stenzel, D. J., and Frazer, I. H. (1991). Expression of vaccinia recombinant HPV 16 L1 and L2 ORF proteins in epithelial cells is sufficient for assembly of HPV virion-like particles. Virology 185(1), 2517. Zhou, P., Lugovskoy, A. A., and Wagner, G. (2001). A solubility-enhancement tag (SET) for NMR studies of poorly behaving proteins. J Biomol NMR 20(1), 11-4. Zimmermann, H., Degenkolbe, R., Bernard, H. U., and O'Connor, M. J. (1999). The human papillomavirus type 16 E6 oncoprotein can down-regulate p53 activity by targeting the transcriptional coactivator CBP/p300. J Virol 73(8), 6209-19. Zimmermann, H., Koh, C. H., Degenkolbe, R., O'Connor, M. J., Muller, A., Steger, G., Chen, J. J., Lui, Y., Androphy, E., and Bernard, H. U. (2000). Interaction with CBP/p300 enables the bovine papillomavirus type E6 oncoprotein to downregulate CBP/p300-mediated transactivation by p53. J Gen Virol 81(Pt 11), 2617-23. Zimmermann, H., and O'Connor, M. J. Unpublished data. zur Hausen, H. (1991). Human papillomaviruses in the pathogenesis of anogenital cancer. Virology 184(1), 9-13. [...]... of about 8kbp 2.4 Genome organization The circular HPV1 6 genome has eight ORFs, encoding six early genes (E1, E2, E4, E5, E6 and E7) and two late genes (L1 and L2), and a long control region (LCR) located between the L1 and E6 ORFs (Figure 3) Figure 3: Organization of the genome of HPV 16 Most of the ORFs overlap and the early genes are all transcribed from a single promoter, P97, upstream of the E6. .. 2.5.6 The E6 protein The E6 protein of HPV1 6 is a small polypeptide of 151 amino acids and contains two putative zinc binding motifs (Barbosa, Lowy, and Schiller, 1989; Cole and Danos, 1987), as illustrated in figure 5, which are crucial for all but a few of the numerous different functions of E6 (Kanda et al., 1991; Sherman and Schlegel, 1996) The first pieces of evidence that E6 is a viral oncoprotein. .. incapacitated otherwise but are being continuously expressed and then degraded, a loss of the function of E6 or E7 would be catastrophic for the cancer cell The presence of functional pRB and p53 in a late cancer cell would immediately arrest the cell-cycle and most likely initiate apoptosis (Francis, Schmid, and Howley, 2000) This continuous dependency of the cancer cell on E6 or E7 for survival, the lack of. .. Biophysical properties of E6 and E7 3.1 Biophysical properties of the E6 and E7 proteins: Previous data and concept of this study To determine the biophysical properties of proteins and, ultimately, determine their three-dimensional structure (a prerequisite for rational drug-design), one needs native, pure, concentrated and homogenous protein The two methods employed routinely for determination of high-resolution... expression of the cyclins E and A (Hickman, Picksley, and Vousden, 1994) and cdc25A (Katich, Zerfass-Thome, and Hoffmann, 2001), inactivation of the p53-responsive CKI p21CIP1 (Funk et al., 1997; Jones, Alani, and Munger, 1997), and the decreased steady-state levels of pRB (Jones and Munger, 1997) Cells expressing E7 show increased levels of p53 (Demers, Halbert, and Galloway, 1994) and the normal... degradation of p53 mediated by the cellular ubiquitin ligase MDM2 seems to be disturbed (Jones and Munger, 1997; Seavey et al., 1999) Nonetheless, the rapid turnover of p53, a prerequisite for cell immortalization, in HPV positive cells, expressing both, E7 and E6, is entirely due to one of the main functions of the E6 gene product, the E6AP dependent targeting of p53 for ubiquitin dependent degradation via the. .. by a progressive spectrum of abnormalities of the cervical epithelium (Richart and Barron, 1969) These lesions are classified as cervical intraepithelial neoplasia (CIN) grades 1, 2 and 3 The severity of the lesion is graded by the extent to which the normally differentiating, non-mitotic suprabasal cells of the cervical epithelium are replaced by the non-differentiating and mitotically active basal-like... for human papillomavirus (HPV) DNA, with about 60% of them positive for HPV1 6 Two of the eight known genes encoded by HPV1 6, the early genes 6 (E6) and 7 (E7) are responsible for cell-transformation and transition to malignancy The E6 protein binds to a cellular E3-ubiquitin ligase (E6AP) and this complex targets p53, an important cellular apoptosis messenger, for degradation E6 is expressed throughout... E6 or E7 for survival, the lack of a beneficial role for both and the lack of homologous cellular proteins make E6 and E7 excellent drug-targets An example of anti -HPV E6 and E7 drug development is a recent study targeting the cysteines of the two zinc fingers of E6 with oxidizing agents rendering them incapable of coordinating zinc and the protein useless to execute its transforming functions (Beerheide... HPV1 6 E7 protein; the conserved regions 1 and 2 (CR I, CR II; similar to regions conserved in Adenovirus E1A or SV40 large T), conserved region 3 (CR III), the pRB binding domain, the site for phosphorylation by the casein kinase II and the location of the zinc binding domain are indicated The HPV E6 protein consists of two tandem copies of this domain and it has been speculated that E6 and E7 may have . NOVEL BIOCHEMICAL AND FUNCTIONAL PROPERTIES OF THE HPV1 6 ONCOPROTEIN E6 ROLAND DEGENKOLBE (M.Sc. (chemistry), University of Cologne) A THESIS SUBMITTED FOR THE DEGREE OF DOCTOR OF PHILOSOPHY INSTITUTE. diagram of the HPV1 6 E7 protein. Figure 5: Schematic diagram of the HPV1 6 E6 protein. Figure 6: Expression and metal-affinity purification of HPV1 6 E7. Figure 7: Apparent size distribution of HPV1 6. (PART 1): BIOPHYSICAL PROPERTIES OF E6 AND E7 33 3.1 Biophysical properties of the E6 and E7 proteins: Previous data and concept of this study. 33 3.2 Biophysical properties of the E7 protein: Experimental

Ngày đăng: 17/09/2015, 17:18

Từ khóa liên quan

Tài liệu cùng người dùng

  • Đang cập nhật ...

Tài liệu liên quan