Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống
1
/ 141 trang
THÔNG TIN TÀI LIỆU
Thông tin cơ bản
Định dạng
Số trang
141
Dung lượng
12,15 MB
Nội dung
BIOCHEMICAL IDENTIFICATION AND FUNCTIONAL CHARACTERIZATION OF MICRORNA-TARGET INTERACTIONS IN GROWTH CONTROL AND CANCER TRANSFORMATION HONG XIN (B.Sc (Hons.), NUS A THESIS SUBMITTED FOR THE DEGREE OF DOCTOR OF PHILOSOPHY INSTITUTE OF MOLECULAR AND CELL BIOLOGY NATIONAL UNIVERSITY OF SINGAPORE 2013 I DECLARATION I hereby declare that the thesis is my original work and it has been written by me in its entirety I have duly acknowledged all the sources of information which have been used in the thesis This thesis has also not been submitted for any degree in any university previously _ Hong Xin 4th March 2013 II ACKNOWLEDGEMENTS I am deeply grateful to my PhD mentor, Professor Stephen Michel Cohen, for his rigorous PhD training, great vision on science and directionality of projects His broad scope of scientific interests, inspiring ideas, critical thinking, deep penetrance of scientific investigations and many other outstanding scientific qualities have been so much beneficial throughout my PhD and will continuously be influential on my future career I would like to thank my thesis committee members, Professor Ng Huck Hui, Dr José R Dinneny, and Professor Toshie Kai for their valuable comments and constructive advice My sincere thanks to all the past and current members of the Cohen lab, especially Dr Thomas Sandman, Ms Lim Sing fee, Dr Jishy Varghese, Dr Chen Yawen, Dr Zhang Wei and Dr Ge Wanzhong for creating a nice working environment, providing numerous kind help whenever needed, and teaching me how to be a good scientists during daily communications I would like to express my heartfelt appreciation to my collaborators Dr Molly Hammell, Mr Nguyen Thanh Hung, Dr Zhang Rui, Dr Mathijs Voorhoeve, and Dr Hector Herranz Without them, my PhD projects would not be accomplished so smoothly Thanks also go to Dr Wang Songyu, Vinayaka, Na Chen, Dr Wang Xin Gang for the friendships Last but not least, I dedicated this thesis to my beloved wife JingJing, my parents, and my son Xavier and my daughter-to-be-born for their love, support, and encouragement throughout my PhD They have been always one huge motivation in my scientific career III TABLE OF CONTENT SUMMARY VI LIST OF TABLES VIII LIST OF FIGURES IX LIST OF SYMBOLS AND ABBREVIATIONS XI LIST OF PUBLICATIONS XII CHAPTER 1 INTRODUCTION 1 1.1 THE DISCOVERY OF ANIMAL MICRORNAS 1 1.2 MICRORNA BIOGENESIS 2 1.2.1 microRNA transcription 2 1.2.2 miRNA maturation 2 1.2.3 RISC effector loading 3 1.2.4 Argonaute proteins as RISC effectors 3 1.3 MECHANISMS OF MIRNA ACTION 4 1.3.1 Mechanism of miRNA action 4 1.3.2 Effects on target mRNA level 5 1.3.2.1 1.3.2.2 Direct mRNA cleavage Repression by mRNA destabilization 1.3.3 Effect on protein translation 7 1.4 IDENTIFICATION AND VALIDATION OF MIRNA TARGETS 8 1.4.1 Identification of miRNA targets 8 1.4.1.1 Computational prediction 1.4.1.2 Target identification based on genome-wide expression profiling 11 1.4.1.3 Biochemical purification of miRNP complex coupled to high throughput platforms 13 1.4.2 Experimental validation of microRNA targets 15 1.4.2.1 Target reporter assay in vitro and in vivo 15 1.4.2.2 Measuring target level in microRNA overexpressed and/or depleted cells 17 1.4.2.3 Genetic and functional interactions between a microRNA and its targets 18 1.5 GENETIC MANIPULATIONS OF MIRNA ACTIVITIES IN CELLS AND ORGANISMS 19 1.5.1 Genetic knockouts 19 1.5.2 Application of miRNA sponges 21 1.6 MIRNA DYSREGULATION IN CANCER CELLS 23 1.6.1 Genomic copy number alterations of miRNAs in cancer 24 1.6.2 Change in transcriptional regulations of miRNAs in cancer 25 1.6.3 miRNAs dysregulate many downstream signaling pathways critically involved in cancer initiation and progression 25 CHAPTER 2 MATERIALS AND METHODS 33 2.1 DROSOPHILAGENETICS 33 2.2 IMMUNOSTAINING 33 2.3 SDS-PAGE AND IMMUNOBLOT ANALYSIS 34 2.4 IMMUNOPURIFICATION OF MIRNP COMPLEX FROM DROSOPHILAS2 CELLS 34 2.5 UTR REPORTER CONSTRUCTS AND LUCIFERASE REPORTER ASSAYS 35 2.6 MIRNA AND MRNA QUANTITATIVE REAL TIME PCR 36 2.7 EXPRESSION PROFILING 37 2.8 MIRNA TARGET SITE PREDICTION 38 2.9 STATISTICAL ANALYSIS 39 2.10 MAMMALIAN CELL CULTURE 39 2.11 SOFT AGAR COLONY FORMATION ASSAY 40 2.12 CANCER PATIENT SURVIVAL ANALYSIS 40 IV CHAPTER 3 BIOCHEMICAL PURIFICATION OF MIRNA-‐RISC COMPLEX COUPLED TO HIGH-‐THROUGHPUT MICROARRAY PROFILING IDENTIFIES A DISTINCT SET OF MIRNA TARGETS IN DROSOPHILAS2 CELLS 41 3.1 INTRODUCTION 41 3.2 EXPERIMENTAL ASSESSMENT OF AN IMPROVED AGO1 IMMUNOPURIFICATION PROTOCOL 43 3.3 EXPRESSION PROFILING OF MRNAS ASSOCIATED WITH AGO1 IDENTIFIED HUNDREDS OF IP-ENRICHED TRANSCRIPTS 46 3.4 EXPERIMENTAL VALIDATION OF TARGET ENRICHMENT IN AGO1 IP 50 3.5 EXPERIMENTAL VALIDATION OF SELECTED MIR-184 TARGETS IDENTIFIED BY AGO1 IP 55 3.6 SEED TYPE ENRICHMENT OF THE TARGET SITES IN AGO1 IP-ENRICHED TRANSCRIPTS 60 3.7 OTHER CONTEXTUAL FEATURES ENRICHED IN AGO1 IP-ENRICHED TRANSCRIPTS 61 3.8 COMPARISON OF TARGETS IDENTIFIED BY AGO1 IP AND AGO1 DEPLETION 67 3.9 FUNCTIONAL CLUSTERING SUGGESTS DISTINCT BIOLOGICAL FUNCTIONS IN THE TWO TARGET GROUPS 78 3.10 GENOME-WIDE ANALYSIS SHOWS MIRNA TARGETS WITH DISTINCT STRUCTURAL AND MOLECULAR PROPERTIES 80 3.11 DISCUSSION 83 CHAPTER 4 FUNCTIONAL CHARACTERIZATION OF BANTAM-‐SOCS36E INTERACTION LEADS TO IDENTIFICATION OF SOCS PROTEIN FAMILIES AS ONCOGENIC COOPERATING FACTORS IN EGFR/RASV12-‐DRIVEN TUMORIGENESIS 86 4.1 INTRODUCTION 86 4.2 DEPLETION OF BANTAM BY MICRORNA SPONGE PRODUCES EGFR-LIKE PHENOTYPES 88 4.3 IDENTIFICATION OF SOCS36E AS A BANTAM TARGET 91 4.4 SOCS36E IS A NEGATIVE GROWTH REGULATOR 94 4.5 SOCS36E IS A NEGATIVE FEEDBACK REGULATOR OF EGFR SIGNALING 97 4.6 SOCS36E BEHAVES AS A TUMOR SUPPRESSOR UNDER CONDITIONS OF ELEVATED EGFR ACTIVITY 100 4.7 HUMAN SOCS5 BEHAVES AS A CANDIDATE TUMOR SUPPRESSOR IN AN EGFR/RASDEPENDENT CELLULAR TRANSFORMATION ASSAY 103 4.8 SOCS5 EXPRESSION IS DOWNREGULATED IN BREAST CANCER AND ASSOCIATED WITH METASTATIC-FREE SURVIVAL 106 4.9 DISCUSSION 110 CHAPTER 5 CONCLUSION AND FUTURE WORK 114 V SUMMARY microRNAs are a class of non-coding RNAs of 21 to 23 nucleotides in length They are endogenously expressed in the majority of eukaryotes MicroRNAs form proteinRNA complexes with the RNA-induced silencing complex (RISC) and bind to either 3’UTR or coding regions of messenger RNAs, causing destabilization of mRNA and/or inhibition of protein translation Animal microRNAs recognize their mRNA target via imperfect base pairing The 5’ position from 2-8nt, the so called “seed region”, is critical for microRNAs to repress their targets Each miRNA is predicted to regulate up to hundreds of genes and more than 65% of the animal genome could be potentially targeted by miRNAs miRNAs play important roles in diverse biological processes, including growth, differentiation, neurogenesis, apoptosis and metabolism Misregulation of miRNAs is correlated with various types of human pathologies including cancer and directly contribute to disease initiation and progression (representative reviews in (Iorio and Croce, 2012; Mendell and Olson, 2012; Rottiers and Naar, 2012)) My PhD project is focused on identification and functional characterizations of miRNA-target interactions involved in growth control and cancer transformation I used biochemical immunoprecipitation against Drosophila Ago1 (Ago1-IP) to isolate and purify Ago1/miRNA/mRNA complex and utilized microarray profiling to identify mRNAs enriched in Ago1-IP in Drosophila S2 cells Hundreds of potential miRNA targets associated with Ago1 in Drosophila S2 cells were identified by Ago1-IP Computational analysis using the IP-enriched target sets and Ago1 RNAi-upregulated target sets suggested the existence of two distinct sets of microRNA targets that exhibit substantial differences in molecular and structural properties My study further VI revealed a genome-wide correlation between binding site accessibility and the 3’UTR length of mRNA targets, suggesting an unprecedented complexity of miRNA-target interactions One target that I identified from the Ago1-IP is Socs36E, which contains a binding site for the growth regulatory microRNA, bantam Genetic and functional analysis suggested Socs36E is a negative growth regulator and contributes to bantam’s loss-offunction phenotype in the Drosophila wing Mechanistically, Socs36E negatively regulates EGFR activity while EGFR signaling also controls Socs36E expression, forming a negative feedback regulatory loop Socs36E acts as a “brake” to repress excessive EGFR signaling and when the “brake” is removed, EGFR overexpression leads to uncontrolled tumorous overgrowth and neoplastic transformation Using an in vitro cancer transformation model of primary human fibroblast cells, I further demonstrated one of the human orthologs of Socs36E, SOCS5, is a potential cooperating tumor suppressor of RasV12/EGF-driven cancer transformation SOCS5 is downregulated in breast cancer samples and associated with ErBB/ER/PR status Lower SOCS5 expression correlates with poorer metastatic-free survival in breast cancer patients, suggesting SOCS5 can be a potential biomarker with prognostic value Taken together, through characterization of miRNA-target interactions involved in developmental growth control, my collaborators and I have identified the SOCS protein family, as oncogenic cooperation factors of EGFR/Ras/MAPK- mediated cancer transformation in both Drosophila and human VII LIST OF TABLES Table 1 1 A comparison of different computational prediction programs 32 Table 3 1 List of microRNA seed families expressed in Drosoiphila S2 cells 50 Table 3 2 The non-‐redundant set of validated miRNA target pairs 54 Table 3 3 Predicted miR-‐184 targets enriched in Ago1 IP 58 Table 3 4 Summary of IP target validation 59 Table 3 5 Analysis of enrichment for stable hybridization binding energy, MFE, ΔGhybrid 64 Table 3 6 Analysis of enrichment for miRNA binding site openness for IP-‐enriched trascripts using non-‐IP enriched transcripts 64 Table 3 7 Analysis of enrichment for miRNA binding site openness for IP-‐enriched transcripts using all S2 cells transcripts as controls 65 Table 3 8 Analysis of miRNA binding site openness and flanking region openness in Ago1 IP-‐ enriched group 66 Table 3 9 Analysis of enrichment for stable hybridization binding energy (MFE) in Ago1 RNAi-‐ upregulated group 73 Table 3 10 Analysis of enrichment for miRNA binding site openness for Ago1 RNAi-‐upregulated transcripts as compared to all detectable S2 cell transcripts 76 Table 3 11 Analysis of miRNA binding site openness and flanking region openness in Ago1 RNAi upregulated group 78 Table 3 12 Gene ontology analysis of Ago1 IP-‐enriched transcripts and transcripts upregulated by Ago1 RNAi 79 Table 3 13 Genome-‐wide comparisons of upstream, downstream, and site openness (accessibility) of all predicted miRNA sites as a function of UTR length 83 Table 4 1 Listing of Log2 median-‐centered SOCS5 expression levels for each indicated dataset 110 VIII LIST OF FIGURES Figure 1 1 microRNA biogenesis and action 27 Figure 1 2 Argonaute domain organization 28 Figure 1 3 Ago/GW182 as effector complex in miRNA-‐mediated gene silencing 28 Figure 1 5 Schematic representation of ends-‐out gene targeting by homologous recombination 30 Figure 1 6 miRNA sponge design 31 Figure 1 7 The general workflow for small RNA sequencing by NGS platforms ERROR! BOOKMARK NOT DEFINED Figure 3 1 The general workflow of an improved Ago1 immunopurification protocol 45 Figure 3 2 A representative immunoblot of Ago1 IP on transgenic S2 cells expressing a Flag/HA epitope tagged Ago1 (+) or control S2 cells (-‐) 46 Figure 3 3 miRNAs and validated known targets are enriched in Ago1 immunopurified RNA complex 46 Figure 3 4 Number of transcripts enriched in Ago1 IP and the mean abundance of transcripts 48 Figure 3 5 Validation of selected IP-‐enriched genes by independent IP-‐Q-‐PCR 49 Figure 3 6 Comparison of IP results with experimentally validated miRNA targets 52 Figure 3 7 Effect of miR-‐184 depletion on the recovery of predicted mir-‐184 targets by IP 53 Figure 3 8 Effect of miR-‐184 depletion on the expression level of mir-‐184 targets for IP-‐enriched Vs non IP-‐enriched sets 56 Figure 3 9 Luciferase assay validation on selected IP-‐enriched mir-‐184 targets 57 Figure 3 10 miRNA target seed type enrichment analysis in Ago1 IP-‐enriched transcripts 61 Figure 3 11 Graphic representation of miRNA binding site openness and flanking region openness as shown in Table 3.8 67 Figure 3 12 A comparative analysis on Ago1 IP-‐enriched transcripts Vs Ago1 RNAi-‐upregulated transcripts 70 Figure 3 13 Comparison of seed type enrichment of targets identified by Ago1 IP and Ago1 depletion 71 Figure 3 14 Comparison of binding site energy of targets identified by Ago1 IP and Ago1 depletion 72 Figure 3 15 Differences in UTR length and miRNA site density distributions between Ago1 IP-‐ enriched group and Ago1 RNAi-‐upregulated group 74 IX Figure 3 16 Assessment of miRNA site openness, upstream openness and downstream openness for the Ago1 RNAi upregulated set vs all S2 RNAs with sites 75 Figure 3 17 Fold enrichment for the optimal upstream windows (35nt) and downstream windows (50nt) in IP-‐enriched and Ago1 RNAi upregulated sets 77 Figure 3 18 UTR length versus site density and structural openness in DrosophilamRNAs 82 Figure 4 1 bantam microRNA sponge design and validation 90 Figure 4 2 bantam depletion by microRNA sponge resembled the effect of EGFR depletion in the wing 91 Figure 4 3 Socs36E is a direct bantam target 93 Figure 4 4 bantam regulates Socs36E level in vivo 94 Figure 4 5 Socs36E mutant flies are slightly bigger in size 96 Figure 4 6 Socs36E is a negative growth regulator that genetically interacts with bantam 97 Figure 4 7 Socs36E represses EGFR/MAPK signaling 98 Figure 4 8 EGFR also regulates Socs36E expression, thus forming a negative feedback loop 99 Figure 4 9 Depletion of Socs36E in EGFR overexpressing wing discs caused dramatic tissue overgrown 102 Figure 4 10 Depletion of Soce36E in EGFR overexpressing wing lead to neoplastic transformation 103 Figure 4 11 Depletion of SOCS5 enhanced soft agar colony formation in primary human fibroblast cells 105 Figure 4 12 SOCS5 mutation rates and mRNA expression in cancer 108 Figure 4 13 SOCS5 expression is associated with metastatic-‐free survival in breast cancer patients 109 X allow a higher resolution of genome-wide target site identification and mapping Our S2 cell Ago1 IP-enriched target list could provide useful information for further functional validation of individual miRNA-target pairs using Drosophila genetics and biochemical tools In the second part of my thesis, I made use of the Ago1 IP-enriched target list to identify Socs36E as a functionally important bantam target involved in growth control I showed that bantam directly targets Socs36E by regulating its 3’UTR region and regulates Soc36E protein level in vivo Co-depletion of bantam and Socs36E partially rescued the reduction in wing size in bantam loss-of-function mutants, suggesting bantam-Socs36E interaction is important for tissue growth control We further demonstrated that Socs36E and EGFR form a negative feedback loop and Socs36E acts as a “brake” to repress excessive EGFR signaling The importance of this feedback control was demonstrated in the wing: once the “brake” is removed by Socs36E depletion, EGFR overexpression leads to uncontrolled tumorous overgrowth and neoplastic transformation We further uncovered the SOCS protein family as evolutionarily conserved oncogenic cooperating factors of EGFR/RasV12- mediated cancer transformation in both Drosophila and human One of the human orthologs of Socs36E, SOCS5, is a potential cooperating tumor suppressor of RasV12 -driven human cancer transformation The clinical relevance of SOCS5 in human cancer is demonstrated that SOCS5 is downregulated in breast cancer samples and associated with ErBB/ER/PR status Lower SOCS5 expression correlates with poor metastaticfree survival in breast cancer patients It might be interesting in the future to investigate whether other family members of SOCS proteins act in a similar manner to SOCS5 or they are functionally distinct If 115 there are well-annotated clinical samples available, it could be quite interesting to analyse whether SOCS5 level correlates with anti-ErBB drug resistance and/or tumor grade, metastatic index and other patient parameters This might serve as important information for stratification of cancer patient treatment The fact that Socs36E is a negative feedback regulator of Jak/STAT and EGFR/Ras pathways suggested SOCS proteins might act as network nodes for multiple signaling cross talks and inputs It is tempting to investigate which signaling pathways are simultaneously controlled by the mammalian SOCS proteins and the molecular basis for such regulation 116 REFERENCES Abbott, A.L., Alvarez-‐Saavedra, E., Miska, E.A., Lau, N.C., Bartel, D.P., Horvitz, H.R., and Ambros, V (2005) The let-‐7 MicroRNA family members mir-‐48, mir-‐84, and mir-‐241 function together to regulate developmental timing in Caenorhabditis elegans Dev Cell 9, 403-‐414 Acloque, H., Adams, M.S., Fishwick, K., Bronner-‐Fraser, M., and Nieto, M.A (2009) Epithelial-‐mesenchymal transitions: the importance of changing cell state in development and disease J Clin Invest 119, 1438-‐1449 Allen, E., Xie, Z., Gustafson, A.M., Sung, G.H., Spatafora, J.W., and Carrington, J.C (2004) Evolution of microRNA genes by inverted duplication of target gene sequences in Arabidopsis thaliana Nat Genet 36, 1282-‐1290 Almudi, I., Stocker, H., Hafen, E., Corominas, M., and Serras, F (2009a) SOCS36E specifically interferes with Sevenless signaling during Drosophilaeye development Dev Biol 326, 212-‐223 Almudi, I., Stocker, H., Hafen, E., Corominas, M., and Serras, F (2009b) SOCS36E specifically interferes with Sevenless signaling during Drosophilaeye development Dev Biol 326, 212-‐223 Aravin, A.A., Lagos-‐Quintana, M., Yalcin, A., Zavolan, M., Marks, D., Snyder, B., Gaasterland, T., Meyer, J., and Tuschl, T (2003) The small RNA profile during Drosophilamelanogaster development Dev Cell 5, 337-‐350 Baek, D., Villen, J., Shin, C., Camargo, F.D., Gygi, S.P., and Bartel, D.P (2008) The impact of microRNAs on protein output Nature 455, 64-‐71 Barrallo-‐Gimeno, A., and Nieto, M.A (2005) The Snail genes as inducers of cell movement and survival: implications in development and cancer Development 132, 3151-‐3161 Bartel, D.P (2009) MicroRNAs: target recognition and regulatory functions Cell 136, 215-‐233 Bateman, J.R., Lee, A.M., and Wu, C.T (2006) Site-‐specific transformation of Drosophilavia phiC31 integrase-‐mediated cassette exchange Genetics 173, 769-‐ 777 Becam, I., Rafel, N., Hong, X., Cohen, S.M., and Milan, M (2011) Notch-‐mediated repression of bantam miRNA contributes to boundary formation in the Drosophilawing Development 138, 3781-‐3789 Behm-‐Ansmant, I., Rehwinkel, J., Doerks, T., Stark, A., Bork, P., and Izaurralde, E (2006a) mRNA degradation by miRNAs and GW182 requires both CCR4:NOT deadenylase and DCP1:DCP2 decapping complexes Genes Dev 20, 1885-‐1898 Behm-‐Ansmant, I., Rehwinkel, J., Doerks, T., Stark, A., Bork, P., and Izaurralde, E (2006b) mRNA degradation by miRNAs and GW182 requires both CCR4:NOT deadenylase and DCP1:DCP2 decapping complexes Genes Dev 20, 1885-‐1898 Beitzinger, M., Peters, L., Zhu, J.Y., Kremmer, E., and Meister, G (2007) Identification of human microRNA targets from isolated argonaute protein complexes RNA Biol 4, 76-‐84 Bhattacharyya, S.N., Habermacher, R., Martine, U., Closs, E.I., and Filipowicz, W (2006) Relief of microRNA-‐mediated translational repression in human cells subjected to stress Cell 125, 1111-‐1124 117 Bohnsack, M.T., Czaplinski, K., and Gorlich, D (2004) Exportin is a RanGTP-‐ dependent dsRNA-‐binding protein that mediates nuclear export of pre-‐miRNAs Rna 10, 185-‐191 Brabletz, S., and Brabletz, T (2010) The ZEB/miR-‐200 feedback loop-‐-‐a motor of cellular plasticity in development and cancer? EMBO Rep 11, 670-‐677 Brender, C., Columbus, R., Metcalf, D., Handman, E., Starr, R., Huntington, N., Tarlinton, D., Odum, N., Nicholson, S.E., Nicola, N.A., et al (2004) SOCS5 is expressed in primary B and T lymphoid cells but is dispensable for lymphocyte production and function Mol Cell Biol 24, 6094-‐6103 Brennecke, J., Hipfner, D.R., Stark, A., Russell, R.B., and Cohen, S.M (2003a) bantam encodes a developmentally regulated microRNA that controls cell proliferation and regulates the pro-‐apoptotic gene hid in Drosophila Cell 113, 25-‐ 36 Brennecke, J., Hipfner, D.R., Stark, A., Russell, R.B., and Cohen, S.M (2003b) bantam encodes a developmentally regulated microRNA that controls cell proliferation and regulates the proapoptotic gene hid in Drosophila Cell 113, 25-‐ 36 Brennecke, J., Stark, A., Russell, R.B., and Cohen, S.M (2005a) Principles of microRNA-‐target recognition PLoS Biol 3, e85 Brennecke, J., Stark, A., Russell, R.B., and Cohen, S.M (2005b) Principles of microRNA-‐target recognition PLoS Biol 3, e85 Buff, E., Carmena, A., Gisselbrecht, S., Jimenez, F., and Michelson, A.M (1998) Signalling by the Drosophilaepidermal growth factor receptor is required for the specification and diversification of embryonic muscle progenitors Development 125, 2075-‐2086 Bushati, N., and Cohen, S.M (2007) microRNA functions Annu Rev Cell Dev Biol 23, 175–205 Cairrao, F., Halees, A.S., Khabar, K.S., Morello, D., and Vanzo, N (2009) AU-‐rich elements regulate Drosophilagene expression Mol Cell Biol 29, 2636-‐2643 Calin, G.A., Dumitru, C.D., Shimizu, M., Bichi, R., Zupo, S., Noch, E., Aldler, H., Rattan, S., Keating, M., Rai, K., et al (2002) Frequent deletions and down-‐regulation of micro-‐ RNA genes miR15 and miR16 at 13q14 in chronic lymphocytic leukemia Proc Natl Acad Sci U S A 99, 15524-‐15529 Calin, G.A., Sevignani, C., Dumitru, C.D., Hyslop, T., Noch, E., Yendamuri, S., Shimizu, M., Rattan, S., Bullrich, F., Negrini, M., et al (2004) Human microRNA genes are frequently located at fragile sites and genomic regions involved in cancers Proc Natl Acad Sci U S A 101, 2999-‐3004 Calleja, M., Moreno, E., Pelaz, S., and Morata, G (1996a) Visualization of gene expression in living adult Drosophila Science 274, 252-‐255 Calleja, M., Moreno, E., Pelaz, S., and Morata, G (1996b) Visualization of gene expression in living adult Drosophila Science 274, 252-‐255 Callus, B.A., and Mathey-‐Prevot, B (2002) SOCS36E, a novel DrosophilaSOCS protein, suppresses JAK/STAT and EGF-‐R signalling in the imaginal wing disc Oncogene 21, 4812-‐4821 Capdevila, J., Estrada, M.P., Sanchez-‐Herrero, E., and Guerrero, I (1994a) The Drosophilasegment polarity gene patched interacts with decapentaplegic in wing development Embo J 13, 71-‐82 Capdevila, J., and Guerrero, I (1994) Targeted expression of the signalling molecule decapentaplegic induces pattern duplications and growth alterations in Drosophilawings EMBO J 13, 4459-‐4468 118 Capdevila, J., Pariente, F., Sampedro, J., Alonso, J.L., and Guerrero, I (1994b) Subcellular localization of the segment polarity protein patched suggests an interaction with the wingless reception complex in Drosophilaembryos Development 120, 987-‐998 Casci, T., Vinos, J., and Freeman, M (1999) Sprouty, an intracellular inhibitor of Ras signaling Cell 96, 655-‐665 Caussinus, E., and Gonzalez, C (2005) Induction of tumor growth by altered stem-‐cell asymmetric division in Drosophilamelanogaster Nat Genet 37, 1125-‐ 1129 Chang, T.C., Wentzel, E.A., Kent, O.A., Ramachandran, K., Mullendore, M., Lee, K.H., Feldmann, G., Yamakuchi, M., Ferlito, M., Lowenstein, C.J., et al (2007) Transactivation of miR-‐34a by p53 broadly influences gene expression and promotes apoptosis Mol Cell 26, 745-‐752 Chen, Y.W., Weng, R., and Cohen, S.M (2011) Protocols for use of homologous recombination gene targeting to produce microRNA mutants in Drosophila Methods Mol Biol 732, 99-‐120 Chi, S.W., Zang, J.B., Mele, A., and Darnell, R.B (2009) Argonaute HITS-‐CLIP decodes microRNA-‐mRNA interaction maps Nature 460, 479-‐486 Croce, C.M (2009) Causes and consequences of microRNA dysregulation in cancer Nat Rev Genet 10, 704-‐714 Deng, W.M (2011) Molecular genetics of cancer and tumorigenesis: Drosophilamodels J Genet Genomics 38, 429-‐430 Diaz-‐Benjumea, F.J., and Garcia-‐Bellido, A (1990) Behaviour of cells mutant for an EGF receptor homologue of Drosophilain genetic mosaics Proc Biol Sci 242, 36-‐44 Doench, J.G., Petersen, C.P., and Sharp, P.A (2003) siRNAs can function as miRNAs Genes Dev 17, 438-‐442 Doench, J.G., and Sharp, P.A (2004a) Specificity of microRNA target selection in translational repression Genes Dev 18, 504-‐511 Doench, J.G., and Sharp, P.A (2004b) Specificity of microRNA target selection in translational repression Genes Dev 18, 504-‐511 Easow, G., Teleman, A.A., and Cohen, S.M (2007) Isolation of microRNA targets by miRNP immunopurification Rna 13, 1198-‐1204 Ebert, M.S., and Sharp, P.A (2010) MicroRNA sponges: progress and possibilities Rna 16, 2043-‐2050 Elcheva, I., Goswami, S., Noubissi, F.K., and Spiegelman, V.S (2009) CRD-‐BP protects the coding region of betaTrCP1 mRNA from miR-‐183-‐mediated degradation Mol Cell 35, 240-‐246 Ender, C., Krek, A., Friedlander, M.R., Beitzinger, M., Weinmann, L., Chen, W., Pfeffer, S., Rajewsky, N., and Meister, G (2008) A human snoRNA with microRNA-‐ like functions Mol Cell 32, 519-‐528 Ender, C., and Meister, G (2010) Argonaute proteins at a glance J Cell Sci 123, 1819-‐1823 Esteva, F.J., Yu, D., Hung, M.C., and Hortobagyi, G.N (2010) Molecular predictors of response to trastuzumab and lapatinib in breast cancer Nat Rev Clin Oncol 7, 98-‐107 Eulalio, A., Helms, S., Fritzsch, C., Fauser, M., and Izaurralde, E (2009a) A C-‐ terminal silencing domain in GW182 is essential for miRNA function Rna 15, 1067-‐1077 119 Eulalio, A., Huntzinger, E., Nishihara, T., Rehwinkel, J., Fauser, M., and Izaurralde, E (2009b) Deadenylation is a widespread effect of miRNA regulation Rna 15, 21-‐ 32 Eulalio, A., Rehwinkel, J., Stricker, M., Huntzinger, E., Yang, S.F., Doerks, T., Dorner, S., Bork, P., Boutros, M., and Izaurralde, E (2007a) Target-‐specific requirements for enhancers of decapping in miRNA-‐mediated gene silencing Genes Dev 21, 2558-‐2570 Eulalio, A., Rehwinkel, J., Stricker, M., Huntzinger, E., Yang, S.F., Doerks, T., Dorner, S., Bork, P., Boutros, M., and Izaurralde, E (2007b) Target-‐specific requirements for enhancers of decapping in miRNA-‐mediated gene silencing Genes Dev 21, 2558-‐2570 Eulalio, A., Tritschler, F., and Izaurralde, E (2009c) The GW182 protein family in animal cells: new insights into domains required for miRNA-‐mediated gene silencing Rna 15, 1433-‐1442 Friedman, R.C., Farh, K.K., Burge, C.B., and Bartel, D.P (2009) Most mammalian mRNAs are conserved targets of microRNAs Genome Res 19, 92-‐105 Gabay, L., Seger, R., and Shilo, B.Z (1997) In situ activation pattern of DrosophilaEGF receptor pathway during development Science 277, 1103-‐1106 Gassama-‐Diagne, A., Yu, W., ter Beest, M., Martin-‐Belmonte, F., Kierbel, A., Engel, J., and Mostov, K (2006) Phosphatidylinositol-‐3,4,5-‐trisphosphate regulates the formation of the basolateral plasma membrane in epithelial cells Nat Cell Biol 8, 963-‐970 Ge, W., Chen, Y.W., Weng, R., Lim, S.F., Buescher, M., Zhang, R., and Cohen, S.M (2012) Overlapping functions of microRNAs in control of apoptosis during Drosophilaembryogenesis Cell Death Differ 19, 839-‐846 Giraldez, A.J., Mishima, Y., Rihel, J., Grocock, R.J., Van Dongen, S., Inoue, K., Enright, A.J., and Schier, A.F (2006a) Zebrafish MiR-‐430 Promotes Deadenylation and Clearance of Maternal mRNAs Science 312, 75-‐79 Giraldez, A.J., Mishima, Y., Rihel, J., Grocock, R.J., Van Dongen, S., Inoue, K., Enright, A.J., and Schier, A.F (2006b) Zebrafish MiR-‐430 promotes deadenylation and clearance of maternal mRNAs Science 312, 75-‐79 Grimson, A., Farh, K.K., Johnston, W.K., Garrett-‐Engele, P., Lim, L.P., and Bartel, D.P (2007a) MicroRNA targeting specificity in mammals: determinants beyond seed pairing Mol Cell 27, 91-‐105 Grimson, A., Farh, K.K., Johnston, W.K., Garrett-‐Engele, P., Lim, L.P., and Bartel, D.P (2007b) MicroRNA targeting specificity in mammals: determinants beyond seed pairing Mol Cell 27, 91-‐105 Groth, A.C., Fish, M., Nusse, R., and Calos, M.P (2004) Construction of transgenic Drosophilaby using the site-‐specific integrase from phage phiC31 Genetics 166, 1775-‐1782 Guichard, A., Biehs, B., Sturtevant, M.A., Wickline, L., Chacko, J., Howard, K., and Bier, E (1999) rhomboid and Star interact synergistically to promote EGFR/MAPK signaling during Drosophilawing vein development Development 126, 2663-‐2676 Guo, H., Ingolia, N.T., Weissman, J.S., and Bartel, D.P (2010a) Mammalian microRNAs predominantly act to decrease target mRNA levels Nature 466, 835-‐ 840 Guo, L., Liu, Y., Bai, Y., Sun, Y., Xiao, F., and Guo, Y (2010b) Gene expression profiling of drug-‐resistant small cell lung cancer cells by combining microRNA and cDNA expression analysis Eur J Cancer 46, 1692-‐1702 120 Haase, A.D., Jaskiewicz, L., Zhang, H., Laine, S., Sack, R., Gatignol, A., and Filipowicz, W (2005) TRBP, a regulator of cellular PKR and HIV-‐1 virus expression, interacts with Dicer and functions in RNA silencing EMBO Rep 6, 961-‐967 Hafner, M., Landthaler, M., Burger, L., Khorshid, M., Hausser, J., Berninger, P., Rothballer, A., Ascano, M., Jr., Jungkamp, A.C., Munschauer, M., et al (2010) Transcriptome-‐wide identification of RNA-‐binding protein and microRNA target sites by PAR-‐CLIP Cell 141, 129-‐141 Hahn, W.C., Counter, C.M., Lundberg, A.S., Beijersbergen, R.L., Brooks, M.W., and Weinberg, R.A (1999) Creation of human tumour cells with defined genetic elements Nature 400, 464-‐468 Hahn, W.C., Dessain, S.K., Brooks, M.W., King, J.E., Elenbaas, B., Sabatini, D.M., DeCaprio, J.A., and Weinberg, R.A (2002) Enumeration of the simian virus 40 early region elements necessary for human cell transformation Mol Cell Biol 22, 2111-‐2123 Hammell, M., Long, D., Zhang, L., Lee, A., Carmack, C.S., Han, M., Ding, Y., and Ambros, V (2008a) mirWIP: microRNA target prediction based on microRNA-‐ containing ribonucleoprotein-‐enriched transcripts Nat Methods 5, 813-‐819 Hammell, M., Long, D., Zhang, L., Lee, A., Carmack, C.S., Han, M., Ding, Y., and Ambros, V (2008b) mirWIP: microRNA target prediction based on microRNA-‐ containing ribonucleoprotein-‐enriched transcripts Nat Methods 5, 813-‐819 Hanahan, D., and Weinberg, R.A (2000) The hallmarks of cancer Cell 100, 57-‐70 Hanahan, D., and Weinberg, R.A (2011) Hallmarks of cancer: the next generation Cell 144, 646-‐674 Hay, B.A., Wassarman, D.A., and Rubin, G.M (1995) Drosophilahomologs of baculovirus inhibitor of apoptosis proteins function to block cell death Cell 83, 1253-‐1262 Hendrickson, D.G., Hogan, D.J., Herschlag, D., Ferrell, J.E., and Brown, P.O (2008) Systematic identification of mRNAs recruited to argonaute by specific microRNAs and corresponding changes in transcript abundance PLoS One 3, e2126 Herranz, H., Hong, X., and Cohen, S.M (2012a) Mutual repression by bantam miRNA and Capicua links the EGFR/MAPK and Hippo pathways in growth control Curr Biol 22, 651-‐657 Herranz, H., Hong, X., Hung, N.T., Voorhoeve, P.M., and Cohen, S.M (2012b) Oncogenic cooperation between SOCS family proteins and EGFR identified using a Drosophilaepithelial transformation model Genes Dev 26, 1602-‐1611 Hilgers, V., Bushati, N., and Cohen, S.M (2010) DrosophilamicroRNAs 263a/b confer robustness during development by protecting nascent sense organs from apoptosis PLoS Biol 8, e1000396 Hipfner, D.R., Weigmann, K., and Cohen, S.M (2002) The bantam gene regulates Drosophilagrowth Genetics 161, 1527-‐1537 Hong, X., Hammell, M., Ambros, V., and Cohen, S.M (2009) Immunopurification of Ago1 miRNPs selects for a distinct class of microRNA targets Proc Natl Acad Sci U S A 106, 15085-‐15090 Horwich, M.D., and Zamore, P.D (2008a) Design and delivery of antisense oligonucleotides to block microRNA function in cultured Drosophilaand human cells Nat Protoc 3, 1537-‐1549 Horwich, M.D., and Zamore, P.D (2008b) Design and delivery of antisense oligonucleotides to block microRNA function in cultured Drosophilaand human cells Nat Protoc 3, 1537-‐1549 121 Huse, J.T., Brennan, C., Hambardzumyan, D., Wee, B., Pena, J., Rouhanifard, S.H., Sohn-‐Lee, C., le Sage, C., Agami, R., Tuschl, T., et al (2009) The PTEN-‐regulating microRNA miR-‐26a is amplified in high-‐grade glioma and facilitates gliomagenesis in vivo Genes Dev 23, 1327-‐1337 Hutvagner, G., and Zamore, P.D (2002) A microRNA in a multiple-‐turnover RNAi enzyme complex Science 297, 2056-‐2060 Hynes, N.E., and MacDonald, G (2009) ErbB receptors and signaling pathways in cancer Curr Opin Cell Biol 21, 177-‐184 Iorio, M.V., and Croce, C.M (2012) MicroRNA dysregulation in cancer: diagnostics, monitoring and therapeutics A comprehensive review EMBO Mol Med 4, 143-‐159 Ivshina, A.V., George, J., Senko, O., Mow, B., Putti, T.C., Smeds, J., Lindahl, T., Pawitan, Y., Hall, P., Nordgren, H., et al (2006) Genetic reclassification of histologic grade delineates new clinical subtypes of breast cancer Cancer Res 66, 10292-‐10301 Johnson, S.M., Grosshans, H., Shingara, J., Byrom, M., Jarvis, R., Cheng, A., Labourier, E., Reinert, K.L., Brown, D., and Slack, F.J (2005) RAS is regulated by the let-‐7 microRNA family Cell 120, 635-‐647 Johnston, R.J., and Hobert, O (2003) A microRNA controlling left/right neuronal asymmetry in Caenorhabditis elegans Nature 426, 845-‐849 Jones, W.D., Cayirlioglu, P., Kadow, I.G., and Vosshall, L.B (2007) Two chemosensory receptors together mediate carbon dioxide detection in Drosophila Nature 445, 86-‐90 Karginov, F.V., Conaco, C., Xuan, Z., Schmidt, B.H., Parker, J.S., Mandel, G., and Hannon, G.J (2007a) A biochemical approach to identifying microRNA targets Proc Natl Acad Sci U S A 104, 19291-‐19296 Karginov, F.V., Conaco, C., Xuan, Z., Schmidt, B.H., Parker, J.S., Mandel, G., and Hannon, G.J (2007b) A biochemical approach to identifying microRNA targets Proc Natl Acad Sci U S A 104, 19291-‐19296 Kario, E., Marmor, M.D., Adamsky, K., Citri, A., Amit, I., Amariglio, N., Rechavi, G., and Yarden, Y (2005) Suppressors of cytokine signaling and regulate epidermal growth factor receptor signaling J Biol Chem 280, 7038-‐7048 Karn, T., Pusztai, L., Holtrich, U., Iwamoto, T., Shiang, C.Y., Schmidt, M., Muller, V., Solbach, C., Gaetje, R., Hanker, L., et al (2011) Homogeneous datasets of triple negative breast cancers enable the identification of novel prognostic and predictive signatures PLoS One 6, e28403 Karres, J.S., Hilgers, V., Carrera, I., Treisman, J., and Cohen, S.M (2007) The conserved microRNA miR-‐8 tunes atrophin levels to prevent neurodegeneration in Drosophila Cell 131, 136-‐145 Karsten, P., Hader, S., and Zeidler, M.P (2002) Cloning and expression of DrosophilaSOCS36E and its potential regulation by the JAK/STAT pathway Mech Dev 117, 343-‐346 Kertesz, M., Iovino, N., Unnerstall, U., Gaul, U., and Segal, E (2007a) The role of site accessibility in microRNA target recognition Nat Genet 39, 1278-‐1284 Kertesz, M., Iovino, N., Unnerstall, U., Gaul, U., and Segal, E (2007b) The role of site accessibility in microRNA target recognition Nat Genet 39, 1278-‐1284 Khan, A.A., Betel, D., Miller, M.L., Sander, C., Leslie, C.S., and Marks, D.S (2009) Transfection of small RNAs globally perturbs gene regulation by endogenous microRNAs Nat Biotechnol 27, 549-‐555 122 Kheradpour, P., Stark, A., Roy, S., and Kellis, M (2007) Reliable prediction of regulator targets using 12 Drosophilagenomes Genome Res 17, 1919-‐1931 Khvorova, A., Reynolds, A., and Jayasena, S.D (2003) Functional siRNAs and miRNAs exhibit strand bias Cell 115, 209-‐216 Kiriakidou, M., Nelson, P.T., Kouranov, A., Fitziev, P., Bouyioukos, C., Mourelatos, Z., and Hatzigeorgiou, A (2004) A combined computational-‐experimental approach predicts human microRNA targets Genes Dev 18, 1165-‐1178 Klein, U., Lia, M., Crespo, M., Siegel, R., Shen, Q., Mo, T., Ambesi-‐Impiombato, A., Califano, A., Migliazza, A., Bhagat, G., et al (2010) The DLEU2/miR-‐15a/16-‐1 cluster controls B cell proliferation and its deletion leads to chronic lymphocytic leukemia Cancer Cell 17, 28-‐40 Kloosterman, W.P., Wienholds, E., Ketting, R.F., and Plasterk, R.H (2004) Substrate requirements for let-‐7 function in the developing zebrafish embryo Nucleic Acids Res 32, 6284-‐6291 Krek, A., Grun, D., Poy, M.N., Wolf, R., Rosenberg, L., Epstein, E.J., MacMenamin, P., da Piedade, I., Gunsalus, K.C., Stoffel, M., et al (2005) Combinatorial microRNA target predictions Nat Genet 37, 495-‐500 Lagos-‐Quintana, M., Rauhut, R., Yalcin, A., Meyer, J., Lendeckel, W., and Tuschl, T (2002) Identification of tissue-‐specific microRNAs from mouse Curr Biol 12, 735-‐ 739 Landthaler, M., Gaidatzis, D., Rothballer, A., Chen, P.Y., Soll, S.J., Dinic, L., Ojo, T., Hafner, M., Zavolan, M., and Tuschl, T (2008) Molecular characterization of human Argonaute-‐containing ribonucleoprotein complexes and their bound target mRNAs Rna 14, 2580-‐2596 Lau, N.C., Lim, L.P., Weinstein, E.G., and Bartel, D.P (2001) An abundant class of tiny RNAs with probable regulatory roles in Caenorhabditis elegans Science 294, 858-‐862 Lee, R.C., Feinbaum, R.L., and Ambros, V (1993) The C elegans heterochronic gene lin-‐4 encodes small RNAs with antisense complementarity to lin-‐14 Cell 75, 843-‐854 Lee, Y., Kim, M., Han, J., Yeom, K.H., Lee, S., Baek, S.H., and Kim, V.N (2004a) MicroRNA genes are transcribed by RNA polymerase II Embo J 23, 4051-‐4060 Lee, Y.S., Nakahara, K., Pham, J.W., Kim, K., He, Z., Sontheimer, E.J., and Carthew, R.W (2004b) Distinct roles for DrosophilaDicer-‐1 and Dicer-‐2 in the siRNA/miRNA silencing pathways Cell 117, 69-‐81 Lehmann, U., Hasemeier, B., Christgen, M., Muller, M., Romermann, D., Langer, F., and Kreipe, H (2008) Epigenetic inactivation of microRNA gene hsa-‐mir-‐9-‐1 in human breast cancer J Pathol 214, 17-‐24 Lewis, B.P., Burge, C.B., and Bartel, D.P (2005) Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets Cell 120, 15-‐20 Lewis, B.P., Shih, I.H., Jones-‐Rhoades, M.W., Bartel, D.P., and Burge, C.B (2003) Prediction of mammalian microRNA targets Cell 115, 787-‐798 Li, S.C., Tang, P., and Lin, W.C (2007) Intronic microRNA: discovery and biological implications DNA Cell Biol 26, 195-‐207 Li, X., and Carthew, R.W (2005) A microRNA mediates EGF receptor signaling and promotes photoreceptor differentiation in the Drosophilaeye Cell 123, 1267-‐ 1277 123 Li, X., Cassidy, J.J., Reinke, C.A., Fischboeck, S., and Carthew, R.W (2009) A microRNA imparts robustness against environmental fluctuation during development Cell 137, 273-‐282 Li, Y., Zou, L., Li, Q., Haibe-‐Kains, B., Tian, R., Li, Y., Desmedt, C., Sotiriou, C., Szallasi, Z., Iglehart, J.D., et al (2010) Amplification of LAPTM4B and YWHAZ contributes to chemotherapy resistance and recurrence of breast cancer Nat Med 16, 214-‐ 218 Liang, Z., Li, Y., Huang, K., Wagar, N., and Shim, H (2011) Regulation of miR-‐19 to breast cancer chemoresistance through targeting PTEN Pharm Res 28, 3091-‐ 3100 Lim, L.P., Lau, N.C., Garrett-‐Engele, P., Grimson, A., Schelter, J.M., Castle, J., Bartel, D.P., Linsley, P.S., and Johnson, J.M (2005) Microarray analysis shows that some microRNAs downregulate large numbers of target mRNAs Nature 433, 769-‐773 Liu, Q., Rand, T.A., Kalidas, S., Du, F., Kim, H.E., Smith, D.P., and Wang, X (2003) R2D2, a bridge between the initiation and effector steps of the DrosophilaRNAi pathway Science 301, 1921-‐1925 Loi, S., Haibe-‐Kains, B., Desmedt, C., Wirapati, P., Lallemand, F., Tutt, A., Gillet, C., Ellis, P., Ryder, K., Reid, J., et al (2008) Predicting prognosis using molecular profiling in estrogen receptor-‐positive breast cancer treated with tamoxifen BMC Genomics 9, 239 Long, D., Lee, R., Williams, P., Chan, C.Y., Ambros, V., and Ding, Y (2007) Potent effect of target structure on microRNA function Nature structural & molecular biology 14, 287-‐294 Loya, C.M., Lu, C.S., Van Vactor, D., and Fulga, T.A (2009) Transgenic microRNA inhibition with spatiotemporal specificity in intact organisms Nat Methods 6, 897-‐903 Lu, J., Getz, G., Miska, E.A., Alvarez-‐Saavedra, E., Lamb, J., Peck, D., Sweet-‐Cordero, A., Ebert, B.L., Mak, R.H., Ferrando, A.A., et al (2005) MicroRNA expression profiles classify human cancers Nature 435, 834-‐838 Lund, E., Guttinger, S., Calado, A., Dahlberg, J.E., and Kutay, U (2004) Nuclear export of microRNA precursors Science 303, 95-‐98 Ma, L., Young, J., Prabhala, H., Pan, E., Mestdagh, P., Muth, D., Teruya-‐Feldstein, J., Reinhardt, F., Onder, T.T., Valastyan, S., et al (2010) miR-‐9, a MYC/MYCN-‐ activated microRNA, regulates E-‐cadherin and cancer metastasis Nat Cell Biol 12, 247-‐256 Manoli, D.S., Foss, M., Villella, A., Taylor, B.J., Hall, J.C., and Baker, B.S (2005) Male-‐ specific fruitless specifies the neural substrates of Drosophilacourtship behaviour Nature 436, 395-‐400 Martin-‐Belmonte, F., Gassama, A., Datta, A., Yu, W., Rescher, U., Gerke, V., and Mostov, K (2007) PTEN-‐mediated apical segregation of phosphoinositides controls epithelial morphogenesis through Cdc42 Cell 128, 383-‐397 Martinez, J., Patkaniowska, A., Urlaub, H., Luhrmann, R., and Tuschl, T (2002) Single-‐stranded antisense siRNAs guide target RNA cleavage in RNAi Cell 110, 563-‐574 Mavrakis, K.J., Wolfe, A.L., Oricchio, E., Palomero, T., de Keersmaecker, K., McJunkin, K., Zuber, J., James, T., Khan, A.A., Leslie, C.S., et al (2010) Genome-‐wide RNA-‐mediated interference screen identifies miR-‐19 targets in Notch-‐induced T-‐ cell acute lymphoblastic leukaemia Nat Cell Biol 12, 372-‐379 Meister, G., Landthaler, M., Dorsett, Y., and Tuschl, T (2004) Sequence-‐specific inhibition of microRNA-‐ and siRNA-‐induced RNA silencing Rna 10, 544-‐550 124 Mendell, J.T., and Olson, E.N (2012) MicroRNAs in stress signaling and human disease Cell 148, 1172-‐1187 Michelson, A.M., Gisselbrecht, S., Buff, E., and Skeath, J.B (1998) Heartbroken is a specific downstream mediator of FGF receptor signalling in Drosophila Development 125, 4379-‐4389 Miles, W.O., Dyson, N.J., and Walker, J.A (2011) Modeling tumor invasion and metastasis in Drosophila Dis Model Mech 4, 753-‐761 Mili, S., and Steitz, J.A (2004) Evidence for reassociation of RNA-‐binding proteins after cell lysis: implications for the interpretation of immunoprecipitation analyses Rna 10, 1692-‐1694 Miska, E.A., Alvarez-‐Saavedra, E., Abbott, A.L., Lau, N.C., Hellman, A.B., McGonagle, S.M., Bartel, D.P., Ambros, V.R., and Horvitz, H.R (2007a) Most Caenorhabditis elegans microRNAs are individually not essential for development or viability PLoS Genet 3, e215 Miska, E.A., Alvarez-‐Saavedra, E., Abbott, A.L., Lau, N.C., Hellman, A.B., McGonagle, S.M., Bartel, D.P., Ambros, V.R., and Horvitz, H.R (2007b) Most Caenorhabditis elegans microRNAs are individually not essential for development or viability PLoS Genet 3, e215 Mu, P., Han, Y.C., Betel, D., Yao, E., Squatrito, M., Ogrodowski, P., de Stanchina, E., D'Andrea, A., Sander, C., and Ventura, A (2009) Genetic dissection of the miR-‐ 17~92 cluster of microRNAs in Myc-‐induced B-‐cell lymphomas Genes Dev 23, 2806-‐2811 Nahvi, A., Shoemaker, C.J., and Green, R (2009) An expanded seed sequence definition accounts for full regulation of the hid 3' UTR by bantam miRNA Rna 15, 814-‐822 Nicholson, S.E., Metcalf, D., Sprigg, N.S., Columbus, R., Walker, F., Silva, A., Cary, D., Willson, T.A., Zhang, J.G., Hilton, D.J., et al (2005) Suppressor of cytokine signaling (SOCS)-‐5 is a potential negative regulator of epidermal growth factor signaling Proc Natl Acad Sci U S A 102, 2328-‐2333 Nolo, R., Morrison, C.M., Tao, C., Zhang, X., and Halder, G (2006) The bantam microRNA is a target of the hippo tumor-‐suppressor pathway Curr Biol 16, 1895-‐ 1904 Okamura, K., Ishizuka, A., Siomi, H., and Siomi, M.C (2004) Distinct roles for Argonaute proteins in small RNA-‐directed RNA cleavage pathways Genes Dev 18, 1655-‐1666 Ott, C.E., Grunhagen, J., Jager, M., Horbelt, D., Schwill, S., Kallenbach, K., Guo, G., Manke, T., Knaus, P., Mundlos, S., et al (2011) MicroRNAs differentially expressed in postnatal aortic development downregulate elastin via 3' UTR and coding-‐ sequence binding sites PLoS One 6, e16250 Paez, J.G., Janne, P.A., Lee, J.C., Tracy, S., Greulich, H., Gabriel, S., Herman, P., Kaye, F.J., Lindeman, N., Boggon, T.J., et al (2004) EGFR mutations in lung cancer: correlation with clinical response to gefitinib therapy Science 304, 1497-‐1500 Park, S.M., Gaur, A.B., Lengyel, E., and Peter, M.E (2008) The miR-‐200 family determines the epithelial phenotype of cancer cells by targeting the E-‐cadherin repressors ZEB1 and ZEB2 Genes Dev 22, 894-‐907 Pawitan, Y., Bjohle, J., Amler, L., Borg, A.L., Egyhazi, S., Hall, P., Han, X., Holmberg, L., Huang, F., Klaar, S., et al (2005) Gene expression profiling spares early breast cancer patients from adjuvant therapy: derived and validated in two population-‐ based cohorts Breast Cancer Res 7, R953-‐964 125 Peinado, H., Olmeda, D., and Cano, A (2007) Snail, Zeb and bHLH factors in tumour progression: an alliance against the epithelial phenotype? Nat Rev Cancer 7, 415-‐428 Petersen, C.P., Bordeleau, M.E., Pelletier, J., and Sharp, P.A (2006) Short RNAs repress translation after initiation in mammalian cells Mol Cell 21, 533-‐542 Pham, J.W., Pellino, J.L., Lee, Y.S., Carthew, R.W., and Sontheimer, E.J (2004) A Dicer-‐2-‐dependent 80s complex cleaves targeted mRNAs during RNAi in Drosophila Cell 117, 83-‐94 Pillai, R.S., Bhattacharyya, S.N., Artus, C.G., Zoller, T., Cougot, N., Basyuk, E., Bertrand, E., and Filipowicz, W (2005) Inhibition of translational initiation by Let-‐7 MicroRNA in human cells Science 309, 1573-‐1576 Poy, M.N., Hausser, J., Trajkovski, M., Braun, M., Collins, S., Rorsman, P., Zavolan, M., and Stoffel, M (2009) miR-‐375 maintains normal pancreatic alpha-‐ and beta-‐ cell mass Proc Natl Acad Sci U S A 106, 5813-‐5818 Prober, D.A., and Edgar, B.A (2000) Ras1 promotes cellular growth in the Drosophilawing Cell 100, 435-‐446 Prosser, H.M., Koike-‐Yusa, H., Cooper, J.D., Law, F.C., and Bradley, A (2011) A resource of vectors and ES cells for targeted deletion of microRNAs in mice Nat Biotechnol 29, 840-‐845 Rasmussen, K.D., Simmini, S., Abreu-‐Goodger, C., Bartonicek, N., Di Giacomo, M., Bilbao-‐Cortes, D., Horos, R., Von Lindern, M., Enright, A.J., and O'Carroll, D (2010) The miR-‐144/451 locus is required for erythroid homeostasis J Exp Med 207, 1351-‐1358 Rehmsmeier, M., Steffen, P., Hochsmann, M., and Giegerich, R (2004) Fast and effective prediction of microRNA/target duplexes Rna 10, 1507-‐1517 Rehwinkel, J., Natalin, P., Stark, A., Brennecke, J., Cohen, S.M., and Izaurralde, E (2006a) Genome-‐wide analysis of mRNAs regulated by Drosha and Argonaute proteins in Drosophilamelanogaster Mol Cell Biol 26, 2965-‐2975 Rehwinkel, J., Natalin, P., Stark, A., Brennecke, J., Cohen, S.M., and Izaurralde, E (2006b) Genome-‐wide analysis of mRNAs regulated by Drosha and Argonaute proteins in Drosophilamelanogaster Mol Cell Biol 26, 2965-‐2975 Riley, K.J., Yario, T.A., and Steitz, J.A (2012) Association of Argonaute proteins and microRNAs can occur after cell lysis Rna 18, 1581-‐1585 Rivas, F.V., Tolia, N.H., Song, J.J., Aragon, J.P., Liu, J., Hannon, G.J., and Joshua-‐Tor, L (2005) Purified Argonaute2 and an siRNA form recombinant human RISC Nat Struct Mol Biol 12, 340-‐349 Rody, A., Karn, T., Liedtke, C., Pusztai, L., Ruckhaeberle, E., Hanker, L., Gaetje, R., Solbach, C., Ahr, A., Metzler, D., et al (2011) A clinically relevant gene signature in triple negative and basal-‐like breast cancer Breast Cancer Res 13, R97 Rong, H., Liu, T.B., Yang, K.J., Yang, H.C., Wu, D.H., Liao, C.P., Hong, F., Yang, H.Z., Wan, F., Ye, X.Y., et al (2011) MicroRNA-‐134 plasma levels before and after treatment for bipolar mania J Psychiatr Res 45, 92-‐95 Rong, Y.S., and Golic, K.G (2000) Gene targeting by homologous recombination in Drosophila Science 288, 2013-‐2018 Rong, Y.S., and Golic, K.G (2001) A targeted gene knockout in Drosophila Genetics 157, 1307-‐1312 Rong, Y.S., and Golic, K.G (2003) The homologous chromosome is an effective template for the repair of mitotic DNA double-‐strand breaks in Drosophila Genetics 165, 1831-‐1842 126 Rottiers, V., and Naar, A.M (2012) MicroRNAs in metabolism and metabolic disorders Nat Rev Mol Cell Biol 13, 239-‐250 Ruby, J.G., Stark, A., Johnston, W.K., Kellis, M., Bartel, D.P., and Lai, E.C (2007) Evolution, biogenesis, expression, and target predictions of a substantially expanded set of DrosophilamicroRNAs Genome Res 17, 1850-‐1864 Rudrapatna, V.A., Cagan, R.L., and Das, T.K (2012) Drosophilacancer models Dev Dyn 241, 107-‐118 Rybak, A., Fuchs, H., Smirnova, L., Brandt, C., Pohl, E.E., Nitsch, R., and Wulczyn, F.G (2008) A feedback loop comprising lin-‐28 and let-‐7 controls pre-‐let-‐7 maturation during neural stem-‐cell commitment Nat Cell Biol 10, 987-‐993 Saito, Y., Liang, G., Egger, G., Friedman, J.M., Chuang, J.C., Coetzee, G.A., and Jones, P.A (2006) Specific activation of microRNA-‐127 with downregulation of the proto-‐oncogene BCL6 by chromatin-‐modifying drugs in human cancer cells Cancer Cell 9, 435-‐443 Schinzel, A.C., and Hahn, W.C (2008) Oncogenic transformation and experimental models of human cancer Front Biosci 13, 71-‐84 Schmidt, M., Bohm, D., von Torne, C., Steiner, E., Puhl, A., Pilch, H., Lehr, H.-‐A., Hengstler, J.G., Kolbl, H., and Gehrmann, M (2008) The Humoral Immune System Has a Key Prognostic Impact in Node-‐Negative Breast Cancer Cancer Research 68, 5405-‐5413 Schnall-‐Levin, M., Rissland, O.S., Johnston, W.K., Perrimon, N., Bartel, D.P., and Berger, B (2011) Unusually effective microRNA targeting within repeat-‐rich coding regions of mammalian mRNAs Genome Res 21, 1395-‐1403 Schnall-‐Levin, M., Zhao, Y., Perrimon, N., and Berger, B (2010) Conserved microRNA targeting in Drosophilais as widespread in coding regions as in 3'UTRs Proc Natl Acad Sci U S A 107, 15751-‐15756 Schwarz, D.S., Hutvagner, G., Du, T., Xu, Z., Aronin, N., and Zamore, P.D (2003) Asymmetry in the assembly of the RNAi enzyme complex Cell 115, 199-‐208 Seggerson, K., Tang, L., and Moss, E.G (2002) Two genetic circuits repress the Caenorhabditis elegans heterochronic gene lin-‐28 after translation initiation Dev Biol 243, 215-‐225 Selbach, M., Schwanhausser, B., Thierfelder, N., Fang, Z., Khanin, R., and Rajewsky, N (2008) Widespread changes in protein synthesis induced by microRNAs Nature 455, 58-‐63 Siegal, M.L., and Hartl, D.L (1996) Transgene Coplacement and high efficiency site-‐specific recombination with the Cre/loxP system in Drosophila Genetics 144, 715-‐726 Simon, D.J., Madison, J.M., Conery, A.L., Thompson-‐Peer, K.L., Soskis, M., Ruvkun, G.B., Kaplan, J.M., and Kim, J.K (2008) The microRNA miR-‐1 regulates a MEF-‐2-‐ dependent retrograde signal at neuromuscular junctions Cell 133, 903-‐915 Sokol, N.S., Xu, P., Jan, Y.N., and Ambros, V (2008) Drosophilalet-‐7 microRNA is required for remodeling of the neuromusculature during metamorphosis Genes Dev 22, 1591-‐1596 Stark, A., Brennecke, J., Bushati, N., Russell, R.B., and Cohen, S.M (2005) Animal MicroRNAs confer robustness to gene expression and have a significant impact on 3'UTR evolution Cell 123, 1133-‐1146 Stratton, M.R (2011) Exploring the genomes of cancer cells: progress and promise Science 331, 1553-‐1558 Stuart, D., and Sellers, W.R (2009) Linking somatic genetic alterations in cancer to therapeutics Curr Opin Cell Biol 21, 304-‐310 127 Tagawa, H., and Seto, M (2005) A microRNA cluster as a target of genomic amplification in malignant lymphoma Leukemia 19, 2013-‐2016 Taulli, R., Bersani, F., Foglizzo, V., Linari, A., Vigna, E., Ladanyi, M., Tuschl, T., and Ponzetto, C (2009) The muscle-‐specific microRNA miR-‐206 blocks human rhabdomyosarcoma growth in xenotransplanted mice by promoting myogenic differentiation J Clin Invest 119, 2366-‐2378 Teleman, A.A., Maitra, S., and Cohen, S.M (2006) Drosophilalacking microRNA miR-‐278 are defective in energy homeostasis Genes Dev 20, 417-‐422 Thiery, J.P., Acloque, H., Huang, R.Y., and Nieto, M.A (2009) Epithelial-‐ mesenchymal transitions in development and disease Cell 139, 871-‐890 Thompson, B.J., and Cohen, S.M (2006) The Hippo pathway regulates the bantam microRNA to control cell proliferation and apoptosis in Drosophila Cell 126, 767-‐ 774 Trabucchi, M., Briata, P., Garcia-‐Mayoral, M., Haase, A.D., Filipowicz, W., Ramos, A., Gherzi, R., and Rosenfeld, M.G (2009) The RNA-‐binding protein KSRP promotes the biogenesis of a subset of microRNAs Nature 459, 1010-‐1014 Tsang, J.S., Ebert, M.S., and van Oudenaarden, A (2010) Genome-‐wide dissection of microRNA functions and cotargeting networks using gene set signatures Mol Cell 38, 140-‐153 van de Vijver, M.J., He, Y.D., van't Veer, L.J., Dai, H., Hart, A.A., Voskuil, D.W., Schreiber, G.J., Peterse, J.L., Roberts, C., Marton, M.J., et al (2002) A gene-‐ expression signature as a predictor of survival in breast cancer N Engl J Med 347, 1999-‐2009 van Vliet, M., Reyal, F., Horlings, H., van de Vijver, M., Reinders, M., and Wessels, L (2008) Pooling breast cancer datasets has a synergetic effect on classification performance and improves signature stability BMC Genomics 9, 375 Varghese, J., and Cohen, S.M (2007a) microRNA miR-‐14 acts to modulate a positive autoregulatory loop controlling steroid hormone signaling in Drosophila Genes Dev 21, 2277-‐2282 Varghese, J., and Cohen, S.M (2007b) microRNA miR-‐14 acts to modulate a positive autoregulatory loop controlling steroid hormone signaling in Drosophila Genes Dev 21, 2277-‐2282 Vaucheret, H (2008) Plant ARGONAUTES Trends Plant Sci 13, 350-‐358 Vella, M.C., Choi, E.Y., Lin, S.Y., Reinert, K., and Slack, F.J (2004) The C elegans microRNA let-‐7 binds to imperfect let-‐7 complementary sites from the lin-‐41 3'UTR Genes Dev 18, 132-‐137 Ventura, A., Young, A.G., Winslow, M.M., Lintault, L., Meissner, A., Erkeland, S.J., Newman, J., Bronson, R.T., Crowley, D., Stone, J.R., et al (2008) Targeted deletion reveals essential and overlapping functions of the miR-‐17 through 92 family of miRNA clusters Cell 132, 875-‐886 von Roretz, C., and Gallouzi, I.E (2008) Decoding ARE-‐mediated decay: is microRNA part of the equation? J Cell Biol 181, 189-‐194 Voorhoeve, P.M., and Agami, R (2003) The tumor-‐suppressive functions of the human INK4A locus Cancer Cell 4, 311-‐319 Voorhoeve, P.M., le Sage, C., Schrier, M., Gillis, A.J., Stoop, H., Nagel, R., Liu, Y.P., van Duijse, J., Drost, J., Griekspoor, A., et al (2006) A genetic screen implicates miRNA-‐372 and miRNA-‐373 as oncogenes in testicular germ cell tumors Cell 124, 1169-‐1181 128 Wang, S., Aurora, A.B., Johnson, B.A., Qi, X., McAnally, J., Hill, J.A., Richardson, J.A., Bassel-‐Duby, R., and Olson, E.N (2008a) The endothelial-‐specific microRNA miR-‐ 126 governs vascular integrity and angiogenesis Dev Cell 15, 261-‐271 Wang, S.L., Hawkins, C.J., Yoo, S.J., Muller, H.A., and Hay, B.A (1999) The Drosophila caspase inhibitor DIAP1 is essential for cell survival and is negatively regulated by HID Cell 98, 453-‐463 Wang, Y., Juranek, S., Li, H., Sheng, G., Tuschl, T., and Patel, D.J (2008b) Structure of an argonaute silencing complex with a seed-‐containing guide DNA and target RNA duplex Nature 456, 921-‐926 Wang, Y., Juranek, S., Li, H., Sheng, G., Wardle, G.S., Tuschl, T., and Patel, D.J (2009) Nucleation, propagation and cleavage of target RNAs in Ago silencing complexes Nature 461, 754-‐761 Weng, R., Chen, Y.W., Bushati, N., Cliffe, A., and Cohen, S.M (2009) Recombinase-‐ mediated cassette exchange provides a versatile platform for gene targeting: knockout of miR-‐31b Genetics 183, 399-‐402 Wightman, B., Burglin, T.R., Gatto, J., Arasu, P., and Ruvkun, G (1991) Negative regulatory sequences in the lin-‐14 3'-‐untranslated region are necessary to generate a temporal switch during Caenorhabditis elegans development Genes Dev 5, 1813-‐1824 Wightman, B., Ha, I., and Ruvkun, G (1993) Posttranscriptional regulation of the heterochronic gene lin-‐14 by lin-‐4 mediates temporal pattern formation in C elegans Cell 75, 855-‐862 Wilder, E.L., and Perrimon, N (1995) Dual functions of wingless in the Drosophilaleg imaginal disc Development 121, 477-‐488 Xu, G., Fewell, C., Taylor, C., Deng, N., Hedges, D., Wang, X., Zhang, K., Lacey, M., Zhang, H., Yin, Q., et al (2010) Transcriptome and targetome analysis in MIR155 expressing cells using RNA-‐seq Rna 16, 1610-‐1622 Xu, P., Vernooy, S.Y., Guo, M., and Hay, B.A (2003) The DrosophilamicroRNA Mir-‐ 14 suppresses cell death and is required for normal fat metabolism Curr Biol 13, 790-‐795 Yi, R., Qin, Y., Macara, I.G., and Cullen, B.R (2003) Exportin-‐5 mediates the nuclear export of pre-‐microRNAs and short hairpin RNAs Genes Dev 17, 3011-‐ 3016 Yu, F., Yao, H., Zhu, P., Zhang, X., Pan, Q., Gong, C., Huang, Y., Hu, X., Su, F., Lieberman, J., et al (2007) let-‐7 regulates self renewal and tumorigenicity of breast cancer cells Cell 131, 1109-‐1123 Zecca, M., and Struhl, G (2002) Control of growth and patterning of the Drosophilawing imaginal disc by EGFR-‐mediated signaling Development 129, 1369-‐1376 Zhang, L., Ding, L., Cheung, T.H., Dong, M.Q., Chen, J., Sewell, A.K., Liu, X., Yates, J.R., 3rd, and Han, M (2007) Systematic identification of C elegans miRISC proteins, miRNAs, and mRNA targets by their interactions with GW182 proteins AIN-‐1 and AIN-‐2 Mol Cell 28, 598-‐613 Zhao, Y., Ransom, J.F., Li, A., Vedantham, V., von Drehle, M., Muth, A.N., Tsuchihashi, T., McManus, M.T., Schwartz, R.J., and Srivastava, D (2007) Dysregulation of cardiogenesis, cardiac conduction, and cell cycle in mice lacking miRNA-‐1-‐2 Cell 129, 303-‐317 129 ... characterizations of miRNA -target interactions involved in growth control and cancer transformation I used biochemical immunoprecipitation against Drosophila Ago1 (Ago1-IP) to isolate and purify Ago1/miRNA/mRNA... protein (green) and GW182 (blue) GW182 proteins contain an N-terminal AGO-binding domain, which provides multiple binding sites for Argonaute proteins and a bipartite C- 28 terminal silencing... As shown in Fig 1.2, Ago are large proteins about 100kDa comprising a single variable N-terminal domain and three conserved C-terminal domains, including the PAZ, MID and PIWI domains (Vaucheret,