1. Trang chủ
  2. » Giáo Dục - Đào Tạo

Biochemical identification and functional characterization of microrna target interactions in growth control and cancer transformation

141 475 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 141
Dung lượng 12,15 MB

Nội dung

BIOCHEMICAL IDENTIFICATION AND FUNCTIONAL CHARACTERIZATION OF MICRORNA-TARGET INTERACTIONS IN GROWTH CONTROL AND CANCER TRANSFORMATION HONG XIN (B.Sc (Hons.), NUS A THESIS SUBMITTED FOR THE DEGREE OF DOCTOR OF PHILOSOPHY INSTITUTE OF MOLECULAR AND CELL BIOLOGY NATIONAL UNIVERSITY OF SINGAPORE 2013   I   DECLARATION I hereby declare that the thesis is my original work and it has been written by me in its entirety I have duly acknowledged all the sources of information which have been used in the thesis This thesis has also not been submitted for any degree in any university previously _ Hong Xin 4th March 2013   II   ACKNOWLEDGEMENTS I am deeply grateful to my PhD mentor, Professor Stephen Michel Cohen, for his rigorous PhD training, great vision on science and directionality of projects His broad scope of scientific interests, inspiring ideas, critical thinking, deep penetrance of scientific investigations and many other outstanding scientific qualities have been so much beneficial throughout my PhD and will continuously be influential on my future career I would like to thank my thesis committee members, Professor Ng Huck Hui, Dr José   R   Dinneny, and Professor Toshie Kai for their valuable comments and constructive advice My sincere thanks to all the past and current members of the Cohen lab, especially Dr Thomas Sandman, Ms Lim Sing fee, Dr Jishy Varghese, Dr Chen Yawen, Dr Zhang Wei and Dr Ge Wanzhong for creating a nice working environment, providing numerous kind help whenever needed, and teaching me how to be a good scientists during daily communications I would like to express my heartfelt appreciation to my collaborators Dr Molly Hammell, Mr Nguyen Thanh Hung, Dr Zhang Rui, Dr Mathijs Voorhoeve, and Dr Hector Herranz Without them, my PhD projects would not be accomplished so smoothly Thanks also go to Dr Wang Songyu, Vinayaka, Na Chen, Dr Wang Xin Gang for the friendships Last but not least, I dedicated this thesis to my beloved wife JingJing, my parents, and my son Xavier and my daughter-to-be-born for their love, support, and encouragement throughout my PhD They have been always one huge motivation in my scientific career   III   TABLE OF CONTENT   SUMMARY    VI   LIST  OF  TABLES    VIII   LIST  OF  FIGURES    IX   LIST  OF  SYMBOLS  AND  ABBREVIATIONS    XI   LIST  OF  PUBLICATIONS    XII   CHAPTER  1  INTRODUCTION    1   1.1   THE DISCOVERY OF ANIMAL MICRORNAS    1   1.2   MICRORNA BIOGENESIS    2   1.2.1   microRNA transcription    2   1.2.2   miRNA maturation    2   1.2.3   RISC effector loading    3   1.2.4   Argonaute proteins as RISC effectors    3   1.3   MECHANISMS OF MIRNA ACTION    4   1.3.1   Mechanism of miRNA action    4   1.3.2   Effects on target mRNA level    5   1.3.2.1   1.3.2.2   Direct mRNA cleavage       Repression by mRNA destabilization       1.3.3   Effect on protein translation    7   1.4 IDENTIFICATION AND VALIDATION OF MIRNA TARGETS    8   1.4.1 Identification of miRNA targets    8   1.4.1.1 Computational prediction       1.4.1.2 Target identification based on genome-wide expression profiling    11   1.4.1.3 Biochemical purification of miRNP complex coupled to high throughput platforms    13   1.4.2 Experimental validation of microRNA targets    15   1.4.2.1 Target reporter assay in vitro and in vivo    15   1.4.2.2 Measuring target level in microRNA overexpressed and/or depleted cells    17   1.4.2.3 Genetic and functional interactions between a microRNA and its targets    18   1.5   GENETIC MANIPULATIONS OF MIRNA ACTIVITIES IN CELLS AND ORGANISMS    19   1.5.1 Genetic knockouts    19   1.5.2 Application of miRNA sponges    21   1.6 MIRNA DYSREGULATION IN CANCER CELLS    23   1.6.1 Genomic copy number alterations of miRNAs in cancer    24   1.6.2 Change in transcriptional regulations of miRNAs in cancer    25   1.6.3 miRNAs dysregulate many downstream signaling pathways critically involved in cancer initiation and progression    25   CHAPTER  2  MATERIALS  AND  METHODS    33   2.1 DROSOPHILAGENETICS    33   2.2 IMMUNOSTAINING    33   2.3 SDS-PAGE AND IMMUNOBLOT ANALYSIS    34   2.4 IMMUNOPURIFICATION OF MIRNP COMPLEX FROM DROSOPHILAS2 CELLS    34   2.5 UTR REPORTER CONSTRUCTS AND LUCIFERASE REPORTER ASSAYS    35   2.6 MIRNA AND MRNA QUANTITATIVE REAL TIME PCR    36   2.7 EXPRESSION PROFILING    37   2.8 MIRNA TARGET SITE PREDICTION    38   2.9 STATISTICAL ANALYSIS    39   2.10 MAMMALIAN CELL CULTURE    39   2.11 SOFT AGAR COLONY FORMATION ASSAY    40   2.12 CANCER PATIENT SURVIVAL ANALYSIS    40     IV   CHAPTER  3  BIOCHEMICAL  PURIFICATION  OF  MIRNA-­‐RISC  COMPLEX  COUPLED  TO   HIGH-­‐THROUGHPUT  MICROARRAY  PROFILING  IDENTIFIES  A  DISTINCT  SET  OF   MIRNA  TARGETS  IN  DROSOPHILAS2  CELLS    41   3.1 INTRODUCTION    41   3.2 EXPERIMENTAL ASSESSMENT OF AN IMPROVED AGO1 IMMUNOPURIFICATION PROTOCOL    43   3.3 EXPRESSION PROFILING OF MRNAS ASSOCIATED WITH AGO1 IDENTIFIED HUNDREDS OF IP-ENRICHED TRANSCRIPTS    46   3.4 EXPERIMENTAL VALIDATION OF TARGET ENRICHMENT IN AGO1 IP    50   3.5 EXPERIMENTAL VALIDATION OF SELECTED MIR-184 TARGETS IDENTIFIED BY AGO1 IP    55   3.6 SEED TYPE ENRICHMENT OF THE TARGET SITES IN AGO1 IP-ENRICHED TRANSCRIPTS    60   3.7 OTHER CONTEXTUAL FEATURES ENRICHED IN AGO1 IP-ENRICHED TRANSCRIPTS    61   3.8 COMPARISON OF TARGETS IDENTIFIED BY AGO1 IP AND AGO1 DEPLETION    67   3.9 FUNCTIONAL CLUSTERING SUGGESTS DISTINCT BIOLOGICAL FUNCTIONS IN THE TWO TARGET GROUPS    78   3.10 GENOME-WIDE ANALYSIS SHOWS MIRNA TARGETS WITH DISTINCT STRUCTURAL AND MOLECULAR PROPERTIES    80   3.11 DISCUSSION    83   CHAPTER  4  FUNCTIONAL  CHARACTERIZATION  OF  BANTAM-­‐SOCS36E  INTERACTION   LEADS  TO  IDENTIFICATION  OF  SOCS  PROTEIN  FAMILIES  AS  ONCOGENIC   COOPERATING  FACTORS  IN  EGFR/RASV12-­‐DRIVEN  TUMORIGENESIS    86   4.1 INTRODUCTION    86   4.2 DEPLETION OF BANTAM BY MICRORNA SPONGE PRODUCES EGFR-LIKE PHENOTYPES   88     4.3 IDENTIFICATION OF SOCS36E AS A BANTAM TARGET    91   4.4 SOCS36E IS A NEGATIVE GROWTH REGULATOR    94   4.5 SOCS36E IS A NEGATIVE FEEDBACK REGULATOR OF EGFR SIGNALING    97   4.6 SOCS36E BEHAVES AS A TUMOR SUPPRESSOR UNDER CONDITIONS OF ELEVATED EGFR ACTIVITY    100   4.7 HUMAN SOCS5 BEHAVES AS A CANDIDATE TUMOR SUPPRESSOR IN AN EGFR/RASDEPENDENT CELLULAR TRANSFORMATION ASSAY    103   4.8 SOCS5 EXPRESSION IS DOWNREGULATED IN BREAST CANCER AND ASSOCIATED WITH METASTATIC-FREE SURVIVAL    106   4.9 DISCUSSION    110   CHAPTER  5  CONCLUSION  AND  FUTURE  WORK    114               V   SUMMARY microRNAs are a class of non-coding RNAs of 21 to 23 nucleotides in length They are endogenously expressed in the majority of eukaryotes MicroRNAs form proteinRNA complexes with the RNA-induced silencing complex (RISC) and bind to either 3’UTR or coding regions of messenger RNAs, causing destabilization of mRNA and/or inhibition of protein translation Animal microRNAs recognize their mRNA target via imperfect base pairing The 5’ position from 2-8nt, the so called “seed region”, is critical for microRNAs to repress their targets Each miRNA is predicted to regulate up to hundreds of genes and more than 65% of the animal genome could be potentially targeted by miRNAs miRNAs play important roles in diverse biological processes, including growth, differentiation, neurogenesis, apoptosis and metabolism Misregulation of miRNAs is correlated with various types of human pathologies including cancer and directly contribute to disease initiation and progression (representative reviews in (Iorio and Croce, 2012; Mendell and Olson, 2012; Rottiers and Naar, 2012)) My PhD project is focused on identification and functional characterizations of miRNA-target interactions involved in growth control and cancer transformation I used biochemical immunoprecipitation against Drosophila Ago1 (Ago1-IP) to isolate and purify Ago1/miRNA/mRNA complex and utilized microarray profiling to identify mRNAs enriched in Ago1-IP in Drosophila S2 cells Hundreds of potential miRNA targets associated with Ago1 in Drosophila S2 cells were identified by Ago1-IP Computational analysis using the IP-enriched target sets and Ago1 RNAi-upregulated target sets suggested the existence of two distinct sets of microRNA targets that exhibit substantial differences in molecular and structural properties My study further   VI   revealed a genome-wide correlation between binding site accessibility and the 3’UTR length of mRNA targets, suggesting an unprecedented complexity of miRNA-target interactions One target that I identified from the Ago1-IP is Socs36E, which contains a binding site for the growth regulatory microRNA, bantam Genetic and functional analysis suggested Socs36E is a negative growth regulator and contributes to bantam’s loss-offunction phenotype in the Drosophila wing Mechanistically, Socs36E negatively regulates EGFR activity while EGFR signaling also controls Socs36E expression, forming a negative feedback regulatory loop Socs36E acts as a “brake” to repress excessive EGFR signaling and when the “brake” is removed, EGFR overexpression leads to uncontrolled tumorous overgrowth and neoplastic transformation Using an in vitro cancer transformation model of primary human fibroblast cells, I further demonstrated one of the human orthologs of Socs36E, SOCS5, is a potential cooperating tumor suppressor of RasV12/EGF-driven cancer transformation SOCS5 is downregulated in breast cancer samples and associated with ErBB/ER/PR status Lower SOCS5 expression correlates with poorer metastatic-free survival in breast cancer patients, suggesting SOCS5 can be a potential biomarker with prognostic value Taken together, through characterization of miRNA-target interactions involved in developmental growth control, my collaborators and I have identified the SOCS protein family, as oncogenic cooperation factors of EGFR/Ras/MAPK- mediated cancer transformation in both Drosophila and human             VII   LIST OF TABLES Table  1  1  A  comparison  of  different  computational  prediction  programs    32     Table  3  1  List  of  microRNA  seed  families  expressed  in  Drosoiphila  S2  cells    50     Table  3  2  The  non-­‐redundant  set  of  validated  miRNA  target  pairs    54     Table  3  3  Predicted  miR-­‐184  targets  enriched  in  Ago1  IP    58     Table  3  4    Summary  of  IP  target  validation    59     Table  3  5  Analysis  of  enrichment  for  stable  hybridization  binding  energy,  MFE,  ΔGhybrid    64     Table  3  6  Analysis  of  enrichment  for  miRNA  binding  site  openness  for  IP-­‐enriched  trascripts   using  non-­‐IP  enriched  transcripts    64     Table  3  7  Analysis  of  enrichment  for  miRNA  binding  site  openness  for  IP-­‐enriched  transcripts   using  all  S2  cells  transcripts  as  controls    65     Table  3  8    Analysis  of  miRNA  binding  site  openness  and  flanking  region  openness  in  Ago1  IP-­‐ enriched  group    66     Table  3  9  Analysis  of  enrichment  for  stable  hybridization  binding  energy  (MFE)  in  Ago1  RNAi-­‐ upregulated  group    73     Table  3  10  Analysis  of  enrichment  for  miRNA  binding  site  openness  for  Ago1  RNAi-­‐upregulated   transcripts  as  compared  to  all  detectable  S2  cell  transcripts    76     Table  3  11  Analysis  of  miRNA  binding  site  openness  and  flanking  region  openness  in  Ago1  RNAi   upregulated  group    78     Table  3  12  Gene  ontology  analysis  of  Ago1  IP-­‐enriched  transcripts  and  transcripts  upregulated  by   Ago1  RNAi    79     Table  3  13  Genome-­‐wide  comparisons  of  upstream,  downstream,  and  site  openness   (accessibility)  of  all  predicted  miRNA  sites  as  a  function  of  UTR  length    83     Table  4  1    Listing  of  Log2  median-­‐centered  SOCS5  expression  levels  for  each  indicated  dataset    110           VIII   LIST OF FIGURES Figure  1  1  microRNA  biogenesis  and  action    27     Figure  1  2  Argonaute  domain  organization    28     Figure  1  3  Ago/GW182  as  effector  complex  in  miRNA-­‐mediated  gene  silencing    28     Figure  1  5  Schematic  representation  of  ends-­‐out  gene  targeting  by  homologous  recombination    30     Figure  1  6  miRNA  sponge  design    31     Figure  1  7  The  general  workflow  for  small  RNA  sequencing  by  NGS  platforms    ERROR!  BOOKMARK   NOT  DEFINED     Figure  3  1  The  general  workflow  of  an  improved  Ago1  immunopurification  protocol    45     Figure  3  2  A  representative  immunoblot  of  Ago1  IP  on  transgenic  S2  cells  expressing  a  Flag/HA   epitope  tagged  Ago1  (+)  or  control  S2  cells  (-­‐)    46     Figure  3  3  miRNAs  and  validated  known  targets  are  enriched  in  Ago1  immunopurified  RNA   complex    46     Figure  3  4  Number  of  transcripts  enriched  in  Ago1  IP  and  the  mean  abundance  of  transcripts    48     Figure  3  5  Validation  of  selected  IP-­‐enriched  genes  by  independent  IP-­‐Q-­‐PCR    49     Figure  3  6  Comparison  of  IP  results  with  experimentally  validated  miRNA  targets    52     Figure  3  7  Effect  of  miR-­‐184  depletion  on  the  recovery  of  predicted  mir-­‐184  targets  by  IP    53       Figure  3  8  Effect  of  miR-­‐184  depletion  on  the  expression  level  of  mir-­‐184  targets  for  IP-­‐enriched   Vs  non  IP-­‐enriched  sets    56     Figure  3  9  Luciferase  assay  validation  on  selected  IP-­‐enriched  mir-­‐184  targets    57     Figure  3  10  miRNA  target  seed  type  enrichment  analysis  in  Ago1  IP-­‐enriched  transcripts    61     Figure  3  11  Graphic  representation  of  miRNA  binding  site  openness  and  flanking  region  openness   as  shown  in  Table  3.8    67     Figure  3  12  A  comparative  analysis  on  Ago1  IP-­‐enriched  transcripts  Vs  Ago1  RNAi-­‐upregulated   transcripts    70     Figure  3  13  Comparison  of  seed  type  enrichment  of  targets  identified  by  Ago1  IP  and  Ago1   depletion    71     Figure  3  14  Comparison  of  binding  site  energy  of  targets  identified  by  Ago1  IP  and  Ago1   depletion    72     Figure  3  15    Differences  in  UTR  length  and  miRNA  site  density  distributions  between  Ago1  IP-­‐ enriched  group  and  Ago1  RNAi-­‐upregulated  group    74       IX   Figure  3  16  Assessment  of  miRNA  site  openness,  upstream  openness  and  downstream  openness   for  the  Ago1  RNAi  upregulated  set  vs  all  S2  RNAs  with  sites    75     Figure  3  17  Fold  enrichment  for  the  optimal  upstream  windows  (35nt)  and  downstream   windows  (50nt)  in  IP-­‐enriched  and  Ago1  RNAi  upregulated  sets    77     Figure  3  18  UTR  length  versus  site  density  and  structural  openness  in  DrosophilamRNAs    82     Figure  4  1  bantam  microRNA  sponge  design  and  validation    90     Figure  4  2  bantam  depletion  by  microRNA  sponge  resembled  the  effect  of  EGFR  depletion  in  the   wing    91     Figure  4  3  Socs36E  is  a  direct  bantam  target    93     Figure  4  4  bantam  regulates  Socs36E  level  in  vivo    94     Figure  4  5  Socs36E  mutant  flies  are  slightly  bigger  in  size    96     Figure  4  6  Socs36E  is  a  negative  growth  regulator  that  genetically  interacts  with  bantam    97     Figure  4  7  Socs36E  represses  EGFR/MAPK  signaling    98     Figure  4  8  EGFR  also  regulates  Socs36E  expression,  thus  forming  a  negative  feedback  loop    99     Figure  4  9  Depletion  of  Socs36E  in  EGFR  overexpressing  wing  discs  caused  dramatic  tissue   overgrown    102     Figure  4  10  Depletion  of  Soce36E  in  EGFR  overexpressing  wing  lead  to  neoplastic  transformation    103     Figure  4  11  Depletion  of  SOCS5  enhanced  soft  agar  colony  formation  in  primary  human  fibroblast   cells    105     Figure  4  12  SOCS5  mutation  rates  and  mRNA  expression  in  cancer    108     Figure  4  13  SOCS5  expression  is  associated  with  metastatic-­‐free  survival  in  breast  cancer  patients    109       X   allow a higher resolution of genome-wide target site identification and mapping Our S2 cell Ago1 IP-enriched target list could provide useful information for further functional validation of individual miRNA-target pairs using Drosophila genetics and biochemical tools In the second part of my thesis, I made use of the Ago1 IP-enriched target list to identify Socs36E as a functionally important bantam target involved in growth control I showed that bantam directly targets Socs36E by regulating its 3’UTR region and regulates Soc36E protein level in vivo Co-depletion of bantam and Socs36E partially rescued the reduction in wing size in bantam loss-of-function mutants, suggesting bantam-Socs36E interaction is important for tissue growth control We further demonstrated that Socs36E and EGFR form a negative feedback loop and Socs36E acts as a “brake” to repress excessive EGFR signaling The importance of this feedback control was demonstrated in the wing: once the “brake” is removed by Socs36E depletion, EGFR overexpression leads to uncontrolled tumorous overgrowth and neoplastic transformation We further uncovered the SOCS protein family as evolutionarily conserved oncogenic cooperating factors of EGFR/RasV12- mediated cancer transformation in both Drosophila and human One of the human orthologs of Socs36E, SOCS5, is a potential cooperating tumor suppressor of RasV12 -driven human cancer transformation The clinical relevance of SOCS5 in human cancer is demonstrated that SOCS5 is downregulated in breast cancer samples and associated with ErBB/ER/PR status Lower SOCS5 expression correlates with poor metastaticfree survival in breast cancer patients It might be interesting in the future to investigate whether other family members of SOCS proteins act in a similar manner to SOCS5 or they are functionally distinct If   115   there are well-annotated clinical samples available, it could be quite interesting to analyse whether SOCS5 level correlates with anti-ErBB drug resistance and/or tumor grade, metastatic index and other patient parameters This might serve as important information for stratification of cancer patient treatment The fact that Socs36E is a negative feedback regulator of Jak/STAT and EGFR/Ras pathways suggested SOCS proteins might act as network nodes for multiple signaling cross talks and inputs It is tempting to investigate which signaling pathways are simultaneously controlled by the mammalian SOCS proteins and the molecular basis for such regulation                                 116   REFERENCES Abbott,  A.L.,  Alvarez-­‐Saavedra,  E.,  Miska,  E.A.,  Lau,  N.C.,  Bartel,  D.P.,  Horvitz,  H.R.,   and  Ambros,  V  (2005)  The  let-­‐7  MicroRNA  family  members  mir-­‐48,  mir-­‐84,  and   mir-­‐241   function   together   to   regulate   developmental   timing   in   Caenorhabditis   elegans  Dev  Cell  9,  403-­‐414   Acloque,   H.,   Adams,   M.S.,   Fishwick,   K.,   Bronner-­‐Fraser,   M.,   and   Nieto,   M.A   (2009)   Epithelial-­‐mesenchymal   transitions:   the   importance   of   changing   cell   state   in   development  and  disease  J  Clin  Invest  119,  1438-­‐1449   Allen,   E.,   Xie,   Z.,   Gustafson,   A.M.,   Sung,   G.H.,   Spatafora,   J.W.,   and   Carrington,   J.C   (2004)   Evolution   of   microRNA   genes   by   inverted   duplication   of   target   gene   sequences  in  Arabidopsis  thaliana  Nat  Genet  36,  1282-­‐1290   Almudi,  I.,  Stocker,  H.,  Hafen,  E.,  Corominas,  M.,  and  Serras,  F  (2009a)  SOCS36E   specifically   interferes   with   Sevenless   signaling   during   Drosophilaeye   development  Dev  Biol  326,  212-­‐223   Almudi,  I.,  Stocker,  H.,  Hafen,  E.,  Corominas,  M.,  and  Serras,  F  (2009b)  SOCS36E   specifically   interferes   with   Sevenless   signaling   during   Drosophilaeye   development  Dev  Biol  326,  212-­‐223   Aravin,   A.A.,   Lagos-­‐Quintana,   M.,   Yalcin,   A.,   Zavolan,   M.,   Marks,   D.,   Snyder,   B.,   Gaasterland,   T.,   Meyer,   J.,   and   Tuschl,   T   (2003)   The   small   RNA   profile   during   Drosophilamelanogaster  development  Dev  Cell  5,  337-­‐350   Baek,   D.,   Villen,   J.,   Shin,   C.,   Camargo,   F.D.,   Gygi,   S.P.,   and   Bartel,   D.P   (2008)   The   impact  of  microRNAs  on  protein  output  Nature  455,  64-­‐71   Barrallo-­‐Gimeno,   A.,   and   Nieto,   M.A   (2005)   The   Snail   genes   as   inducers   of   cell   movement   and   survival:   implications   in   development   and   cancer   Development   132,  3151-­‐3161   Bartel,  D.P  (2009)  MicroRNAs:  target  recognition  and  regulatory  functions  Cell   136,  215-­‐233   Bateman,   J.R.,   Lee,   A.M.,   and   Wu,   C.T   (2006)   Site-­‐specific   transformation   of   Drosophilavia   phiC31   integrase-­‐mediated   cassette   exchange   Genetics   173,   769-­‐ 777   Becam,   I.,   Rafel,   N.,   Hong,   X.,   Cohen,   S.M.,   and   Milan,   M   (2011)   Notch-­‐mediated   repression   of   bantam   miRNA   contributes   to   boundary   formation   in   the   Drosophilawing  Development  138,  3781-­‐3789   Behm-­‐Ansmant,  I.,  Rehwinkel,  J.,  Doerks,  T.,  Stark,  A.,  Bork,  P.,  and  Izaurralde,  E   (2006a)   mRNA   degradation   by   miRNAs   and   GW182   requires   both   CCR4:NOT   deadenylase  and  DCP1:DCP2  decapping  complexes  Genes  Dev  20,  1885-­‐1898   Behm-­‐Ansmant,  I.,  Rehwinkel,  J.,  Doerks,  T.,  Stark,  A.,  Bork,  P.,  and  Izaurralde,  E   (2006b)   mRNA   degradation   by   miRNAs   and   GW182   requires   both   CCR4:NOT   deadenylase  and  DCP1:DCP2  decapping  complexes  Genes  Dev  20,  1885-­‐1898   Beitzinger,   M.,   Peters,   L.,   Zhu,   J.Y.,   Kremmer,   E.,   and   Meister,   G   (2007)   Identification   of   human   microRNA   targets   from   isolated   argonaute   protein   complexes  RNA  Biol  4,  76-­‐84   Bhattacharyya,   S.N.,   Habermacher,   R.,   Martine,   U.,   Closs,   E.I.,   and   Filipowicz,   W   (2006)   Relief   of   microRNA-­‐mediated   translational   repression   in   human   cells   subjected  to  stress  Cell  125,  1111-­‐1124     117   Bohnsack,   M.T.,   Czaplinski,   K.,   and   Gorlich,   D   (2004)   Exportin     is   a   RanGTP-­‐ dependent   dsRNA-­‐binding   protein   that   mediates   nuclear   export   of   pre-­‐miRNAs   Rna  10,  185-­‐191   Brabletz,   S.,   and   Brabletz,   T   (2010)   The   ZEB/miR-­‐200   feedback   loop-­‐-­‐a   motor   of   cellular  plasticity  in  development  and  cancer?  EMBO  Rep  11,  670-­‐677   Brender,   C.,   Columbus,   R.,   Metcalf,   D.,   Handman,   E.,   Starr,   R.,   Huntington,   N.,   Tarlinton,   D.,   Odum,   N.,   Nicholson,   S.E.,   Nicola,   N.A.,   et   al   (2004)   SOCS5   is   expressed   in   primary   B   and   T   lymphoid   cells   but   is   dispensable   for   lymphocyte   production  and  function  Mol  Cell  Biol  24,  6094-­‐6103   Brennecke,   J.,   Hipfner,   D.R.,   Stark,   A.,   Russell,   R.B.,   and   Cohen,   S.M   (2003a)   bantam   encodes   a   developmentally   regulated   microRNA   that   controls   cell   proliferation  and  regulates  the  pro-­‐apoptotic  gene  hid  in  Drosophila  Cell  113,  25-­‐ 36   Brennecke,   J.,   Hipfner,   D.R.,   Stark,   A.,   Russell,   R.B.,   and   Cohen,   S.M   (2003b)   bantam   encodes   a   developmentally   regulated   microRNA   that   controls   cell   proliferation  and  regulates  the  proapoptotic  gene  hid  in  Drosophila  Cell  113,  25-­‐ 36   Brennecke,   J.,   Stark,   A.,   Russell,   R.B.,   and   Cohen,   S.M   (2005a)   Principles   of   microRNA-­‐target  recognition  PLoS  Biol  3,  e85   Brennecke,   J.,   Stark,   A.,   Russell,   R.B.,   and   Cohen,   S.M   (2005b)   Principles   of   microRNA-­‐target  recognition  PLoS  Biol  3,  e85   Buff,   E.,   Carmena,   A.,   Gisselbrecht,   S.,   Jimenez,   F.,   and   Michelson,   A.M   (1998)   Signalling  by  the  Drosophilaepidermal  growth  factor  receptor  is  required  for  the   specification   and   diversification   of   embryonic   muscle   progenitors   Development   125,  2075-­‐2086   Bushati,  N.,  and  Cohen,  S.M  (2007)  microRNA  functions  Annu  Rev  Cell  Dev  Biol   23,  175–205   Cairrao,   F.,   Halees,   A.S.,   Khabar,   K.S.,   Morello,   D.,   and   Vanzo,   N   (2009)   AU-­‐rich   elements  regulate  Drosophilagene  expression  Mol  Cell  Biol  29,  2636-­‐2643   Calin,  G.A.,  Dumitru,  C.D.,  Shimizu,  M.,  Bichi,  R.,  Zupo,  S.,  Noch,  E.,  Aldler,  H.,  Rattan,   S.,   Keating,   M.,   Rai,   K.,   et   al   (2002)   Frequent   deletions   and   down-­‐regulation   of   micro-­‐  RNA  genes  miR15  and  miR16  at  13q14  in  chronic  lymphocytic  leukemia   Proc  Natl  Acad  Sci  U  S  A  99,  15524-­‐15529   Calin,  G.A.,  Sevignani,  C.,  Dumitru,  C.D.,  Hyslop,  T.,  Noch,  E.,  Yendamuri,  S.,  Shimizu,   M.,   Rattan,   S.,   Bullrich,   F.,   Negrini,   M.,  et  al   (2004)   Human   microRNA   genes   are   frequently  located  at  fragile  sites  and  genomic  regions  involved  in  cancers  Proc   Natl  Acad  Sci  U  S  A  101,  2999-­‐3004   Calleja,   M.,   Moreno,   E.,   Pelaz,   S.,   and   Morata,   G   (1996a)   Visualization   of   gene   expression  in  living  adult  Drosophila  Science  274,  252-­‐255   Calleja,   M.,   Moreno,   E.,   Pelaz,   S.,   and   Morata,   G   (1996b)   Visualization   of   gene   expression  in  living  adult  Drosophila  Science  274,  252-­‐255   Callus,   B.A.,   and   Mathey-­‐Prevot,   B   (2002)   SOCS36E,   a   novel   DrosophilaSOCS   protein,   suppresses   JAK/STAT   and   EGF-­‐R   signalling   in   the   imaginal   wing   disc   Oncogene  21,  4812-­‐4821   Capdevila,   J.,   Estrada,   M.P.,   Sanchez-­‐Herrero,   E.,   and   Guerrero,   I   (1994a)   The   Drosophilasegment  polarity  gene  patched  interacts  with  decapentaplegic  in  wing   development  Embo  J  13,  71-­‐82   Capdevila,   J.,   and   Guerrero,   I   (1994)   Targeted   expression   of   the   signalling   molecule  decapentaplegic  induces  pattern  duplications  and  growth  alterations  in   Drosophilawings  EMBO  J  13,  4459-­‐4468     118   Capdevila,   J.,   Pariente,   F.,   Sampedro,   J.,   Alonso,   J.L.,   and   Guerrero,   I   (1994b)   Subcellular   localization   of   the   segment   polarity   protein   patched   suggests   an   interaction   with   the   wingless   reception   complex   in   Drosophilaembryos   Development  120,  987-­‐998   Casci,   T.,   Vinos,   J.,   and   Freeman,   M   (1999)   Sprouty,   an   intracellular   inhibitor   of   Ras  signaling  Cell  96,  655-­‐665   Caussinus,   E.,   and   Gonzalez,   C   (2005)   Induction   of   tumor   growth   by   altered   stem-­‐cell   asymmetric   division   in   Drosophilamelanogaster   Nat   Genet   37,   1125-­‐ 1129   Chang,   T.C.,   Wentzel,   E.A.,   Kent,   O.A.,   Ramachandran,   K.,   Mullendore,   M.,   Lee,   K.H.,   Feldmann,   G.,   Yamakuchi,   M.,   Ferlito,   M.,   Lowenstein,   C.J.,   et   al   (2007)   Transactivation   of   miR-­‐34a   by   p53   broadly   influences   gene   expression   and   promotes  apoptosis  Mol  Cell  26,  745-­‐752   Chen,   Y.W.,   Weng,   R.,   and   Cohen,   S.M   (2011)   Protocols   for   use   of   homologous   recombination   gene   targeting   to   produce   microRNA   mutants   in   Drosophila   Methods  Mol  Biol  732,  99-­‐120   Chi,   S.W.,   Zang,   J.B.,   Mele,   A.,   and   Darnell,   R.B   (2009)   Argonaute   HITS-­‐CLIP   decodes  microRNA-­‐mRNA  interaction  maps  Nature  460,  479-­‐486   Croce,   C.M   (2009)   Causes   and   consequences   of   microRNA   dysregulation   in   cancer  Nat  Rev  Genet  10,  704-­‐714   Deng,   W.M   (2011)   Molecular   genetics   of   cancer   and   tumorigenesis:   Drosophilamodels  J  Genet  Genomics  38,  429-­‐430   Diaz-­‐Benjumea,   F.J.,   and   Garcia-­‐Bellido,   A   (1990)   Behaviour   of   cells   mutant   for   an   EGF   receptor   homologue   of   Drosophilain   genetic   mosaics   Proc   Biol   Sci   242,   36-­‐44   Doench,   J.G.,   Petersen,   C.P.,   and   Sharp,   P.A   (2003)   siRNAs   can   function   as   miRNAs  Genes  Dev  17,  438-­‐442   Doench,  J.G.,  and  Sharp,  P.A  (2004a)  Specificity  of  microRNA  target  selection  in   translational  repression  Genes  Dev  18,  504-­‐511   Doench,  J.G.,  and  Sharp,  P.A  (2004b)  Specificity  of  microRNA  target  selection  in   translational  repression  Genes  Dev  18,  504-­‐511   Easow,  G.,  Teleman,  A.A.,  and  Cohen,  S.M  (2007)  Isolation  of  microRNA  targets  by   miRNP  immunopurification  Rna  13,  1198-­‐1204   Ebert,  M.S.,  and  Sharp,  P.A  (2010)  MicroRNA  sponges:  progress  and  possibilities   Rna  16,  2043-­‐2050   Elcheva,   I.,   Goswami,   S.,   Noubissi,   F.K.,   and   Spiegelman,   V.S   (2009)   CRD-­‐BP   protects   the   coding   region   of   betaTrCP1   mRNA   from   miR-­‐183-­‐mediated   degradation  Mol  Cell  35,  240-­‐246   Ender,   C.,   Krek,   A.,   Friedlander,   M.R.,   Beitzinger,   M.,   Weinmann,   L.,   Chen,   W.,   Pfeffer,  S.,  Rajewsky,  N.,  and  Meister,  G  (2008)  A  human  snoRNA  with  microRNA-­‐ like  functions  Mol  Cell  32,  519-­‐528   Ender,   C.,   and   Meister,   G   (2010)   Argonaute   proteins   at   a   glance   J   Cell   Sci  123,   1819-­‐1823   Esteva,  F.J.,  Yu,  D.,  Hung,  M.C.,  and  Hortobagyi,  G.N  (2010)  Molecular  predictors   of  response  to  trastuzumab  and  lapatinib  in  breast  cancer  Nat  Rev  Clin  Oncol  7,   98-­‐107   Eulalio,   A.,   Helms,   S.,   Fritzsch,   C.,   Fauser,   M.,   and   Izaurralde,   E   (2009a)   A   C-­‐ terminal   silencing   domain   in   GW182   is   essential   for   miRNA   function   Rna   15,   1067-­‐1077     119   Eulalio,  A.,  Huntzinger,  E.,  Nishihara,  T.,  Rehwinkel,  J.,  Fauser,  M.,  and  Izaurralde,   E  (2009b)  Deadenylation  is  a  widespread  effect  of  miRNA  regulation  Rna  15,  21-­‐ 32   Eulalio,  A.,  Rehwinkel,  J.,  Stricker,  M.,  Huntzinger,  E.,  Yang,  S.F.,  Doerks,  T.,  Dorner,   S.,  Bork,  P.,  Boutros,  M.,  and  Izaurralde,  E  (2007a)  Target-­‐specific  requirements   for   enhancers   of   decapping   in   miRNA-­‐mediated   gene   silencing   Genes   Dev   21,   2558-­‐2570   Eulalio,  A.,  Rehwinkel,  J.,  Stricker,  M.,  Huntzinger,  E.,  Yang,  S.F.,  Doerks,  T.,  Dorner,   S.,  Bork,  P.,  Boutros,  M.,  and  Izaurralde,  E  (2007b)  Target-­‐specific  requirements   for   enhancers   of   decapping   in   miRNA-­‐mediated   gene   silencing   Genes   Dev   21,   2558-­‐2570   Eulalio,  A.,  Tritschler,  F.,  and  Izaurralde,  E  (2009c)  The  GW182  protein  family  in   animal   cells:   new   insights   into   domains   required   for   miRNA-­‐mediated   gene   silencing  Rna  15,  1433-­‐1442   Friedman,   R.C.,   Farh,   K.K.,   Burge,   C.B.,   and   Bartel,   D.P   (2009)   Most   mammalian   mRNAs  are  conserved  targets  of  microRNAs  Genome  Res  19,  92-­‐105   Gabay,   L.,   Seger,   R.,   and   Shilo,   B.Z   (1997)   In   situ   activation   pattern   of   DrosophilaEGF  receptor  pathway  during  development  Science  277,  1103-­‐1106   Gassama-­‐Diagne,  A.,  Yu,  W.,  ter  Beest,  M.,  Martin-­‐Belmonte,  F.,  Kierbel,  A.,  Engel,  J.,   and   Mostov,   K   (2006)   Phosphatidylinositol-­‐3,4,5-­‐trisphosphate   regulates   the   formation  of  the  basolateral  plasma  membrane  in  epithelial  cells  Nat  Cell  Biol   8,   963-­‐970   Ge,   W.,   Chen,   Y.W.,   Weng,   R.,   Lim,   S.F.,   Buescher,   M.,   Zhang,   R.,   and   Cohen,   S.M   (2012)   Overlapping   functions   of   microRNAs   in   control   of   apoptosis   during   Drosophilaembryogenesis  Cell  Death  Differ  19,  839-­‐846   Giraldez,  A.J.,  Mishima,  Y.,  Rihel,  J.,  Grocock,  R.J.,  Van  Dongen,  S.,  Inoue,  K.,  Enright,   A.J.,   and   Schier,   A.F   (2006a)   Zebrafish   MiR-­‐430   Promotes   Deadenylation   and   Clearance  of  Maternal  mRNAs  Science  312,  75-­‐79   Giraldez,  A.J.,  Mishima,  Y.,  Rihel,  J.,  Grocock,  R.J.,  Van  Dongen,  S.,  Inoue,  K.,  Enright,   A.J.,   and   Schier,   A.F   (2006b)   Zebrafish   MiR-­‐430   promotes   deadenylation   and   clearance  of  maternal  mRNAs  Science  312,  75-­‐79   Grimson,  A.,  Farh,  K.K.,  Johnston,  W.K.,  Garrett-­‐Engele,  P.,  Lim,  L.P.,  and  Bartel,  D.P   (2007a)  MicroRNA  targeting  specificity  in  mammals:  determinants  beyond  seed   pairing  Mol  Cell  27,  91-­‐105   Grimson,  A.,  Farh,  K.K.,  Johnston,  W.K.,  Garrett-­‐Engele,  P.,  Lim,  L.P.,  and  Bartel,  D.P   (2007b)  MicroRNA  targeting  specificity  in  mammals:  determinants  beyond  seed   pairing  Mol  Cell  27,  91-­‐105   Groth,  A.C.,  Fish,  M.,  Nusse,  R.,  and  Calos,  M.P  (2004)  Construction  of  transgenic   Drosophilaby   using   the   site-­‐specific   integrase   from   phage   phiC31   Genetics  166,   1775-­‐1782   Guichard,   A.,   Biehs,   B.,   Sturtevant,   M.A.,   Wickline,   L.,   Chacko,   J.,   Howard,   K.,   and   Bier,   E   (1999)   rhomboid   and   Star   interact   synergistically   to   promote   EGFR/MAPK   signaling   during   Drosophilawing   vein   development   Development   126,  2663-­‐2676   Guo,   H.,   Ingolia,   N.T.,   Weissman,   J.S.,   and   Bartel,   D.P   (2010a)   Mammalian   microRNAs  predominantly  act  to  decrease  target  mRNA  levels  Nature  466,  835-­‐ 840   Guo,   L.,   Liu,   Y.,   Bai,   Y.,   Sun,   Y.,   Xiao,   F.,   and   Guo,   Y   (2010b)   Gene   expression   profiling   of   drug-­‐resistant   small   cell   lung   cancer   cells   by   combining   microRNA   and  cDNA  expression  analysis  Eur  J  Cancer  46,  1692-­‐1702     120   Haase,  A.D.,  Jaskiewicz,  L.,  Zhang,  H.,  Laine,  S.,  Sack,  R.,  Gatignol,  A.,  and  Filipowicz,   W  (2005)  TRBP,  a  regulator  of  cellular  PKR  and  HIV-­‐1  virus  expression,  interacts   with  Dicer  and  functions  in  RNA  silencing  EMBO  Rep  6,  961-­‐967   Hafner,   M.,   Landthaler,   M.,   Burger,   L.,   Khorshid,   M.,   Hausser,   J.,   Berninger,   P.,   Rothballer,   A.,   Ascano,   M.,   Jr.,   Jungkamp,   A.C.,   Munschauer,   M.,   et   al   (2010)   Transcriptome-­‐wide   identification   of   RNA-­‐binding   protein   and   microRNA   target   sites  by  PAR-­‐CLIP  Cell  141,  129-­‐141   Hahn,   W.C.,   Counter,   C.M.,   Lundberg,   A.S.,   Beijersbergen,   R.L.,   Brooks,   M.W.,   and   Weinberg,   R.A   (1999)   Creation   of   human   tumour   cells   with   defined   genetic   elements  Nature  400,  464-­‐468   Hahn,   W.C.,   Dessain,   S.K.,   Brooks,   M.W.,   King,   J.E.,   Elenbaas,   B.,   Sabatini,   D.M.,   DeCaprio,   J.A.,   and   Weinberg,   R.A   (2002)   Enumeration   of   the   simian   virus   40   early  region  elements  necessary  for  human  cell  transformation  Mol  Cell  Biol  22,   2111-­‐2123   Hammell,   M.,   Long,   D.,   Zhang,   L.,   Lee,   A.,   Carmack,   C.S.,   Han,   M.,   Ding,   Y.,   and   Ambros,   V   (2008a)   mirWIP:   microRNA   target   prediction   based   on   microRNA-­‐ containing  ribonucleoprotein-­‐enriched  transcripts  Nat  Methods  5,  813-­‐819   Hammell,   M.,   Long,   D.,   Zhang,   L.,   Lee,   A.,   Carmack,   C.S.,   Han,   M.,   Ding,   Y.,   and   Ambros,   V   (2008b)   mirWIP:   microRNA   target   prediction   based   on   microRNA-­‐ containing  ribonucleoprotein-­‐enriched  transcripts  Nat  Methods  5,  813-­‐819   Hanahan,  D.,  and  Weinberg,  R.A  (2000)  The  hallmarks  of  cancer  Cell  100,  57-­‐70   Hanahan,  D.,  and  Weinberg,  R.A  (2011)  Hallmarks  of  cancer:  the  next  generation   Cell  144,  646-­‐674   Hay,   B.A.,   Wassarman,   D.A.,   and   Rubin,   G.M   (1995)   Drosophilahomologs   of   baculovirus   inhibitor   of   apoptosis   proteins   function   to   block   cell   death   Cell   83,   1253-­‐1262   Hendrickson,  D.G.,  Hogan,  D.J.,  Herschlag,  D.,  Ferrell,  J.E.,  and  Brown,  P.O  (2008)   Systematic   identification   of   mRNAs   recruited   to   argonaute     by   specific   microRNAs   and   corresponding   changes   in   transcript   abundance   PLoS   One   3,   e2126   Herranz,   H.,   Hong,   X.,   and   Cohen,   S.M   (2012a)   Mutual   repression   by   bantam   miRNA  and  Capicua  links  the  EGFR/MAPK  and  Hippo  pathways  in  growth  control   Curr  Biol  22,  651-­‐657   Herranz,   H.,   Hong,   X.,   Hung,   N.T.,   Voorhoeve,   P.M.,   and   Cohen,   S.M   (2012b)   Oncogenic  cooperation  between  SOCS  family  proteins  and  EGFR  identified  using  a   Drosophilaepithelial  transformation  model  Genes  Dev  26,  1602-­‐1611   Hilgers,   V.,   Bushati,   N.,   and   Cohen,   S.M   (2010)   DrosophilamicroRNAs   263a/b   confer  robustness  during  development  by  protecting  nascent  sense  organs  from   apoptosis  PLoS  Biol  8,  e1000396   Hipfner,  D.R.,  Weigmann,  K.,  and  Cohen,  S.M  (2002)  The  bantam  gene  regulates   Drosophilagrowth  Genetics  161,  1527-­‐1537   Hong,  X.,  Hammell,  M.,  Ambros,  V.,  and  Cohen,  S.M  (2009)  Immunopurification  of   Ago1  miRNPs  selects  for  a  distinct  class  of  microRNA  targets  Proc  Natl  Acad  Sci  U   S  A  106,  15085-­‐15090   Horwich,   M.D.,   and   Zamore,   P.D   (2008a)   Design   and   delivery   of   antisense   oligonucleotides   to   block   microRNA   function   in   cultured   Drosophilaand   human   cells  Nat  Protoc  3,  1537-­‐1549   Horwich,   M.D.,   and   Zamore,   P.D   (2008b)   Design   and   delivery   of   antisense   oligonucleotides   to   block   microRNA   function   in   cultured   Drosophilaand   human   cells  Nat  Protoc  3,  1537-­‐1549     121   Huse,   J.T.,   Brennan,   C.,   Hambardzumyan,   D.,   Wee,   B.,   Pena,   J.,   Rouhanifard,   S.H.,   Sohn-­‐Lee,   C.,   le   Sage,   C.,   Agami,   R.,   Tuschl,   T.,  et  al   (2009)   The   PTEN-­‐regulating   microRNA   miR-­‐26a   is   amplified   in   high-­‐grade   glioma   and   facilitates   gliomagenesis  in  vivo  Genes  Dev  23,  1327-­‐1337   Hutvagner,  G.,  and  Zamore,  P.D  (2002)  A  microRNA  in  a  multiple-­‐turnover  RNAi   enzyme  complex  Science  297,  2056-­‐2060   Hynes,   N.E.,   and   MacDonald,   G   (2009)   ErbB   receptors   and   signaling   pathways   in   cancer  Curr  Opin  Cell  Biol  21,  177-­‐184   Iorio,   M.V.,   and   Croce,   C.M   (2012)   MicroRNA   dysregulation   in   cancer:   diagnostics,   monitoring   and   therapeutics   A   comprehensive   review   EMBO   Mol   Med  4,  143-­‐159   Ivshina,   A.V.,   George,   J.,   Senko,   O.,   Mow,   B.,   Putti,   T.C.,   Smeds,   J.,   Lindahl,   T.,   Pawitan,   Y.,   Hall,   P.,   Nordgren,   H.,   et   al   (2006)   Genetic   reclassification   of   histologic  grade  delineates  new  clinical  subtypes  of  breast  cancer  Cancer  Res  66,   10292-­‐10301   Johnson,   S.M.,   Grosshans,   H.,   Shingara,   J.,   Byrom,   M.,   Jarvis,   R.,   Cheng,   A.,   Labourier,  E.,  Reinert,  K.L.,  Brown,  D.,  and  Slack,  F.J  (2005)  RAS  is  regulated  by   the  let-­‐7  microRNA  family  Cell  120,  635-­‐647   Johnston,  R.J.,  and  Hobert,  O  (2003)  A  microRNA  controlling  left/right  neuronal   asymmetry  in  Caenorhabditis  elegans  Nature  426,  845-­‐849   Jones,   W.D.,   Cayirlioglu,   P.,   Kadow,   I.G.,   and   Vosshall,   L.B   (2007)   Two   chemosensory   receptors   together   mediate   carbon   dioxide   detection   in   Drosophila  Nature  445,  86-­‐90   Karginov,   F.V.,   Conaco,   C.,   Xuan,   Z.,   Schmidt,   B.H.,   Parker,   J.S.,   Mandel,   G.,   and   Hannon,   G.J   (2007a)   A   biochemical   approach   to   identifying   microRNA   targets   Proc  Natl  Acad  Sci  U  S  A  104,  19291-­‐19296   Karginov,   F.V.,   Conaco,   C.,   Xuan,   Z.,   Schmidt,   B.H.,   Parker,   J.S.,   Mandel,   G.,   and   Hannon,   G.J   (2007b)   A   biochemical   approach   to   identifying   microRNA   targets   Proc  Natl  Acad  Sci  U  S  A  104,  19291-­‐19296   Kario,   E.,   Marmor,   M.D.,   Adamsky,   K.,   Citri,   A.,   Amit,   I.,   Amariglio,   N.,   Rechavi,   G.,   and   Yarden,   Y   (2005)   Suppressors   of   cytokine   signaling     and     regulate   epidermal  growth  factor  receptor  signaling  J  Biol  Chem  280,  7038-­‐7048   Karn,  T.,  Pusztai,  L.,  Holtrich,  U.,  Iwamoto,  T.,  Shiang,  C.Y.,  Schmidt,  M.,  Muller,  V.,   Solbach,   C.,   Gaetje,   R.,   Hanker,   L.,   et   al   (2011)   Homogeneous   datasets   of   triple   negative   breast   cancers   enable   the   identification   of   novel   prognostic   and   predictive  signatures  PLoS  One  6,  e28403   Karres,   J.S.,   Hilgers,   V.,   Carrera,   I.,   Treisman,   J.,   and   Cohen,   S.M   (2007)   The   conserved  microRNA  miR-­‐8  tunes  atrophin  levels  to  prevent  neurodegeneration   in  Drosophila  Cell  131,  136-­‐145   Karsten,   P.,   Hader,   S.,   and   Zeidler,   M.P   (2002)   Cloning   and   expression   of   DrosophilaSOCS36E  and  its  potential  regulation  by  the  JAK/STAT  pathway  Mech   Dev  117,  343-­‐346   Kertesz,   M.,   Iovino,   N.,   Unnerstall,   U.,   Gaul,   U.,   and   Segal,   E   (2007a)   The   role   of   site  accessibility  in  microRNA  target  recognition  Nat  Genet  39,  1278-­‐1284   Kertesz,   M.,   Iovino,   N.,   Unnerstall,   U.,   Gaul,   U.,   and   Segal,   E   (2007b)   The   role   of   site  accessibility  in  microRNA  target  recognition  Nat  Genet  39,  1278-­‐1284   Khan,   A.A.,   Betel,   D.,   Miller,   M.L.,   Sander,   C.,   Leslie,   C.S.,   and   Marks,   D.S   (2009)   Transfection   of   small   RNAs   globally   perturbs   gene   regulation   by   endogenous   microRNAs  Nat  Biotechnol  27,  549-­‐555     122   Kheradpour,   P.,   Stark,   A.,   Roy,   S.,   and   Kellis,   M   (2007)   Reliable   prediction   of   regulator  targets  using  12  Drosophilagenomes  Genome  Res  17,  1919-­‐1931   Khvorova,   A.,   Reynolds,   A.,   and   Jayasena,   S.D   (2003)   Functional   siRNAs   and   miRNAs  exhibit  strand  bias  Cell  115,  209-­‐216   Kiriakidou,   M.,   Nelson,   P.T.,   Kouranov,   A.,   Fitziev,   P.,   Bouyioukos,   C.,   Mourelatos,   Z.,   and   Hatzigeorgiou,   A   (2004)   A   combined   computational-­‐experimental   approach  predicts  human  microRNA  targets  Genes  Dev  18,  1165-­‐1178   Klein,   U.,   Lia,   M.,   Crespo,   M.,   Siegel,   R.,   Shen,   Q.,   Mo,   T.,   Ambesi-­‐Impiombato,   A.,   Califano,   A.,   Migliazza,   A.,   Bhagat,   G.,   et   al   (2010)   The   DLEU2/miR-­‐15a/16-­‐1   cluster  controls  B  cell  proliferation  and  its  deletion  leads  to  chronic  lymphocytic   leukemia  Cancer  Cell  17,  28-­‐40   Kloosterman,   W.P.,   Wienholds,   E.,   Ketting,   R.F.,   and   Plasterk,   R.H   (2004)   Substrate   requirements   for   let-­‐7   function   in   the   developing   zebrafish   embryo   Nucleic  Acids  Res  32,  6284-­‐6291   Krek,  A.,  Grun,  D.,  Poy,  M.N.,  Wolf,  R.,  Rosenberg,  L.,  Epstein,  E.J.,  MacMenamin,  P.,   da   Piedade,   I.,   Gunsalus,   K.C.,   Stoffel,   M.,   et   al   (2005)   Combinatorial   microRNA   target  predictions  Nat  Genet  37,  495-­‐500   Lagos-­‐Quintana,  M.,  Rauhut,  R.,  Yalcin,  A.,  Meyer,  J.,  Lendeckel,  W.,  and  Tuschl,  T   (2002)  Identification  of  tissue-­‐specific  microRNAs  from  mouse  Curr  Biol  12,  735-­‐ 739   Landthaler,   M.,   Gaidatzis,   D.,   Rothballer,   A.,   Chen,   P.Y.,   Soll,   S.J.,   Dinic,   L.,   Ojo,   T.,   Hafner,   M.,   Zavolan,   M.,   and   Tuschl,   T   (2008)   Molecular   characterization   of   human   Argonaute-­‐containing   ribonucleoprotein   complexes   and   their   bound   target  mRNAs  Rna  14,  2580-­‐2596   Lau,  N.C.,  Lim,  L.P.,  Weinstein,  E.G.,  and  Bartel,  D.P  (2001)  An  abundant  class  of   tiny  RNAs  with  probable  regulatory  roles  in  Caenorhabditis  elegans  Science  294,   858-­‐862   Lee,   R.C.,   Feinbaum,   R.L.,   and   Ambros,   V   (1993)   The   C   elegans   heterochronic   gene  lin-­‐4  encodes  small  RNAs  with  antisense  complementarity  to  lin-­‐14  Cell  75,   843-­‐854   Lee,   Y.,   Kim,   M.,   Han,   J.,   Yeom,   K.H.,   Lee,   S.,   Baek,   S.H.,   and   Kim,   V.N   (2004a)   MicroRNA  genes  are  transcribed  by  RNA  polymerase  II  Embo  J  23,  4051-­‐4060   Lee,   Y.S.,   Nakahara,   K.,   Pham,   J.W.,   Kim,   K.,   He,   Z.,   Sontheimer,   E.J.,   and   Carthew,   R.W   (2004b)   Distinct   roles   for   DrosophilaDicer-­‐1   and   Dicer-­‐2   in   the   siRNA/miRNA  silencing  pathways  Cell  117,  69-­‐81   Lehmann,  U.,  Hasemeier,  B.,  Christgen,  M.,  Muller,  M.,  Romermann,  D.,  Langer,  F.,   and   Kreipe,   H   (2008)   Epigenetic   inactivation   of   microRNA   gene   hsa-­‐mir-­‐9-­‐1   in   human  breast  cancer  J  Pathol  214,  17-­‐24   Lewis,   B.P.,   Burge,   C.B.,   and   Bartel,   D.P   (2005)   Conserved   seed   pairing,   often   flanked   by   adenosines,   indicates   that   thousands   of   human   genes   are   microRNA   targets  Cell  120,  15-­‐20   Lewis,   B.P.,   Shih,   I.H.,   Jones-­‐Rhoades,   M.W.,   Bartel,   D.P.,   and   Burge,   C.B   (2003)   Prediction  of  mammalian  microRNA  targets  Cell  115,  787-­‐798   Li,  S.C.,  Tang,  P.,  and  Lin,  W.C  (2007)  Intronic  microRNA:  discovery  and  biological   implications  DNA  Cell  Biol  26,  195-­‐207   Li,   X.,   and   Carthew,   R.W   (2005)   A   microRNA   mediates   EGF   receptor   signaling   and   promotes   photoreceptor   differentiation   in   the   Drosophilaeye   Cell  123,   1267-­‐ 1277     123   Li,   X.,   Cassidy,   J.J.,   Reinke,   C.A.,   Fischboeck,   S.,   and   Carthew,   R.W   (2009)   A   microRNA   imparts   robustness   against   environmental   fluctuation   during   development  Cell  137,  273-­‐282   Li,  Y.,  Zou,  L.,  Li,  Q.,  Haibe-­‐Kains,  B.,  Tian,  R.,  Li,  Y.,  Desmedt,  C.,  Sotiriou,  C.,  Szallasi,   Z.,  Iglehart,  J.D.,   et   al  (2010)  Amplification  of  LAPTM4B  and  YWHAZ  contributes   to   chemotherapy   resistance   and   recurrence   of   breast   cancer   Nat   Med   16,   214-­‐ 218   Liang,   Z.,   Li,   Y.,   Huang,   K.,   Wagar,   N.,   and   Shim,   H   (2011)   Regulation   of   miR-­‐19   to   breast   cancer   chemoresistance   through   targeting   PTEN   Pharm   Res   28,   3091-­‐ 3100   Lim,  L.P.,  Lau,  N.C.,  Garrett-­‐Engele,  P.,  Grimson,  A.,  Schelter,  J.M.,  Castle,  J.,  Bartel,   D.P.,  Linsley,  P.S.,  and  Johnson,  J.M  (2005)  Microarray  analysis  shows  that  some   microRNAs  downregulate  large  numbers  of  target  mRNAs  Nature  433,  769-­‐773   Liu,   Q.,   Rand,   T.A.,   Kalidas,   S.,   Du,   F.,   Kim,   H.E.,   Smith,   D.P.,   and   Wang,   X   (2003)   R2D2,   a   bridge   between   the   initiation   and   effector   steps   of   the   DrosophilaRNAi   pathway  Science  301,  1921-­‐1925   Loi,  S.,  Haibe-­‐Kains,  B.,  Desmedt,  C.,  Wirapati,  P.,  Lallemand,  F.,  Tutt,  A.,  Gillet,  C.,   Ellis,   P.,   Ryder,   K.,   Reid,   J.,   et   al   (2008)   Predicting   prognosis   using   molecular   profiling  in  estrogen  receptor-­‐positive  breast  cancer  treated  with  tamoxifen  BMC   Genomics  9,  239   Long,   D.,   Lee,   R.,   Williams,   P.,   Chan,   C.Y.,   Ambros,   V.,   and   Ding,   Y   (2007)   Potent   effect   of   target   structure   on   microRNA   function   Nature   structural   &   molecular   biology  14,  287-­‐294   Loya,   C.M.,   Lu,   C.S.,  Van   Vactor,   D.,   and   Fulga,   T.A   (2009)   Transgenic   microRNA   inhibition   with   spatiotemporal   specificity   in   intact   organisms   Nat   Methods   6,   897-­‐903   Lu,  J.,  Getz,  G.,  Miska,  E.A.,  Alvarez-­‐Saavedra,  E.,  Lamb,  J.,  Peck,  D.,  Sweet-­‐Cordero,   A.,   Ebert,   B.L.,   Mak,   R.H.,   Ferrando,   A.A.,   et   al   (2005)   MicroRNA   expression   profiles  classify  human  cancers  Nature  435,  834-­‐838   Lund,   E.,   Guttinger,   S.,   Calado,   A.,   Dahlberg,   J.E.,   and   Kutay,   U   (2004)   Nuclear   export  of  microRNA  precursors  Science  303,  95-­‐98   Ma,  L.,  Young,  J.,  Prabhala,  H.,  Pan,  E.,  Mestdagh,  P.,  Muth,  D.,  Teruya-­‐Feldstein,  J.,   Reinhardt,   F.,   Onder,   T.T.,   Valastyan,   S.,   et   al   (2010)   miR-­‐9,   a   MYC/MYCN-­‐ activated   microRNA,   regulates   E-­‐cadherin   and   cancer   metastasis   Nat   Cell   Biol  12,   247-­‐256   Manoli,  D.S.,  Foss,  M.,  Villella,  A.,  Taylor,  B.J.,  Hall,  J.C.,  and  Baker,  B.S  (2005)  Male-­‐ specific   fruitless   specifies   the   neural   substrates   of   Drosophilacourtship   behaviour  Nature  436,  395-­‐400   Martin-­‐Belmonte,   F.,   Gassama,   A.,   Datta,   A.,   Yu,   W.,   Rescher,   U.,   Gerke,   V.,   and   Mostov,   K   (2007)   PTEN-­‐mediated   apical   segregation   of   phosphoinositides   controls  epithelial  morphogenesis  through  Cdc42  Cell  128,  383-­‐397   Martinez,   J.,   Patkaniowska,   A.,   Urlaub,   H.,   Luhrmann,   R.,   and   Tuschl,   T   (2002)   Single-­‐stranded   antisense   siRNAs   guide   target   RNA   cleavage   in   RNAi   Cell   110,   563-­‐574   Mavrakis,   K.J.,   Wolfe,   A.L.,   Oricchio,   E.,   Palomero,   T.,   de   Keersmaecker,   K.,   McJunkin,  K.,  Zuber,  J.,  James,  T.,  Khan,  A.A.,  Leslie,  C.S.,  et  al  (2010)  Genome-­‐wide   RNA-­‐mediated  interference  screen  identifies  miR-­‐19  targets  in  Notch-­‐induced  T-­‐ cell  acute  lymphoblastic  leukaemia  Nat  Cell  Biol  12,  372-­‐379   Meister,   G.,   Landthaler,   M.,   Dorsett,   Y.,   and   Tuschl,   T   (2004)   Sequence-­‐specific   inhibition  of  microRNA-­‐  and  siRNA-­‐induced  RNA  silencing  Rna  10,  544-­‐550     124   Mendell,   J.T.,   and   Olson,   E.N   (2012)   MicroRNAs   in   stress   signaling   and   human   disease  Cell  148,  1172-­‐1187   Michelson,   A.M.,   Gisselbrecht,   S.,   Buff,   E.,   and   Skeath,   J.B   (1998)   Heartbroken   is   a   specific   downstream   mediator   of   FGF   receptor   signalling   in   Drosophila   Development  125,  4379-­‐4389   Miles,   W.O.,   Dyson,   N.J.,   and   Walker,   J.A   (2011)   Modeling   tumor   invasion   and   metastasis  in  Drosophila  Dis  Model  Mech  4,  753-­‐761   Mili,  S.,  and  Steitz,  J.A  (2004)  Evidence  for  reassociation  of  RNA-­‐binding  proteins   after   cell   lysis:   implications   for   the   interpretation   of   immunoprecipitation   analyses  Rna  10,  1692-­‐1694   Miska,   E.A.,   Alvarez-­‐Saavedra,   E.,   Abbott,   A.L.,   Lau,   N.C.,   Hellman,   A.B.,   McGonagle,   S.M.,   Bartel,   D.P.,   Ambros,   V.R.,   and   Horvitz,   H.R   (2007a)   Most   Caenorhabditis   elegans   microRNAs   are   individually   not   essential   for   development   or   viability   PLoS  Genet  3,  e215   Miska,   E.A.,   Alvarez-­‐Saavedra,   E.,   Abbott,   A.L.,   Lau,   N.C.,   Hellman,   A.B.,   McGonagle,   S.M.,   Bartel,   D.P.,   Ambros,   V.R.,   and   Horvitz,   H.R   (2007b)   Most   Caenorhabditis   elegans   microRNAs   are   individually   not   essential   for   development   or   viability   PLoS  Genet  3,  e215   Mu,  P.,  Han,  Y.C.,  Betel,  D.,  Yao,  E.,  Squatrito,  M.,  Ogrodowski,  P.,  de  Stanchina,  E.,   D'Andrea,   A.,   Sander,   C.,   and   Ventura,   A   (2009)   Genetic   dissection   of   the   miR-­‐ 17~92   cluster   of   microRNAs   in   Myc-­‐induced   B-­‐cell   lymphomas   Genes   Dev   23,   2806-­‐2811   Nahvi,   A.,   Shoemaker,   C.J.,   and   Green,   R   (2009)   An   expanded   seed   sequence   definition  accounts  for  full  regulation  of  the  hid  3'  UTR  by  bantam  miRNA  Rna  15,   814-­‐822   Nicholson,   S.E.,   Metcalf,   D.,   Sprigg,   N.S.,   Columbus,   R.,   Walker,   F.,   Silva,   A.,   Cary,   D.,   Willson,   T.A.,   Zhang,   J.G.,   Hilton,   D.J.,   et   al   (2005)   Suppressor   of   cytokine   signaling   (SOCS)-­‐5   is   a   potential   negative   regulator   of   epidermal   growth   factor   signaling  Proc  Natl  Acad  Sci  U  S  A  102,  2328-­‐2333   Nolo,   R.,   Morrison,   C.M.,   Tao,   C.,   Zhang,   X.,   and   Halder,   G   (2006)   The   bantam   microRNA  is  a  target  of  the  hippo  tumor-­‐suppressor  pathway  Curr  Biol  16,  1895-­‐ 1904   Okamura,   K.,   Ishizuka,   A.,   Siomi,   H.,   and   Siomi,   M.C   (2004)   Distinct   roles   for   Argonaute   proteins   in   small   RNA-­‐directed   RNA   cleavage   pathways   Genes   Dev  18,   1655-­‐1666   Ott,   C.E.,   Grunhagen,   J.,   Jager,   M.,   Horbelt,   D.,   Schwill,   S.,   Kallenbach,   K.,   Guo,   G.,   Manke,  T.,  Knaus,  P.,  Mundlos,  S.,  et  al  (2011)  MicroRNAs  differentially  expressed   in   postnatal   aortic   development   downregulate   elastin   via   3'   UTR   and   coding-­‐ sequence  binding  sites  PLoS  One  6,  e16250   Paez,  J.G.,  Janne,  P.A.,  Lee,  J.C.,  Tracy,  S.,  Greulich,  H.,  Gabriel,  S.,  Herman,  P.,  Kaye,   F.J.,   Lindeman,   N.,   Boggon,   T.J.,   et   al   (2004)   EGFR   mutations   in   lung   cancer:   correlation  with  clinical  response  to  gefitinib  therapy  Science  304,  1497-­‐1500   Park,   S.M.,   Gaur,   A.B.,   Lengyel,   E.,   and   Peter,   M.E   (2008)   The   miR-­‐200   family   determines   the   epithelial   phenotype   of   cancer   cells   by   targeting   the   E-­‐cadherin   repressors  ZEB1  and  ZEB2  Genes  Dev  22,  894-­‐907   Pawitan,  Y.,  Bjohle,  J.,  Amler,  L.,  Borg,  A.L.,  Egyhazi,  S.,  Hall,  P.,  Han,  X.,  Holmberg,   L.,  Huang,  F.,  Klaar,  S.,  et  al  (2005)  Gene  expression  profiling  spares  early  breast   cancer  patients  from  adjuvant  therapy:  derived  and  validated  in  two  population-­‐ based  cohorts  Breast  Cancer  Res  7,  R953-­‐964     125   Peinado,   H.,   Olmeda,   D.,   and   Cano,   A   (2007)   Snail,   Zeb   and   bHLH   factors   in   tumour  progression:  an  alliance  against  the  epithelial  phenotype?  Nat  Rev  Cancer   7,  415-­‐428   Petersen,   C.P.,   Bordeleau,   M.E.,   Pelletier,   J.,   and   Sharp,   P.A   (2006)   Short   RNAs   repress  translation  after  initiation  in  mammalian  cells  Mol  Cell  21,  533-­‐542   Pham,   J.W.,   Pellino,   J.L.,   Lee,   Y.S.,   Carthew,   R.W.,   and   Sontheimer,   E.J   (2004)   A   Dicer-­‐2-­‐dependent   80s   complex   cleaves   targeted   mRNAs   during   RNAi   in   Drosophila  Cell  117,  83-­‐94   Pillai,   R.S.,   Bhattacharyya,   S.N.,   Artus,   C.G.,   Zoller,   T.,   Cougot,   N.,   Basyuk,   E.,   Bertrand,   E.,   and   Filipowicz,   W   (2005)   Inhibition   of   translational   initiation   by   Let-­‐7  MicroRNA  in  human  cells  Science  309,  1573-­‐1576   Poy,   M.N.,   Hausser,   J.,   Trajkovski,   M.,   Braun,   M.,   Collins,   S.,   Rorsman,   P.,   Zavolan,   M.,  and  Stoffel,  M  (2009)  miR-­‐375  maintains  normal  pancreatic  alpha-­‐  and  beta-­‐ cell  mass  Proc  Natl  Acad  Sci  U  S  A  106,  5813-­‐5818   Prober,   D.A.,   and   Edgar,   B.A   (2000)   Ras1   promotes   cellular   growth   in   the   Drosophilawing  Cell  100,  435-­‐446   Prosser,   H.M.,   Koike-­‐Yusa,   H.,   Cooper,   J.D.,   Law,   F.C.,   and   Bradley,   A   (2011)   A   resource  of  vectors  and  ES  cells  for  targeted  deletion  of  microRNAs  in  mice  Nat   Biotechnol  29,  840-­‐845   Rasmussen,   K.D.,   Simmini,   S.,   Abreu-­‐Goodger,   C.,   Bartonicek,   N.,   Di   Giacomo,   M.,   Bilbao-­‐Cortes,  D.,  Horos,  R.,  Von  Lindern,  M.,  Enright,  A.J.,  and  O'Carroll,  D  (2010)   The   miR-­‐144/451   locus   is   required   for   erythroid   homeostasis   J   Exp   Med   207,   1351-­‐1358   Rehmsmeier,   M.,   Steffen,   P.,   Hochsmann,   M.,   and   Giegerich,   R   (2004)   Fast   and   effective  prediction  of  microRNA/target  duplexes  Rna  10,  1507-­‐1517   Rehwinkel,   J.,   Natalin,   P.,   Stark,   A.,   Brennecke,   J.,   Cohen,   S.M.,   and   Izaurralde,   E   (2006a)   Genome-­‐wide   analysis   of   mRNAs   regulated   by   Drosha   and   Argonaute   proteins  in  Drosophilamelanogaster  Mol  Cell  Biol  26,  2965-­‐2975   Rehwinkel,   J.,   Natalin,   P.,   Stark,   A.,   Brennecke,   J.,   Cohen,   S.M.,   and   Izaurralde,   E   (2006b)   Genome-­‐wide   analysis   of   mRNAs   regulated   by   Drosha   and   Argonaute   proteins  in  Drosophilamelanogaster  Mol  Cell  Biol  26,  2965-­‐2975   Riley,   K.J.,   Yario,   T.A.,   and   Steitz,   J.A   (2012)   Association   of   Argonaute   proteins   and  microRNAs  can  occur  after  cell  lysis  Rna  18,  1581-­‐1585   Rivas,  F.V.,  Tolia,  N.H.,  Song,  J.J.,  Aragon,  J.P.,  Liu,  J.,  Hannon,  G.J.,  and  Joshua-­‐Tor,  L   (2005)   Purified   Argonaute2   and   an   siRNA   form   recombinant   human   RISC   Nat   Struct  Mol  Biol  12,  340-­‐349   Rody,   A.,   Karn,   T.,   Liedtke,   C.,   Pusztai,   L.,   Ruckhaeberle,   E.,   Hanker,   L.,   Gaetje,   R.,   Solbach,  C.,  Ahr,  A.,  Metzler,  D.,  et  al  (2011)  A  clinically  relevant  gene  signature  in   triple  negative  and  basal-­‐like  breast  cancer  Breast  Cancer  Res  13,  R97   Rong,   H.,   Liu,   T.B.,   Yang,   K.J.,   Yang,   H.C.,   Wu,   D.H.,   Liao,   C.P.,   Hong,   F.,   Yang,   H.Z.,   Wan,   F.,   Ye,   X.Y.,   et   al   (2011)   MicroRNA-­‐134   plasma   levels   before   and   after   treatment  for  bipolar  mania  J  Psychiatr  Res  45,  92-­‐95   Rong,  Y.S.,  and  Golic,  K.G  (2000)  Gene  targeting  by  homologous  recombination  in   Drosophila  Science  288,  2013-­‐2018   Rong,   Y.S.,   and   Golic,   K.G   (2001)   A   targeted   gene   knockout   in   Drosophila   Genetics  157,  1307-­‐1312   Rong,   Y.S.,   and   Golic,   K.G   (2003)   The   homologous   chromosome   is   an   effective   template   for   the   repair   of   mitotic   DNA   double-­‐strand   breaks   in   Drosophila   Genetics  165,  1831-­‐1842     126   Rottiers,   V.,   and   Naar,   A.M   (2012)   MicroRNAs   in   metabolism   and   metabolic   disorders  Nat  Rev  Mol  Cell  Biol  13,  239-­‐250   Ruby,   J.G.,   Stark,   A.,   Johnston,   W.K.,   Kellis,   M.,   Bartel,   D.P.,   and   Lai,   E.C   (2007)   Evolution,   biogenesis,   expression,   and   target   predictions   of   a   substantially   expanded  set  of  DrosophilamicroRNAs  Genome  Res  17,  1850-­‐1864   Rudrapatna,   V.A.,   Cagan,   R.L.,   and   Das,   T.K   (2012)   Drosophilacancer   models   Dev   Dyn  241,  107-­‐118   Rybak,   A.,   Fuchs,   H.,   Smirnova,   L.,   Brandt,   C.,   Pohl,   E.E.,   Nitsch,   R.,   and   Wulczyn,   F.G   (2008)   A   feedback   loop   comprising   lin-­‐28   and   let-­‐7   controls   pre-­‐let-­‐7   maturation  during  neural  stem-­‐cell  commitment  Nat  Cell  Biol  10,  987-­‐993   Saito,  Y.,  Liang,  G.,  Egger,  G.,  Friedman,  J.M.,  Chuang,  J.C.,  Coetzee,  G.A.,  and  Jones,   P.A   (2006)   Specific   activation   of   microRNA-­‐127   with   downregulation   of   the   proto-­‐oncogene   BCL6   by   chromatin-­‐modifying   drugs   in   human   cancer   cells   Cancer  Cell  9,  435-­‐443   Schinzel,  A.C.,  and  Hahn,  W.C  (2008)  Oncogenic  transformation  and  experimental   models  of  human  cancer  Front  Biosci  13,  71-­‐84   Schmidt,   M.,   Bohm,   D.,   von   Torne,   C.,   Steiner,   E.,   Puhl,   A.,   Pilch,   H.,   Lehr,   H.-­‐A.,   Hengstler,   J.G.,   Kolbl,   H.,   and   Gehrmann,   M   (2008)   The   Humoral   Immune   System   Has   a   Key   Prognostic   Impact   in   Node-­‐Negative   Breast   Cancer   Cancer   Research   68,  5405-­‐5413   Schnall-­‐Levin,   M.,   Rissland,   O.S.,   Johnston,   W.K.,   Perrimon,   N.,   Bartel,   D.P.,   and   Berger,   B   (2011)   Unusually   effective   microRNA   targeting   within   repeat-­‐rich   coding  regions  of  mammalian  mRNAs  Genome  Res  21,  1395-­‐1403   Schnall-­‐Levin,   M.,   Zhao,   Y.,   Perrimon,   N.,   and   Berger,   B   (2010)   Conserved   microRNA  targeting  in  Drosophilais  as  widespread  in  coding  regions  as  in  3'UTRs   Proc  Natl  Acad  Sci  U  S  A  107,  15751-­‐15756   Schwarz,   D.S.,   Hutvagner,   G.,   Du,   T.,   Xu,   Z.,   Aronin,   N.,   and   Zamore,   P.D   (2003)   Asymmetry  in  the  assembly  of  the  RNAi  enzyme  complex  Cell  115,  199-­‐208   Seggerson,   K.,   Tang,   L.,   and   Moss,   E.G   (2002)   Two   genetic   circuits   repress   the   Caenorhabditis   elegans   heterochronic   gene   lin-­‐28   after   translation   initiation   Dev   Biol  243,  215-­‐225   Selbach,   M.,   Schwanhausser,   B.,   Thierfelder,   N.,   Fang,   Z.,   Khanin,   R.,   and   Rajewsky,   N   (2008)   Widespread   changes   in   protein   synthesis   induced   by   microRNAs   Nature  455,  58-­‐63   Siegal,   M.L.,   and   Hartl,   D.L   (1996)   Transgene   Coplacement   and   high   efficiency   site-­‐specific   recombination   with   the   Cre/loxP   system   in   Drosophila   Genetics  144,   715-­‐726   Simon,   D.J.,   Madison,   J.M.,   Conery,   A.L.,   Thompson-­‐Peer,   K.L.,   Soskis,   M.,   Ruvkun,   G.B.,  Kaplan,  J.M.,  and  Kim,  J.K  (2008)  The  microRNA  miR-­‐1  regulates  a  MEF-­‐2-­‐ dependent  retrograde  signal  at  neuromuscular  junctions  Cell  133,  903-­‐915   Sokol,   N.S.,   Xu,   P.,   Jan,   Y.N.,   and   Ambros,   V   (2008)   Drosophilalet-­‐7   microRNA   is   required   for   remodeling   of   the   neuromusculature   during   metamorphosis   Genes   Dev  22,  1591-­‐1596   Stark,  A.,  Brennecke,  J.,  Bushati,  N.,  Russell,  R.B.,  and  Cohen,  S.M  (2005)  Animal   MicroRNAs  confer  robustness  to  gene  expression  and  have  a  significant  impact  on   3'UTR  evolution  Cell  123,  1133-­‐1146   Stratton,   M.R   (2011)   Exploring   the   genomes   of   cancer   cells:   progress   and   promise  Science  331,  1553-­‐1558   Stuart,  D.,  and  Sellers,  W.R  (2009)  Linking  somatic  genetic  alterations  in  cancer   to  therapeutics  Curr  Opin  Cell  Biol  21,  304-­‐310     127   Tagawa,   H.,   and   Seto,   M   (2005)   A   microRNA   cluster   as   a   target   of   genomic   amplification  in  malignant  lymphoma  Leukemia  19,  2013-­‐2016   Taulli,  R.,  Bersani,  F.,  Foglizzo,  V.,  Linari,  A.,  Vigna,  E.,  Ladanyi,  M.,  Tuschl,  T.,  and   Ponzetto,   C   (2009)   The   muscle-­‐specific   microRNA   miR-­‐206   blocks   human   rhabdomyosarcoma   growth   in   xenotransplanted   mice   by   promoting   myogenic   differentiation  J  Clin  Invest  119,  2366-­‐2378   Teleman,   A.A.,   Maitra,   S.,   and   Cohen,   S.M   (2006)   Drosophilalacking   microRNA   miR-­‐278  are  defective  in  energy  homeostasis  Genes  Dev  20,  417-­‐422   Thiery,   J.P.,   Acloque,   H.,   Huang,   R.Y.,   and   Nieto,   M.A   (2009)   Epithelial-­‐ mesenchymal  transitions  in  development  and  disease  Cell  139,  871-­‐890   Thompson,  B.J.,  and  Cohen,  S.M  (2006)  The  Hippo  pathway  regulates  the  bantam   microRNA   to   control   cell   proliferation   and   apoptosis   in   Drosophila   Cell  126,   767-­‐ 774   Trabucchi,  M.,  Briata,  P.,  Garcia-­‐Mayoral,  M.,  Haase,  A.D.,  Filipowicz,  W.,  Ramos,  A.,   Gherzi,  R.,  and  Rosenfeld,  M.G  (2009)  The  RNA-­‐binding  protein  KSRP  promotes   the  biogenesis  of  a  subset  of  microRNAs  Nature  459,  1010-­‐1014   Tsang,  J.S.,  Ebert,  M.S.,  and  van  Oudenaarden,  A  (2010)  Genome-­‐wide  dissection   of   microRNA   functions   and   cotargeting   networks   using   gene   set   signatures   Mol   Cell  38,  140-­‐153   van   de   Vijver,   M.J.,   He,   Y.D.,   van't   Veer,   L.J.,   Dai,   H.,   Hart,   A.A.,   Voskuil,   D.W.,   Schreiber,   G.J.,   Peterse,   J.L.,   Roberts,   C.,   Marton,   M.J.,   et   al   (2002)   A   gene-­‐ expression  signature  as  a  predictor  of  survival  in  breast  cancer  N  Engl  J  Med  347,   1999-­‐2009   van  Vliet,  M.,  Reyal,  F.,  Horlings,  H.,  van  de  Vijver,  M.,  Reinders,  M.,  and  Wessels,  L   (2008)   Pooling   breast   cancer   datasets   has   a   synergetic   effect   on   classification   performance  and  improves  signature  stability  BMC  Genomics  9,  375   Varghese,   J.,   and   Cohen,   S.M   (2007a)   microRNA   miR-­‐14   acts   to   modulate   a   positive   autoregulatory   loop   controlling   steroid   hormone   signaling   in   Drosophila   Genes  Dev  21,  2277-­‐2282   Varghese,   J.,   and   Cohen,   S.M   (2007b)   microRNA   miR-­‐14   acts   to   modulate   a   positive   autoregulatory   loop   controlling   steroid   hormone   signaling   in   Drosophila   Genes  Dev  21,  2277-­‐2282   Vaucheret,  H  (2008)  Plant  ARGONAUTES  Trends  Plant  Sci  13,  350-­‐358   Vella,   M.C.,   Choi,   E.Y.,   Lin,   S.Y.,   Reinert,   K.,   and   Slack,   F.J   (2004)   The   C   elegans   microRNA   let-­‐7   binds   to   imperfect   let-­‐7   complementary   sites   from   the   lin-­‐41   3'UTR  Genes  Dev  18,  132-­‐137   Ventura,   A.,   Young,   A.G.,   Winslow,   M.M.,   Lintault,   L.,   Meissner,   A.,   Erkeland,   S.J.,   Newman,  J.,  Bronson,  R.T.,  Crowley,  D.,  Stone,  J.R.,  et  al  (2008)  Targeted  deletion   reveals   essential   and   overlapping   functions   of   the   miR-­‐17   through   92   family   of   miRNA  clusters  Cell  132,  875-­‐886   von   Roretz,   C.,   and   Gallouzi,   I.E   (2008)   Decoding   ARE-­‐mediated   decay:   is   microRNA  part  of  the  equation?  J  Cell  Biol  181,  189-­‐194   Voorhoeve,   P.M.,   and   Agami,   R   (2003)   The   tumor-­‐suppressive   functions   of   the   human  INK4A  locus  Cancer  Cell  4,  311-­‐319   Voorhoeve,  P.M.,  le  Sage,  C.,  Schrier,  M.,  Gillis,  A.J.,  Stoop,  H.,  Nagel,  R.,  Liu,  Y.P.,  van   Duijse,   J.,   Drost,   J.,   Griekspoor,   A.,   et   al   (2006)   A   genetic   screen   implicates   miRNA-­‐372  and  miRNA-­‐373  as  oncogenes  in  testicular  germ  cell  tumors  Cell  124,   1169-­‐1181     128   Wang,  S.,  Aurora,  A.B.,  Johnson,  B.A.,  Qi,  X.,  McAnally,  J.,  Hill,  J.A.,  Richardson,  J.A.,   Bassel-­‐Duby,   R.,   and   Olson,   E.N   (2008a)   The   endothelial-­‐specific   microRNA   miR-­‐ 126  governs  vascular  integrity  and  angiogenesis  Dev  Cell  15,  261-­‐271   Wang,   S.L.,   Hawkins,   C.J.,   Yoo,   S.J.,   Muller,   H.A.,   and   Hay,   B.A   (1999)   The   Drosophila  caspase  inhibitor  DIAP1  is  essential  for  cell  survival  and  is  negatively   regulated  by  HID  Cell  98,  453-­‐463   Wang,  Y.,  Juranek,  S.,  Li,  H.,  Sheng,  G.,  Tuschl,  T.,  and  Patel,  D.J  (2008b)  Structure   of   an   argonaute   silencing   complex   with   a   seed-­‐containing   guide   DNA   and   target   RNA  duplex  Nature  456,  921-­‐926   Wang,   Y.,   Juranek,   S.,   Li,   H.,   Sheng,   G.,   Wardle,   G.S.,   Tuschl,   T.,   and   Patel,   D.J   (2009)   Nucleation,   propagation   and   cleavage   of   target   RNAs   in   Ago   silencing   complexes  Nature  461,  754-­‐761   Weng,  R.,  Chen,  Y.W.,  Bushati,  N.,  Cliffe,  A.,  and  Cohen,  S.M  (2009)  Recombinase-­‐ mediated   cassette   exchange   provides   a   versatile   platform   for   gene   targeting:   knockout  of  miR-­‐31b  Genetics  183,  399-­‐402   Wightman,   B.,   Burglin,   T.R.,   Gatto,   J.,   Arasu,   P.,   and   Ruvkun,   G   (1991)   Negative   regulatory   sequences   in   the   lin-­‐14   3'-­‐untranslated   region   are   necessary   to   generate   a   temporal   switch   during   Caenorhabditis   elegans   development   Genes   Dev  5,  1813-­‐1824   Wightman,  B.,  Ha,  I.,  and  Ruvkun,  G  (1993)  Posttranscriptional  regulation  of  the   heterochronic   gene   lin-­‐14   by   lin-­‐4   mediates   temporal   pattern   formation   in   C   elegans  Cell  75,  855-­‐862   Wilder,   E.L.,   and   Perrimon,   N   (1995)   Dual   functions   of   wingless   in   the   Drosophilaleg  imaginal  disc  Development  121,  477-­‐488   Xu,   G.,   Fewell,   C.,   Taylor,   C.,   Deng,   N.,   Hedges,   D.,   Wang,   X.,   Zhang,   K.,   Lacey,   M.,   Zhang,  H.,  Yin,  Q.,  et  al  (2010)  Transcriptome  and  targetome  analysis  in  MIR155   expressing  cells  using  RNA-­‐seq  Rna  16,  1610-­‐1622   Xu,   P.,   Vernooy,   S.Y.,   Guo,   M.,   and   Hay,   B.A   (2003)   The   DrosophilamicroRNA   Mir-­‐ 14  suppresses  cell  death  and  is  required  for  normal  fat  metabolism  Curr  Biol  13,   790-­‐795   Yi,   R.,   Qin,   Y.,   Macara,   I.G.,   and   Cullen,   B.R   (2003)   Exportin-­‐5   mediates   the   nuclear   export   of   pre-­‐microRNAs   and   short   hairpin   RNAs   Genes   Dev  17,   3011-­‐ 3016   Yu,   F.,   Yao,   H.,   Zhu,   P.,   Zhang,   X.,   Pan,   Q.,   Gong,   C.,   Huang,   Y.,   Hu,   X.,   Su,   F.,   Lieberman,   J.,   et   al   (2007)   let-­‐7   regulates   self   renewal   and   tumorigenicity   of   breast  cancer  cells  Cell  131,  1109-­‐1123   Zecca,   M.,   and   Struhl,   G   (2002)   Control   of   growth   and   patterning   of   the   Drosophilawing   imaginal   disc   by   EGFR-­‐mediated   signaling   Development   129,   1369-­‐1376   Zhang,  L.,  Ding,  L.,  Cheung,  T.H.,  Dong,  M.Q.,  Chen,  J.,  Sewell,  A.K.,  Liu,  X.,  Yates,  J.R.,   3rd,  and  Han,  M  (2007)  Systematic  identification  of  C  elegans  miRISC  proteins,   miRNAs,   and   mRNA   targets   by   their   interactions   with   GW182   proteins   AIN-­‐1   and   AIN-­‐2  Mol  Cell  28,  598-­‐613   Zhao,   Y.,   Ransom,   J.F.,   Li,   A.,   Vedantham,   V.,   von   Drehle,   M.,   Muth,   A.N.,   Tsuchihashi,   T.,   McManus,   M.T.,   Schwartz,   R.J.,   and   Srivastava,   D   (2007)   Dysregulation  of  cardiogenesis,  cardiac  conduction,  and  cell  cycle  in  mice  lacking   miRNA-­‐1-­‐2  Cell  129,  303-­‐317       129   ... characterizations of miRNA -target interactions involved in growth control and cancer transformation I used biochemical immunoprecipitation against Drosophila Ago1 (Ago1-IP) to isolate and purify Ago1/miRNA/mRNA... protein (green) and GW182 (blue) GW182 proteins contain an N-terminal AGO-binding domain, which provides multiple binding sites for Argonaute proteins and a bipartite C-   28   terminal silencing... As shown in Fig 1.2, Ago are large proteins about 100kDa comprising a single     variable N-terminal domain and three conserved C-terminal domains, including the PAZ, MID and PIWI domains (Vaucheret,

Ngày đăng: 09/09/2015, 10:17

TỪ KHÓA LIÊN QUAN

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN