Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống
1
/ 85 trang
THÔNG TIN TÀI LIỆU
Thông tin cơ bản
Định dạng
Số trang
85
Dung lượng
1,23 MB
Nội dung
Results Fig. 3-14 gli2b MO blocks zebrafish gli2b mRNA splicing. genomic sequence used for designing splicing (A) Partial gli2b morpholino. Sequence complementary to morpholino is underlined in red. Exons (gli2b cDNA:1125-1314, 1315-1425, 1426-1560 nt) are in cyan and introns are in black. Arrows indicate primers showed in B. (B) Diagram shows the strategy of using splice MO (Red bar) for blocking the normal splice site and organization of predicted mRNA. The blue and green arrows represent the primers for PCR used to test whether the splice MO affects formation of gli2b mRNA. The sequences for primers F1, F2, R2 are indicated in A; R1 is indicated in Fig. 3-2. (C) RT-PCR results. Control RNA (lane C) was extracted from gli2bMMS morphants; morphant RNA (lane M) was extracted from gli2bSPL. Primers used are indicated in B. EF1α primers were used for internal control of mRNA quality. 118 Results 3.4.2 Classification of phenotypes of gli2b morphants Both the gli2bATG and gli2bSPL morphants showed similar morphological changes. Compared with wild type or control MO injected embryos, gli2b morphants demonstrated dosage-dependent phenotypes (Table 3-1). The mild phenotype (Type I) of gli2b morphants consisted of the enlarged hindbrain ventricle and smaller brain and eyes by 48 hpf (Fig. 3-15C, D). The severe phenotype (Type II) of gli2b morphants demonstrated also abnormality of the trunk and in ~50% cases conversed otoliths at 48 hpf (Fig. 3-15E, F). Interestingly, after injection of a high dose (>2 pmol) of gli2b MO, a defect of the convergence-extension movement could be observed. By the end of gastrulation these morphants showed a phenotype similar to that of mutants with affected BMP signaling (Fig. 3-15 H, I), indicating that the early function of Gli2b might be related to dorso-ventral (D-V) patterning. This early function may be due to maternal expression of this gene and not Hh related. Therefore, to circumvent the early defect and investigate the function of gli2b in neural development, we typically injected embryos with the almost 10 times lower dose of morpholino (0.3 pmol). 119 Results Table 3-2 Phenotypes obtained after injection of gli2b morpholino oligonucleotides in zebrafish embryos. Mortality Looks Mild Strong gli2bAtg MO Injected injected(pmol) number >24hpf(Num/percentage) normal phenotype phenotype 0.15 100 12(12%) 28(28%) 54(54%) 6(6%) 0.3 100 15(15%) 13(13%) 49(49%) 23(23%) 0.6 50 7(14%) 5(10%) 17(34%) 21(42%) 100 35(35%) - 11(11%) 54(54%) gli2bMMA 50 3(6%) 45(94%) 2(4%) - gli2bSpl MO Injected Mortality Looks Mild Strong injected(pmol) number >24hpf(Num/percentage) normal phenotype phenotype 0.15 100 8(8%) 46(46%) 43(43%) 3(3%) 0.3 100 7(7%) 18(18%) 61(61%) 14(14%) 0.6 100 13(13%) 7(7%) 52(52%) 28(28%) 100 18(18%) - 33(33%) 49(49%) gli2bMMS 50 2(4%) 48(96%) - - 120 Results A B C D E F G H Fig. 3-15 Classification of Gli2b morphants. I (A-F) Gli2b morphant with mild phenotype (Type I) and severe phenotype (Type II) at 30 hpf and 48 hpf. The mild phenotype (C, D) of Gli2b morphant is characterized by an enlarged hindbrain ventricle but relatively normal trunk. The severe phenotype (E, F) of Gli2b morphant shows not only enlarged hindbrain ventricle, but also curled trunk. (H, I) gli2b morphants in high doses (dose I, pmol; dose II, 1.5 pmol) showed convergence-extension defects (arrows) in different levels compared with control (G). 121 Results 3.4.3. Comparison of the phenotypes of gli2 and gli2b morphants Both the gli2b and gli2 morphants by 48 hpf were characterized by the similarly enlarged 4th ventricle and smaller brain and eyes (Fig.3-16B, C). Further analysis of the Gli2b morphant under the differential interference contrast (DIC) microscope showed the intact horizontal myoseptum in contrast to Gli2 morphants, which lacked this structure (Fig.3-16E,F; 45/52 embryos). Even when injected with the much higher doses of MO (1 - pmol), the gli2b morphants acquired the curl-down tail phenotype with much more severe abnormality of the brain, but preserved the horizontal myoseptum. gli2b is not expressed in the adaxial slow muscle cells, thus in muscle development gli2b probably plays a minor role if any. In contrast, both gli2 and gli2b show similar late expression in the hindbrain and its deficiency in morphants is in line with expression of these genes in this part of brain. ctrl/brain A gli2b MO/brain B ctrl/trunk D gli2 MO/brain C gli2b MO/trunk E gli2 MO/trunk F Fig. 3-16 Comparative analysis of Gli2b and Gli2 morphants. Both Gli2b and Gli2 morphants show similar abnormality in the hindbrain but the trunk is affected differently. Gli2b (B) and Gli2 morphants (C) have enlarged fourth ventricle (arrowhead). In the trunk of Gli2b morphant (E) the horizontal myoseptum (arrow) is normal (D), while in Gli2 morphant the horizontal myoseptum is abnormal and somites U-shaped (F). 122 Results 3.4.4 Gli2b morphant showed cell proliferation defects in the hindbrain In the 30 hpf hindbrain, the radial astrocytes (RA) stained with zrf-1 antibody appeared as seven double segmental clusters that form curtains along rhombomere boundaries (Trevarrow et al, 1990) (Fig. 3-17A) (for discussion of characteristics of cell types, see Morest and Silver, 2003). These clusters were reduced in Gli2b morphants (Fig. 3-17B; 10/10 embryos). Further increase of gli2b MO dose led to decrease of zrf-1 staining at this stage, but a gross morphology of morphants remains relatively normal (not shown). Perhaps, elimination of RAs could be due to apoptosis in the hindbrain triggered by the knockdown of Gli2b . However, TUNEL staining of Gli2b morphants failed to detect increase of apoptosis (data not shown). Another possibility is that cell proliferation slowed down. Consistent with this explanation, the number of mitotic cells detected by the anti-phospho-histone H3 (P-H3) antibody was reduced in the hindbrain both dorsally in the ventricular zone (VZ) and ventrally in association with RGCs (Fig. 3-17C, D). Our analysis of the number and distribution of proliferating cells in the consecutive sections of the hindbrain of Gli2b morphants and controls (n=3, sections/embryo=15) demonstrated moderate reduction of cell proliferation in the ventricular zone and more significant reduction in the ventral hindbrain (Fig. 3-17E). Since the RAs are the neural progenitors, these results indicated that Gli2b could be necessary in the progenitor cells, including the neural progenitors in the hindbrain. 123 Results Ventricle RA Fig. 3-17 gli2b and cell proliferation. (A, B) Whole mount immunostaining of radial astrocytes in 30 hpf control (A) and Gli2b morphant (B) by zrf-1 antibody followed by POD staining. (C, D) Cross sections of 30 hpf control (C) and Gli2b morphant (D) at the hindbrain level stained by anti-P-H3 (purple) and zrf-1 (green) antibody. (E) Chart shows the average number of proliferating cells in the ventricular zone of 4th ventricle and the ventral region associated with processes of RA cells in continuous sections of hindbrain of Gli2b morphant and wild type embryos. 124 Results 3.4.5 zath3 expression was affected in Gli2/Gli2b morphants Since expression of gli2b takes place in the CNS (Ke et al, 2005) and Gli2b knockdown caused abnormality of cell proliferation and differentiation, we decided to check markers of early neurodifferentiation. zath3 (neurod4) is involved in early neurogenesis downstream of ngn1 (Bae et al, 2003; Park et al, 2003; Wang et al, 2003). zath3 detects two main groups of cells. First, the looped clusters in the hindbrain consist of cell groups extended along the D-V axis; these are associated with curtains of RAs on both sides of rhombomeric boundaries (DV clusters) (Fig. 3-18A). Second, the ventral (V) clusters in a central part of rhombomeres 2, 3, and (Fig. 3-18C). In the single Gli2 and Gli2b morphants, the dorsal extent of zath3 expression in the DV clusters is shifted more ventrally (Fig. 3-18B, E), while the V clusters diminished (Fig. 3-18D, E; 10/10 embryos each). In the double Gli2/Gli2b morphants, zath3 expression in the DV clusters is strongly reduced; however, some zath3 transcripts were still detected ventrally in rhombomeres and (Fig. 3-18F; 10/10 embryos). Thus it seems that in both positions Gli2b acts in parallel with Gli2, but at different D-V levels zath3-positive cells demonstrate different dependence on Gli2 proteins. To get better understanding of this phenomenon, we checked expression of zath3 in two mutants affecting Hh pathway. In yot-/-, where in result of mutation the dominant repressor form of Gli2 (Gli2DR) appeared (Karlstrom et al, 1999), the expression of zath3 in the DV clusters was similar to that in control. In contrast, the V clusters in rhombomeres and disappeared and the ectopic domain of zath3 expression in rhombomere appeared (Fig. 3-18G). In smu-/- mutant deficient in the receptor of Hh signaling, Smoothened (Chen et al, 2001; Varga et al, 2001), the zath3-positive DV clusters were intact while all V clusters disappeared (Fig. 3-18I). 125 Results Similar result was obtained after Gli2b knockdown of Gli2b on a yot-/- background (Fig. 3-18H; 10/10 embryos). Hence, it seems that Hh-dependent Gli2 activating role is required for expression of zath3 only in the ventral hindbrain probably containing more differentiated neurons. Here some other factors may also be involved in addition to the two Gli2s. In the dorsal hindbrain, the maintenance of neuroblasts could be due to the repressive role of Gli2 (Dai et al, 1999; Ruiz i Altaba, 1999; Sasaki et al, 1999). Alternatively, Gli2s may act within a context of dorsal signaling other then Hh. In both models Gli2b seems acts in parallel with Gli2. 126 Results 127 References Kimmel, C.B., Ballard, W.W., Kimmel, S.R., Ullmann, B., Schilling, T.F. 1995. Stages of embryonic development of the zebrafish. Dev. Dyn. 203(3):253-310. Kimmel, C.B., Warga, R.M., Schilling, T.F. 1990. Origin and organization of the zebrafish fate map. Development 108(4):581-94. Kingsbury, B.F. 1932. The ‘law’ of cephalocaudal differential growth in its application to the nervous system. J. Comp. Neur. 56:431-463. Kinzler, K.W., Bigner, S.H., Bigner, D.D., Trent, J.M., Law, M.L., O’Brien, S.J., Wong, A.J., Vogelstein, B. 1987. Identification of an amplified, highly expressed gene in a human glioma. Science 236: 70-73. Kinzler, K.W., Vogelstein, B. 1990. The GLI gene encodes a nuclear protein which binds specific sequences in the human genome. Mol. Cell. Biol. 10(2):634-642 Klingensmith, J., Ang, S.L., Bachiller, D., Rossant, J. 1999. Neural induction and patterning in the mouse in the absence of the node and its derivatives. Dev. Biol. 216:535-549. Knapik, E.W. 2000. ENU mutagenesis in zebrafish--from genes to complex diseases. Mamm. Genome. 11(7):511-519. Kodjabachian, L., Dawid, I.B., Toyama, R. 1999. Gastrulation in zebrafish: what mutants teach us. Dev. Biol. 213(2):231-245 Koga, A., Hori, H. 2001. The Tol2 transposable element of the medaka fish: an active DNA-based element naturally occurring in a vertebrate genome. Genes. Genet. Syst. 76(1):1-8. Koga, A., Iida, A., Kamiya, M., Hayashi, R., Hori, H., Ishikawa, Y., Tachibana, A. 2003. The medaka fish Tol2 transposable element can undergo excision in human and mouse cells. J. Hum. Genet. 48(5):231-235. Korzh, V., Edlund, T., Thor, S. 1993. Zebrafish primary neurons initiate expression of the LIM homeodomain protein Isl-1 at the end of gastrulation. Development 118(2):417-425. Korzh, V., Sleptsova, I., Liao, J., He, J., Gong, Z. 1998. Expression of zebrafish bHLH genes ngn1 and nrd defines distinct stages of neural differentiation. Dev. Dyn. 213(1):92-104. Koshida, S., Shinya, M., Mizuno, T., Kuroiwa, A., Takeda, H. 1998. Initial anteroposterior pattern of the zebrafish central nervous system is determined by differential competence of the epiblast. Development 125(10):1957-1966. 187 References Krauss, S., Concordet, J.P., Ingham, P.W. 1993. A functionally conserved homologue of the Drosophila Segment Polarity Gene hedgehog is expressed in tissues with polarizing activity in zebrafish embryos. Cell 75:1431-1444. Kudoh, T., Tsang, M., Hukriede, N.A., Chen, X., Dedekian, M., Clarke, C.J., Kiang, A., Schultz, S., Epstein, J.A., Toyama, R., Dawid, I.B. 2001. A gene expression screen in zebrafish embryogenesis. Genome. Res. 11(12):1979-1987. Kwok, C., Korn, R.M., Davis, M.E., Burt, D.W., Critcher, R., McCarthy, L., Paw, B.H., Zon, L.I., Goodfellow, P.N., Schmitt, K. 1998. Characterization of whole genome radiation hybrid mapping resources for non-mammalian vertebrates. Nucleic Acids Res. 26(15):3562-3566. Lamb, T.M., Knecht, A.K., Smith, W.C., Stachel, S.E., Economides, A.N. 1993. Neural induction by the secreted polypeptide noggin. Science 262:713-718. Lauderdale, J.D., Pasquali, S.K., Fazel, R., van Eeden, F.J., Schauerte, H.E., Haffter, P., Kuwada, J.Y. 1998. Regulation of netrin-1a expression by hedgehog proteins. Mol. Cell. Neurosci. 11(4):194-205. Lee, J., Platt, K.A., Censullo, P., Ruiz I Altaba, A. 1997. Gli1 is a target of Sonic hedgehog that induces ventral neural tube development. Development 124(13):2537-2552. Lee, S.K., Lee, B., Ruiz, E.C., Pfaff, S.L. 2005. Olig2 and Ngn2 function in opposition to modulate gene expression in motor neuron progenitor cells. Genes. Dev. 19(2):282-294. Lei, Q., Zelman, A.K., Kuang, E., Li, S., Matise, M.P. 2004. Transduction of graded Hedgehog signaling by a combination of Gli2 and Gli3 activator functions in the developing spinal cord. Development 131(15):3593-3604. Liem, K.F., Tremml, G., Roelink, H., Jessell, T.M. 1995. Dorsal differentiation of neural plate cells induced by BMP-mediated signals from epidermal ectoderm. Cell 82:969-979. Lim, S.E.S. 2000. Molecular cloning and characterization of a novel zebrafish gli family gene, gliN. B.Sc (Honours) thesis, National University of Singapore. Lister, J.A., Close, J., and Raible, D.W. 2001. Duplicate mitf genes in zebrafish: Complementaryexpression and conservation of melanogenic potential. Dev. Biol. 237: 333–344. Litingtung, Y. and Chiang, C. 2000. Control of Shh activity and signaling in the neural tube. Dev. Dyn. 219(2):143-154. 188 References Litingtung, Y. and Chiang, C. 2000. Specification of ventral neuron types is mediated by an antagonistic interaction between Shh and Gli3. Nat. Neurosci. 3(10):979-985. Liu, A., Majumdar, A., Schauerte, H.E., Haffter, P., Drummond, I.A. Zebrafish wnt4b expression in the floor plate is altered in sonic hedgehog and gli-2 mutants. Mech. Dev. 91(1-2):409-413. Long, Q., Meng, A., Wang, H., Jessen, J.R., Farrell, M.J., Lin, S. 1997. GATA-1 expression pattern can be recapitulated in living transgenic zebrafish using GFP reporter gene. Development 124:4105-4111. Lowery, L.A., Sive, H. 2004. Stragegies of vertebrate neurulation and a re-evaluation of teleost neural tube formation. Mech. Dev. 121(10):1189-1197. Lu, Q., Sun, T., Zhu, Z., Ma, N., Garcia, M., Stiles, C., Rowitch, D. 2002. Common developmental requirement for Olig function indicates a motor neuron/oligodendrocyte connection. Cell 109:75–86. Lu, Q.R., Yuk, D., Alberta, J., Zhum, Z., Pawlitsky, I., Chan, J., McMahon, A., Stiles, C., Rowitch, D., 2000. Sonic Hedgehog-regulated oligodendrocytes lineage genes encoding bHLH proteins in the mammalian central nervous system. Neuron 25: 317–329. Lumsden, A. and Keynes, R. Segmental patterns of neuronal development in the chick hindbrain. Nature 337(6206):424-428. Ma, C., Fan, L., Ganassin, R., Bols, N., Collodi, P. 2001. Production of zebrafish germ-line chimeras from embryo cell cultures. Proc. Natl. Acad. Sci. USA 98:2461-2466. Malicki, J., Jo, H., Wei, X., Hsiung, M., Pujic, Z. 2002. Analysis of gene function in the zebrafish retina. Methods 28(4):427-438. Masai, I., Heisenberg, C.P., Barth, K.A., Macdonald, R., Adamek, S., Wilson, S.W. 1997. floating head and masterblind regulate neuronal patterning in the roof of the forebrain. Neuron 18(1):43-57. Mathavan, S., Lee, S.G., Mak, A., Miller, L.D., Murthy, K.R., Govindarajan, K.R., Tong, Y., Wu, Y.L., Lam, S.H., Yang, H., Ruan, Y., Korzh, V., Gong, Z., Liu, E.T., Lufkin, T. 2005. Transcriptome analysis of zebrafish embryogenesis using microarrays. PLoS Genet. 1(2):260-276. Matise, M., Epstein, D., Park, H., Platt, K., Joyner, A. 1998. Gli2 is required for induction of floor plate and adjacent cells, but not most ventral neurons in the mouse central nervous system. Development 125:2759–2770. 189 References Matise, M.P. and Joyner, A.L. 1997. Expression patterns of developmental control genes in normal and Engrailed-1 mutant mouse spinal cord reveal early diversity in developing interneurons. J. Neurosci. 17:7805-7816. Maves, L., Jackman, W., Kimmel, C.B. 2002. FGF3 and FGF8 mediate a rhombomere signaling activity in the zebrafish hindbrain. Development 129(16):3925-3837. McCallum, C.M., Comai, L., Greene, E.A., Henikoff, S. 2000. Targeted screening for induced mutations. Nat. Biotechnol. 18:455–457. Mekki-Dauriac, S., Agius, E., Kan, P., Cochard, P. 2002. Bone morphogenetic proteins negatively control oligodendrocyte precursor specification in the chick spinal cord. Development 129(22):5117-5130. Meng, A., Jessen, J.R., Lin, S. 1999. Transgenesis. Methods. Cell. Biol. 60:133-148. Methot, N. and Basler, K. 2001. An absolute requirement for Cubitus interruptus in Hedgehog signaling. Development 128(5):733-742. Metscher, B.D. and Ahlberg, P.E. 1999. Zebrafish in context: uses of a laboratory model in comparative studies. Dev. Biol. 210:1-14. Meyer, A. and Schartl, M. 1999. Gene and genome duplications in vertebrates: The one-to-four (-to-eight in fish) rule and the evolution of novel gene functions. Curr. Opin. Cell. Biol. 11: 699–704. Meyer, N.P. and Roelink, H. 2003. The amino-terminal region of Gli3 antagonizes the Shh response and acts in dorsoventral fate specification in the developing spinal cord. Dev. Biol. 257(2):343-355. Miyayama, Y. and Fujimoto, T. 1977. Fine morphological study of neural tube formation in the teleost, Oryzias latipes. Okajimas Folia Anat. Jpn 54:97–120. Mo, R. Freer, A.M., Zinyk, D.L., Crackower, M.A., Michaud, J., Heng, H.H., Chik, K.W., Shi, X.M., Tsui, L.C., Cheng, S.H., Joyner, A.L., Hui, C. 1997. Specific and redundant functions of Gli2 and Gli3 zinc finger genes in skeletal patterning and development. Development. 124(1):113-123. Moens, C.B. and Prince, V.E. 2002. Constructing the hindbrain: insights from the zebrafish. Dev. Dyn. 224(1):1-17. Moens, C.B., Cordes, S.P., Giorgianni, M.W., Barsh, G.S., Kimmel, C.B. 1998. Equivalence in the genetic control of hindbrain segmentation in fish and mouse. Development 125(3):381-391. Moens, C.B., Yan, Y.L., Appel, B., Force, A.G., Kimmel, C.B. 1996. valentino: a 190 References zebrafish gene required for normal hindbrain segmentation. Development 122:3981–3990. Morest, D.K. and Silver, J. 2003. Precursors of neurons, neuroglia, and ependymal cells in the CNS: what are they? Where are they from? How they get where they are going? Glia. 43(1):6-18. Morrison, S.J., Perez, S.E., Qiao, Z., Verdi, J.M., Hicks, C., Weinmaster, G., Anderson, D.J. 2000. Transient Notch activation initiates an irreversible switch from neurogenesis to gliogenesis by neural crest stem cells. Cell 101:499-510. Morriss-Kay, G., Wood, H., Chen, W.H., 1994. Normal neurulation in mammals. Ciba Found Symp. 181:51–63. Morrow, E.M., Furukawa, T., Lee, J.E, Cepko, C.L. 1999. NeuroD regulates multiple functions in the developing neural retina in rodent. Development 126(1):23-36. Motoyama, J., Milenkovic, L., Iwama, M., Shikata, Y., Scott, M.P., Hui, C.C. 2003. Differential requirement for Gli2 and Gli3 in ventral neural cell fate specification. Dev. Biol. 259(1):150-161. Mullor, J.L., Dahmane, N., Sun, T., Ruiz I Altaba, A. 2001. Wnt signals are targets and mediators of Gli function. Curr. Biol. 11(10):769-773. Murone, M., Luoh, S.M., Stone, D., Li, W., Gurney, A., Armanini, M., Grey, C., Rosenthal, A., de Sauvage, F.J. Gli regulation by the opposing activities of fused and suppressor of fused. Nat. Cell. Biol. 2(5):310-312. Nasevicius, A. and Ekker, S.C. 2000. Effective targeted gene 'knockdown' in zebrafish. Nat. Genet. 26(2):216-220. Nelson, H.B. and Laughon, A. 1994. Drosophila glial development is regulated by genes involved in the control of neuronal cell fate. Roux’s Arch. Dev. Biol. 204:118-125. Nery, S., Wichterle, H., Fishell, G. 2001. Sonic hedgehog contributes to oligodendrocyte specification in the mammalian forebrain. Development 128(4):527-540. Nguyen, V., Chokas, A.L., Stecca, B., Altaba, A.R. 2005. Cooperative requirement of the Gli proteins in neurogenesis. Development 132(14):3267-3279. Nieto, M., Schuurmans, C., Britz, O., Guillemot, F. 2001. Neural bHLH genes control the neuronal versus glial fate decision in cortical progenitors. Neuron 29(2):401-413. 191 References Noll, E. and Miller, R. 1993. Oligodendrocyte precursors originate at the ventral ventricular zone dorsal to the ventral midline region in the embryonic rat spinal cord. Development 118:563–573. Oates, A.C., ABruce, A.E., Ho, R.K. 2000. Too much interference: injection of double-stranded RNA has nonspecific effects in the zebrafish embryos. Dev. Biol. 224:20-28. Odenthal, J. and Nusslein-Volhard, C. 1998. fork head domain genes in zebrafish. Dev. Genes. Evol. 208(5):245-258. Oppenheimer, J.M. 1936. Transplantation experiments on developming telelosts (Fundulus and Perca). J. Exp. Zool. 72:409-437. Orentas, D.M. and Miller, R.H. 1998. Regulation of oligodendrocyte development. Mol. Neurobiol. 18(3):247-259. Orentas, D.M., Hayes, J.E., Dyer, K.L., Miller, R.H. 1999. Sonic hedgehog signaling is required during the appearance of spinal cord oligodendrocyte precursors. Development 126:2419–2429. Oxtoby, E. and Jowett, T. 1993. Cloning of the zebrafish krox-20 gene (krx-20) and its expression during hindbrain development. Nucleic. Acids. Res. 21:1087–1095. Pan, X., Wan, H., Chia, W., Tong, Y., Gong, Z. 2005. Demonstration of site-directed recombination in transgenic zebrafish using the Cre/loxP system. Transgenic. Res. 14(2):217-223. Parinov, S., Kondrichin, I., Korzh, V., Emelyanov, A. 2004. Tol2 transposon-mediated enhancer trap to identify developmentally regulated zebrafish genes in vivo. Dev. Dyn. 231:449-459. Park, H.C. and Appel, B. 2003. Delta-Notch signaling regulates oligodendrocyte specification. Development 130(16):3747-3755. Park, H.C., Mehta, A., Richardson, J.S., Appel, B. 2002. olig2 is required for zebrafish primary motor neuron and oligodendrocyte development. Dev. Biol. 248(2):356-368. Park, H.C., Shin, J., Appel, B. 2004. Spatial and temporal regulation of ventral spinal cord precursor specification by Hedgehog signaling. Development 131(23):5959-5969. Park, H.L., Bai, C., Platt, K.A., Matise, M.P., Beeghly, A., Hui, C.C., Nakashima, M., Joyner, A.L. 2000. Mouse Gli1 mutants are viable but have defects in SHH signaling in combination with a Gli2 mutation. Development 127(8):1593-1605. 192 References Park, S.H., Yeo, S.Y., Yoo, K.W., Hong, S.K., Lee, S., Rhee, M., Chitnis, A.B., Kim, C.H. 2003. Zath3, a neural basic helix-loop-helix gene, regulates early neurogenesis in the zebrafish. Biochem. Biophys. Res. Commun. 308(1):184-190. Patten, I. and Placzek, M. 2002. Opponent activities of Shh and BMP signaling during floor plate induction in vivo. Curr. Biol. 12(1):47-52. Peeters, M.C., Viebahn, C., Hekking, J.W., van Straaten, H.W. 1998. Neurulation in the rabbit embryo. Anat. Embryol (Berl). 197(3):167-175. Persson, M., Stamataki, D., te Welscher, P., Andersson, E., Bose, J., Ruther, U., Ericson, J., Briscoe, J. 2002. Dorsal-ventral patterning of the spinal cord requires Gli3 transcriptional repressor activity. Genes. Dev. 16(22):2865-2878. Pierani, A., Brenner-Morton, S., Chiang, C., Jessell, T.M. 1999. A sonic hedgehog-independent, retinoid-activated pathway of neurogenesis in the ventral spinal cord. Cell 97(7):903-915. Poncet, C., Soula, C., Trousse, F., Kan, P., Hirsinger, E., Pourquie, O., Duprat, A.M., Cochard, P. 1996. Induction of oligodendrocyte progenitors in the trunk neural tube by ventralizing signals: effects of notochord and floor plate grafts, and of sonic hedgehog. Mech. Dev. 60:13–32. Popperl, H., Rikhof, H., Chang, H., Haffter, P., Kimmel, C.B., Moens, C.B. 2000. lazarus is a novel pbx gene that globally mediates hox gene function in zebrafish. Mol. Cell. 6(2):255-267. Postlethwait, J., Amores, A., Force, A., Yan, Y.L. 1999. The zebrafish genome. Methods. Cell. Biol. 60:149-163. Postlethwait, J.H., Yan, Y.L., Gates, M.A., Horne, S., Amores, A., Brownlie, A., Donovan, A., Egan, E.S., Force, A., Gong, Z., Goutel, C., Fritz, A., Kelsh, R., Knapik, E., Liao, E., Paw, B., Ransom, D., Singer, A., Thomson, M., Abduljabbar, T.S., Yelick, P., Beier, D., Joly, J.S., Larhammar, D., Rosa, F., Westerfield, M., Zon, L.I., Johnson, S.L., Talbot, W.S. 1998. Vertebrate genome evolution and the zebrafish gene map. Nat. Genet. 18(4):345-349. Postlethwait, J.H., Yan, Y.L., Gates, M.A., Horne, S., Amores, A., Brownlie, A., Donovan, A., Egan, E.S., Force, A., Gong, Z., Goutel, C., Fritz, A., Kelsh, R., Knapik, E., Liao, E., Paw, B., Ransom, D., Singer, A., Thomson, M., Abduljabbar, T.S., Yelick, P., Beier, D., Joly, J.S., Larhammar, D., Rosa, F., Westerfield, M., Zon, L.I., Johnson, S.L., Talbot, W.S. 1998. Vertebrate genome evolution and the zebrafish gene map. Nat. Genet. 18(4):345-349. Prince, V.E., Moens, C.B., Kimmel, C.B., Ho, R.K. 1998. Zebrafish Hox genes: 193 References expression in the hindbrain region of wild-type and mutants of the segmentation gene, valentino. Development 125:393–406. Pringle, N. and Richardson, W. 1993. A singularity of PDGF alpha-receptor expression in the dorsoventral axis of the neural tube may define the origin of the oligodendrocyte lineage. Development 117:525–533. Pringle, N., Yu, W., Guthrie, S., Roelink, H., Lumsden, A., Peterson, A., Richardson, W. 1996. Determination of neuroepithelial cell fate: induction of the oligodendrocyte lineage by ventral midline cells and sonic hedgehog. Dev. Biol. 177:30–42. Qi, Y., Tan, M., Hui, C.C., Qiu, M. 2003. Gli2 is required for normal Shh signaling and oligodendrocytes development in the spinal cord. Mol. Cell. Neurosci. 23:440-450. Radhakrishna, U., Wild, A., Grzeschik, K.H., Antonarakis, S.E. 1997. Mutation in Gli3 in postaxial polydactyly type A. Nat. Genet. 17:269-271. Rastegar, S., Albert, S., Le Roux, I., Fischer, N., Blader, P., Muller, F., Strahle, U. 2002. A floor plate enhancer of the zebrafish netrin1 gene requires Cyclops (Nodal) signaling and the winged helix transcription factor FoxA2. Dev. Biol. 252(1):1-14. Reichenbach, A., Schaaf, P., Schneider, H. 1990. Primary neurulation in teleosts—evidence for epithelial genesis of central nervous tissue as in other vertebrates. J. Hirnforsch. 31:153–158. Reifenberger, J., Wolter, M., Weber, R.G., Megahed, M., Ruzicka, T., Lichter, P., Reifenberger, G. 1998. Missense mutations in SMOH in sporadic basal cell carcinomas of the skin and primitive neuroectodermal tumors of the central nervous system. Cancer. Res. 58:1798-1803. Reifers, F., Bohli, H., Walsh, E.C., Crossley, P.H., Stainier, D.Y., Brand,, M. 1998. Fgf8 is mutated in zebrafish acerebellar (ace) mutants and is required for maintenance of midbrain-hindbrain boundary development and somitogenesis. Development 125:2381-2395. Richardson, W., Pringle, N., Yu., W., Hall, A. 1997. Origins of spinal cord oligodendrocytes: possible developmental and evolutionary relationships with motor neurons. Dev. Neurosci. 19:58–68. Richardson, W., Smith, H., Sun, T., Pringle, N., Hall, A., Woodruff, R. 2000. Oligodendrocyte lineage and the motor neuron connection. Glia 29:136–142. Robinson-Rechavi, M., Marchand, O., Escriva, H., Bardet, P.L., Zelus, D., Hughes, S., 194 References and Laudet, V. 2001. Euteleost fish genomes are characterized by expansion of gene families. Genome. Res. 11:781–788. Roelink, H., Augsburger, A., Heemskerk, J., Korzh, V., Norlin, S., Ruiz i Altaba, A., Tanabe, Y., Placzek, M., Edlund, T., Jessell, T.M. 1994. Floor plate and motor neuron induction by vhh-1, a vertebrate homolog of hedgehog expressed by the notochord. Cell 76(4):761-775. Roessler, E., Belloni, E., Gaudenz, K., Jay, P., Berta, P., Scherer, S.W., Tsui, L.C., Muenke, M. 1996. Mutations in the human Sonic Hedgehog gene cause holoprosencephaly. Nat. Genet. 14:357-360. Roessler, E., Du, Y.Z., Mullor, J.L., Casas, E., Allen, W.P., Gillessen-Kaesbach, G., Roeder, E.R., Ming, J.E., Ruiz i Altaba, A., Muenke, M. 2003. Loss-of-function mutations in the human GLI2 gene are associated with pituitary anomalies and holoprosencephaly-like features. Proc. Natl. Acad. Sci. USA. 100(23):13424-13429. Rubinstein, A.L. 2003. Zebrafish: from disease modeling to drug discovery. Curr. Opin. Drug. Discov. Devel. 6(2):218-223. Ruddle, F.H., Bartels, J.L., Bentley, K.L., Kappen, C., Murtha, M.T., Pendleton, J.W. 1994. Evolution of Hox genes. Annu. Rev. Genet. 28:423-442. Ruiz i Altaba, A. 1998. Combinatorial Gli gene function in floor plate and neuronal inductions by Sonic hedgehog. Development 125:2203-2212. Ruiz i Altaba, A. 1999. Gli proteins and Hedgehog signaling: development and cancer. Trends. Genet. 15(10):418-25. Rupp RA, Snider L, Weintraub H. 1994. Xenopus embryos regulate the nuclear localization of XMyoD. Genes. Dev. 8(11):1311-23. Ruppert, J.M., Kinzler, K.W., Wong, A.J., Bigner, S.H., Kao, F.T., Law, M.L., Seuanez, H.N., O’Brien, S.J., Vogelstein, B. 1988. The GLI-Kruppel family of human genes. Mol. Cell. Biol. 8:3104-3113 Ruppert, J.M., Vogelstein, B., Arheden, K., Kinzler, K.W. 1990. GLI3 encodes a 190-kilodalton protein with multiple regions of GLI similarity. Mol. Cell. Biol. 10:5408-5415. Sambrook, J., Fritsch, E.F., Maniatis, T. 1989. Molecular Cloning: A Laboratory Manual. Cold Spring Harbor Laboratory Press, NY, Vol. 1, 2, 3. Sampath, K., Rubinstein, A.L., Cheng, A.M., Liang, J.O., Fekany, K., Solnica-Krezel, L., Korzh, V., Halpern, M.E., Wright, C.V. 1998. Induction of the zebrafish ventral brain and floorplate requires cyclops/nodal signalling. Nature 395(6698):185-189. 195 References Sasai, Y., Lu, B., Sternbeisser, H., DeRobertis, E.M. 1995. Regulation of neural induction by the Chd and BMP-4 antagonistic patterning signals in Xenopus. Nature 376:333-336. Sasaki, H., Hui, C., Nakafuku, M., Kondoh, H. 1997. A binding site for Gli proteins is essential for HNF-3beta floor plate enhancer activity in transgenics and can respond to Shh in vitro. Development 124(7):1313-1322. Sasaki, H., Nishizaki, Y., Hui, C., Nakafuku, M., Kondoh, H. 1999. Regulation of Gli2 and Gli3 activities by an amino-terminal repression domain: implication of Gli2 and Gli3 as primary mediators of Shh signaling. Development 126(17):3915-3924. Sato, S.M., Sargent, T.D. 1989. Development of neural inducing capacity in dissociated Xenopus embryos. Dev. Biol. 134(1):263-266. Saude, L., Woolley, K., Martin, P., Driever, W., Stemple, D.L. 2000. Axis-inducing activities and cell fates of the zebrafish organizer. Development 127:3407-3417. Schauerte, H.E., van Eeden, F.J., Fricke, C., Odenthal, J., Strahle, U., Haffter, P. Sonic hedgehog is not required for the induction of medial floor plate cells in the zebrafish. Development 125(15):2983-2993. Scheer, N. and Campos-Ortega, J.A. 1999. Use of the GAL4-UAS technique for targeted gene expression in the zebrafish. Mech. Dev. 80:153-158. Scheer, N., Groth, A., Hans, S., Campos-Ortega, J.A. 2001. An instructive function for Notch in promoting gliogenesis in the zebrafish retina. Development 128(7):1099-1107. Schier, A.F., Neuhauss, S.C., Harvey, M., Malicki, J., Solnica-Krezel, L., Stainier, D.Y., Zwartkruis, F., Abdelilah, S., Stemple, D.L., Rangini, Z., Yang, H., Driever, W. 1996. Mutations affecting the development of the embryonic zebrafish brain. Development 123:165-178. Schulte-Merker, S. 2000. Zebrafish functional genomics. Interview by Joanne Wixon. Yeast 17(3):232-234. Schweisguth, F. 2004. Notch signaling activity. Curr. Biol. 14(3):R129-138. Serafini, T., Colamarino, S.A., Leonardo, E.D., Wang, H., Beddington, R., Skarnes, W.C., Tessier-Lavigne, M. 1996. Netrin-1 is required for commissural axon guidance in the developing vertebrate nervous system. Cell 87:1001-1014. Serluca, F.C., Sidow, A., Mably, J.D., and Fishman, M.C. 2001. Partitioning of tissue expression accompanies multiple duplications of the Na+/K+ ATPase alpha subunit gene. Genome. Res. 11: 1625–1631. 196 References Shawber, C., Boulter, J., Lindsell, C.E., Weinmaster, G. 1996. Jagged2: a serrate-like gene expressed during rat embryogenesis. Dev. Biol. 180:370-376. Shih, J. and Fraser, S.E. 1996. Characterizing the zebrafish organizer: microsurgical analysis at the early-shield stage. Development 122:1313-1322. Shin, S.H., Kogerman, P., Lindstrom, E., Toftgard, R., Biesecker, L.G. 1999. GLI3 mutations in human disorders mimic Drosophila cubitus interruptus protein functions and localization. Proc. Natl. Acad. Sci. USA 96:2880 -2884. Shinya, M., Eschbach, C., Clark, M., Lehrach, H., Furutani-Seiki, M. 2000. Zebrafish Dkk1, induced by the pre-MBT Wnt signaling, is secreted from the prechordal plate and patterns the anterior neural plate. Mech. Dev. 98(1-2):3-17. Skarnes, W.C., Moss, J.E., Hurtley, S.M., Beddington, R.S. 1995. Capturing genes encoding memebrane and secreted proteins important for mouse development. Proc. Natl. Acad. Sci. USA. 92:6592-6596. Slanchev, K., Stebler, J., de la Cueva-Mendez, G., Raz, E. 2005. Development without germ cells: the role of the germ line in zebrafish sex differentiation. Proc. Natl. Acad. Sci. USA. 102(11):4074-4079 Smith, C., Lee, S.W., Wong, E., Gallardo, H., Page, K., Gaspar, O., Lebkowski, J., Gilboa, E. 1996. Transient protection of human T-cells from human immunodeficiency virus type infection by transduction with adeno-associated viral vectors which express RNA decoys. Antiviral. Res. 32(2):99-115. Smith, J.L. and Schoenwolf, G.C., 1991. Further evidence of extrinsic forces in bending of the neural plate. J. Comp. Neurol. 307:225–236 Sommer, L., Ma, Q.F., Anderson, D.J. 1996. neurogenins, a novel family of atonal-related bHLH transcription factors, are putative mammalian neuronal determination genes that reveal progenitor cell heterogeneity in the developing CNS and PNS. Mol. Cell. Neurosci. 8:221-241. Soula, C., Danesin, C., Kan, P., Grob, M., Poncet, C., Cochard, P. 2001. Distinct sites of origin of oligodendrocytes and somatic motoneurons in the chick spinal cord: oligodendrocytes arise from Nkx2.2-expressing progenitors by a Shh-dependent mechanism. Development 128:369–1379. Spemann, H. and Mangold, H. 1924. Über Induktion von Embryonalanlagen durch Implantation artfremder Organisatoren. Wilhelm Roux' Arch. Entw. mech. Org. 100:599-638. Stachel, S.E., Grunwald, D.J., Myers, P.Z. 1993. Lithium perturbation and goosecoid 197 References expression identify a dorsal specification pathway in the pregastrula zebrafish. Development 117(4):1261-1274. Stoltzfus, A. 1999. On the possibility of constructive neutral evolution. J. Mol. Evol. 49(2):169-181. Stone, D.M., Murone, M., Luoh, S., Ye, W., Armanini, M.P., Gurney, A., Phillips, H., Brush, J., Goddard, A., de Sauvage, F.J., Rosenthal, A. 1999. Characterization of the human suppressor of fused, a negative regulator of the zinc-finger transcription factor Gli. J. Cell. Sci. 112(Pt23):4437-4448. Strähle, U. and Blader, P. 1994. Early neurogenesis in the zebrafish embryo. Fed. Am. Soc. Exp. Biol. J. 8:692-698. Strähle, U., Fischer, N., Blader, P. 1997. Expression and regulation of a netrin homologue in the zebrafish embryo. Mech. Dev. 62(2):147-160. Streit, A., Berliner, A.J., Papanayotou, C., Sirulnik, A., Stern, C.D. 2000. Initiation of neural induction by FGF signalling before gastrulation. Nature 406:74-78. Summerton, J. and Weller, D. 1997. Morpholino antisense oligomers: design, preparation, and properties. Antisense. Nucleic. Acid. Drug. Dev. 7(3):187-195. Sun, Y., Nadal-Vicens, M., Misono, S., Lin, M.Z., Zubiaga, A., Hua, X., Fan, G., Greenberg, M.E. 2001. Neurogenin promotes neurogenesis and inhibits glial differentiation by independent mechanisms. Cell 104(3):365-376. Takke, C., Dornseifer, P., v Weizsacker, E., Campos-Ortega, J.A. 1999. her4, a zebrafish homologue of the Drosophila neurogenic gene E(spl), is a target of NOTCH signaling. Development 126(9):1811-1821. Talbot, W.S, Hopkins, N. 2000. Zebrafish mutations and functional analysis of the vertebrate genome. Genes. Dev. 14(7):755-762. Tanabe, Y. and Jessell, T.M. 1996. Diversity and pattern in the developing spinal cord. Science 274:1115-1123. Tanabe, Y., Roelink, H., Jessell, T.M. 1995. Induction of motor neurons by Sonic hedgehog is independent of floor plate differentiation. Curr. Biol. 5(6):651-658. Tanigaki, K., Nogaki, F., Takahashi, J., Tashiro, K., Kurooka, H., Honjo, T. 2001. Notch1 and Notch3 instructively restrict bFGF-responsive multipotent neural progenitor cells to an astroglial fate. Neuron 29(1):45-55. Tanimura, A., Dan, S., Yoshida, M. 1998. Cloning of novel isoforms of the human Gli2 oncogene and their activities to enhance tax-dependent transcription of the 198 References human T-cell leukemia virus type genome. J. Virol. 72(5):3958-3964. Taylor, J., Van de Peer, Y., Meyer, A. 2001. Genome duplication, divergent resolution and speciation. Trends. Genet. 17:299-301. Tekki-Kessaris, N., Woodruff, R., Hall, A.C., Gaffield, W., Kimura, S., Stiles, C.D., Rowitch, D.H., Richardson, W.D. 2001. Hedgehog-dependent oligodendrocyte lineage specification in the telencephalon. Development 128(13):2545-2554. Tepass, U. and Hartenstein, V. 1995. Neurogenic and proneural genes control cell fate specification in the Drosophila endoderm. Development 121(2):393-405. Timsit, S., Martinez, S., Allinquant, B., Peyron, F., Puelles, L., Zalc, B. 1995. Oligodendrocytes originate in a restricted zone of the embryonic ventral neural tube defined by DM-20 mRNA expression. J. Neurosci. 15:1012–1024. Tomita, K., Moriyoshi, K., Nakanishi, S., Guillemot, F., Kageyama, R. 2000. Mammalian achaete-scute and atonal homologs regulate neuronal versus glial fate determination in the central nervous system. EMBO. J. 19(20):5460-5472. Trevarrow, B., Marks, D.L., Kimmel, C.B. 1990. Organization of hindbrain segments in the zebrafish embryo. Neuron 4(5):669-679. Tyurina, O.V., Guner, B., Popova, E., Feng, J., Schier, A.F., Kohtz, J.D., Karlstrom, R.O. 2005. Zebrafish Gli3 functions as both an activator and a repressor in Hedgehog signaling. Dev. Biol. 277(2):537-556. Van De Bor, V. and Giangrande, A. 2001. Notch signaling represses the glial fate in fly PNS. Development 128(8): 1381-1390. van Eeden, F.J., Granato, M., Schach, U., Brand, M., Furutani-Seiki, M., Haffter, P., Hammerschmidt, M., Heisenberg, C.P., Jiang, Y.J., Kane, D.A., Kelsh, R.N., Mullins, M.C., Odenthal, J., Warga, R.M., Allende, M.L., Weinberg, E.S., Nusslein-Volhard, C. 1996. Mutations affecting somite formation and patterning in the zebrafish, Danio rerio. Development. 123:153-164. Vanderlaan, G., Tyurina, O.V., Karlstrom, R.O., Chandrasekhar, A. 2005. Gli function is essential for motor neuron induction in zebrafish. Dev. Biol. 282(2):550-570. Varga, Z.M., Amores, A., Lewis, K.E., Yan, Y.L., Postlethwait, J.H, Eisen, J.S, Westerfield, M. 2001. Zebrafish smoothened functions in ventral neural tube specification and axon tract formation. Development 128(18):3497-3509. Venkatesh, B. 2003. Evolution and diversity of fish genomes. Curr. Opin. Genet. Dev. 13(6):588-592. 199 References Volff, J.N. and Schartl, M. 2003. Evolution of signal transduction by gene and genome duplication in fish. J. Struct. Funct. Genomics 3(1-4):139-50. von Mering, C., Basler, K. 1999. Distinct and regulated activities of human Gli proteins in Drosophila. Curr. Biol. 9(22):1319-22. Vortkamp, A., Gessler, M., Grzeschik, K.H. 1991. Gli3 zinc-finger gene interrupted by translocations in Greig syndrome families. Nature. 352:539-540. Vortkamp, A., Gessler, M., Grzeschik, K.H. 1995. Identification of optimized target sequences for the GLI3 zinc finger protein. DNA. Cell. Biol. 14(7):629-634. Waddington, C.H. 1932. Experiments on the development of the chick and the duck embryo cultivated in vitro. Proc. Trans. R. Soc. Lond. (B) 211:179-230. Wadsworth, W.G., Bhatt, H., Hedgecock, E.M. 1996. Neuroglia and pioneer neurons express UNC-6 to provide global and local netrin cues for guiding migrations in C. elegans. Neuron 16(1):35-46. Wang, B., Fallon, J.F., Beachy, P.A. 2000. Hedgehog-regulated processing of Gli3 produces an anterior/posterior repressor gradient in the developing vertebrate limb. Cell 100(4):423-434. Wang, S. and Barres, B.A. 2000. Up a notch: instructing gliogenesis. Neuron 27(2):197-200. Wang, S. and Barres, B.A. 2000. Up a notch: instructing gliogenesis. Neuron 27(2):197-200. Wang, X., Emelyanov, A., Korzh, V., Gong, Z. 2003. Zebrafish atonal homologue zath3 is expressed during neurogenesis in embryonic development. Dev. Dyn. 227(4):587-592. Warf, B., Fok-Seang, J., Miller, R.H. 1991. Evidence for the ventral origin of oligodendrocyte precursors in the rat spinal cord. J. Neurosci. 11:2477–2488. Warga, R.M. and Kimmel, C.B. 1990. Cell movements during epiboly and gastrulation in zebrafish. Development 108(4):569-580. Waskiewicz, A.J., Rikhof, H.A., Moens, C.B. 2002. Eliminating zebrafish pbx proteins reveals a hindbrain ground state. Dev. Cell. 3(5):723-733. Wechsler-Reya, R.J. and Scott, M.P. 1999. Control of neuronal precursor proliferation in the cerebellum by Sonic Hedgehog. Neuron 22:103-114. Weinstein, D.C., Hemmati-Brivanlou, A. 1999. Neural induction. Annu. Rev. Cell. Dev. 200 References Biol. 15:411-33. Westerfield, M., Doerry, E., Douglas, S. 1999. Zebrafish in the Net. Trends. Genet. 15(6):248-249. Westerfield, M., Doerry, E., Kirkpatrick, A.E., Douglas, S.A. 1999. Zebrafish informatics and the ZFIN database. Methods. Cell. Biol. 60:339-355. Wienholds, E., Schulte-Merker, S., Walderich, B., Plasterk,, R.H. 2002. Target-selected inactivation of the zebrafish rag1 gene. Science 297: 99-102. Wijgerde, M., McMahon, J.A., Rule, M., McMahon, A.P. 2002. A direct requirement for Hedgehog signaling for normal specification of all ventral progenitor domains in the presumptive mammalian spinal cord. Genes. Dev. 16(22):2849-2864. Wilson, S.I., Graziano, E., Harland, R., Jessell, T.M., Edlund, T. 2000. An early requirement for FGF signalling in the acquisition of neural cell fate in the chick embryo. Curr. Biol. 10: 421-429. Wilson, S.I., Rydstrom, A., Trimborn, T., Willert, K., Nusse, R., Jessell, T.M., Edlund, T. 2001. The status of Wnt signalling regulates neural and epidermal fates in the chick embryo. Nature 411:325-330. Wittbrodt, J., Meyer, A., Schartl, M. 1998. More genes in fish? BioEssays 20: 511-515. Wolfe, K.H. 2001. Yesterday's polyploids and the mystery of diploidization. Nat. Rev. Genet. 2(5):333-341. Wolff, C., Roy, S., Ingham, P.W. 2003. Multiple muscle cell identities induced by distinct levels and timing of hedgehog activity in the zebrafish embryo. Curr. Boil. 13(14):1169-1181. Woo, K. and Fraser, S.E. 1995. Order and coherence in the fate map of the zebrafish nervous system. Development 121(8):2595-2609. Woo, K. and Fraser, S.E. 1997. Specification of the zebrafish nervous system by nonaxial signals. Science 277(5323):254-257. Woods, I.G., Kelly, P.D., Chu, F., Ngo-Hazelett, P., Yan, Y.-L., Huang, H., Postlethwait, J.H., Talbot, W.S. 2000. A comparative map of the zebrafish genome. Genome. Res. 10:1903-1914. Xie, J., Murone, M., Luoh, S.M., Ryan, A., Gu, Q., Zhang, C., Bonifas, J.M., Lam, C.W., Hynes, M., Goddard, A., Rosenthal, A., Epstein, EH. Jr., de Sauvage, F.J. 1998. Activating Smoothened mutations in sporadic basal-cell carcinoma. Nature 201 References 391(6662):90-92. Yoon, J.W., Liu, C.Z., Yang, J.T., Swart, R., Iannaccone, P., Walterhouse, D. 1998. GLI activates transcription through a herpes simplex viral protein 16-like activation domain. J. Biol. Chem. 273(6):3496-3501. Zhang, W., Zhao, Y., Tong, C., Wang, G., Wang, B., Jia, J., Jiang, J. 2005. Hedgehog-regulated Costal2-kinase complexes control phosphorylation and proteolytic processing of Cubitus interruptus. Dev. Cell. 8(2):267-278. Zhao, Z., Cao, Y., Li, M., Meng, A. 2001. Double-stranded RNA injection produces nonspecific defects in zebrafish. Dev. Biol. 229:215-223. Zhou, Q., Anderson, D.J., 2002. The bHLH transcription factors OLIG2 and OLIG1 couple neuronal and glial subtype specification. Cell 109:61-73. Zhou, Q., Wang, S., Anderson, D.J. 2000. Identification of a novel family of oligodendrocyte lineage-specific basic helix-loop-helix transcription factors. Neuron 25(2):331-343. Zhu, Z., Li, G., He, L., Chen, S. 1985. Novel gene transfer into the fertilized eggs of goldfish (Carassius acratus L. 1758). Z. angew. Ichthyol. 1: 31-34. 202 [...]... role of gli2/ gli2b in development of the zebrafish brain, especially the hindbrain Our results indicated that Gli2b plays a more important role in regulating Hh signaling in zebrafish hindbrain than Gli2 Also, our results indicated that Gli2 dominant repressor was not sufficient to interfere with all possible functions of Gli2b in yot-/-; in particular, Gli2b might have an essential activator role in. .. view of netrin1a expression in the hindbrain of 30 hpf controls and Gli2b morphants (B, D) In Gli2b morphants netrin1a expression in the ventral hindbrain was up-regulated and expanded laterally (E) In yot-/-, netrin1a expression was less affected in r4 However, its expression in the dorsal hindbrain was less affected After injection of Gli2b MO into yot-/-, a faint netrin1a expression remained only in. .. decrease in early gliogenesis comparing to that of neurogenesis Thus, Gli2b in the hindbrain may act preferentially in regulating early differentiation of non-neuronal cell lineages 132 Results Fig 3- 20 Expression of early neurodifferentiation markers in the hindbrain of Gli2b morphant at 30 hpf (A, B) Expression of notch1a in Gli2b morphant (A) and control (B) (C, D) Expression of notch1b in Gli2b morphant... mutant resulted in a severe reduction of netrin1a transcripts in the hindbrain (Fig 3- 25F; 10/10 embryos) These results indicated that, first, the netrin1a patterning is regulated by the Hh signaling involving Gli2b, and, second, knockdown of Gli2b in yot-/- blocks multiple events of the Hh-dependent gliogenesis in the hindbrain 146 Results Fig 3- 25 Gli2/ Gli2b regulate expression of netrin1a (A) Lateral... Expression of ngn1 in Gli2b morphant (E) and control (F) (G, H) Expression of gfap in Gli2b morphant (G) and control (H) The relative positions of expression domains are indicated in left side of the panel: midline, blue bar; intermediate medio-lateral cluster, green bar; lateral loops; red bar 133 Results 3. 4.8 Inhibition of gli2b did not affect the segmentation of hindbrain Since loss -of- function of Gli2b...Results Fig 3- 18 Gli2/ Gli2b regulate expression of zath3 zath3 expression in hindbrain in 30 hpf in controls (A,C,E,G,I) or Gli2b MO injected embryos (B, D, F, H,J) White broken lines indicate the r4 (A,C) control; (B,D) Gli2b morphant; (E) Gli2 morphant; (F) Gli2/ Gli2b morphant; (G) yot-/- mutant; (H) yot-/mutant/Gli2b morphant; (I) smu-/- mutant; (J) smu-/- mutant/Gli2b morphant Black lines indicate... expression In Gli2b morphant, nkx2.2 expression only slightly expanded (Fig .3- 22A, B; 5/5 embryos) In Gli2 morphant, nkx2.2 expression was similar to that in Gli2b morphant (data now shown) These results indicated a minor role of both gli2 and gli2b in regulating expression of nkx2.2 in the ventral hindbrain Due to duplication of gli2 in zebrafish, the function of Gli2b might be redundant with Gli2 Thus,... hindbrain the residual activity of some other Gli could be responsible for maintaining nkx2.2 expression in r4 It was proposed that r4 plays an important role of the signaling center within a hindbrain (Maves et al, 2002) Hence it could be of interest to study a role of Gli2b in 137 Results this rhombomere The expression of nkx2.2 was completely lost in the hindbrain after injection of Gli2b MO into... Control embryos of ET3 line and ET3 Gli2b morphants (H) 4 dpf ET3 controls, hindbrain (F) and posterior trunk (G) GFP expression in the ET3 Gli2b morphant, hindbrain (I) and posterior trunk (J) 142 Results 3. 5 .3 Gli2b and neuronal differentiation The early changes in organization of neural precursors prompted us to explore a role of Gli2b in neurodevelopment Islet1 is an early marker of neurodifferentiation... (Fig 3- 24F) In contrast, their number was reduced in Gli2b morphants (Fig 3- 24D; 6/10 embryos) and even more so after injection of Gli2b MO into yot-/- mutant (Fig 3- 24H; 8/10 embryos) demonstrating, first, a redundant role of Gli2b in this cell lineage and, second, incomplete suppression of Gli2b function in the dorsal neural tube of yot-/- mutants 144 Results Fig 3- 24 Gli2/ Gli2b and differentiation of . These results indicated a minor role of both gli2 and gli2b in regulating expression of nkx2.2 in the ventral hindbrain. Due to duplication of gli2 in zebrafish, the function of Gli2b might be. gli2b show similar late expression in the hindbrain and its deficiency in morphants is in line with expression of these genes in this part of brain. ctrl/brain gli2b MO/brain gli2. processes of RA cells in continuous sections of hindbrain of Gli2b morphant and wild type embryos. Ventricle RA Results 125 3. 4.5 zath3 expression was affected in Gli2/ Gli2b morphants Since