Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống
1
/ 205 trang
THÔNG TIN TÀI LIỆU
Thông tin cơ bản
Định dạng
Số trang
205
Dung lượng
4,18 MB
Nội dung
CHARACTERIZATION OF LUNG DENDRITIC CELLS IN A NOVEL MURINE MODEL OF ASTHMA ZHOU QIAN A THESIS SUBMITTED FOR THE DEGREE OF PHD DEPARTMENT OF MICROBIOLOGY NATIONAL UNIVERSITY OF SINGAPORE 2013 DECLARATION I hereby declare that the thesis is my original work and it has been written by me in its entirety. I have duly acknowledged all the sources of information which have been used in the thesis. This thesis has also not been submitted for any degree in any university previously. ZHOU QIAN December 2013 Acknowledgements Pursing a PhD is a tough journey. For me, however, it is never a lonely one. Many people have put energy in helping me along the way. My gratitude goes out to everyone who devoted time, knowledge and heart to my work. I not have room to name all of you here, but I could not have written this thesis without you. First and foremost, I owe endless thanks to Prof Kemeny. I feel grateful beyond measure to him and I must say, to the fates that allow my path to cross his. I am not sure why he accepted my application -I am the first student in his lab who obtained bachelor degree in mainland China. I probably had the least experience in the lab when I joined it, so I felt a little out of place at the beginning. Regardless how busy he was, Prof Kemeny was always helpful and encouraging. He has a genius for reading people, engaging us in a way that brings out the best in us. He helped me to build my confidence, pushed me to achieve goals, to be the best I can be. I thank for Tang Yafang for her invaluable mentorship in teaching me skills in lab techniques and experimental designs. Beyond this, her spirit, her determination and unbelievable strength in pursuing her dream was an inspiration that motivated me along the way. This thesis would not have been possible without the generous help from Adrian, whose sharp mind, tireless patience and enthusiasm were invaluable in helping to build my work block by block. Word is powerless in expressing my gratitude to his unwavering support. I feel lucky to have Dr Florent Ginhoux as my collaborator and scientific advisor. Besides offering his scientific expertise and many useful transgenic mice crucial for this thesis, he encouraged me with his enthusiasm constantly. I am in debt to many others as well: Shu Zhen, Pey Yng, Nayana, Kenneth, Fei Chuin, Richard, Isaac, Guo Hui, LC and Fiona. I owe tremendous gratitude to these people who not only have been great teachers for me in the lab, but most importantly, for being my “family” in Singapore, who rendered comfort and support when things are not all right, who shared my bitter-sweet experiences in the journey. I also thank Prof Chew Fook Tim, Prof Paul A MacAry, Dr Veronique Angeli for providing important technical support and facility access, as well as scientific guidance in my PhD project. I am endlessly thankful to my mother, who has never faltered in her belief in me. She has kept me sane through pep talks and reality checks. She taught me to see the world with never-ending curiosity, to strive for what I believed. Her drive, her determination and courage have enormous impact on me. She is not only my mother but my friend, my comrade in the battlefield of life. For that I am grateful and lucky beyond measure. In the end, I owe everything to the Lord who gives me the world full of wonder and this life with countless blessings. What I have done and what I have accomplished would not be possible without Him. Table of Contents CHAPTER 1: Introduction 15 1.1 Asthma 16 1.1.1 Asthma as a major public asthma problem 16 1.1.2 Asthma as a complex disease caused by multiple factors 17 1.1.3 Asthma as a chronic inflammatory disease 18 1.1. 4Clinical symptoms of asthma . 19 1.2 Animal model of asthma . 19 1.2.1 Chronic asthma model vs acute asthma model 21 1.2.2 Ovalbumin asthma model vs dust mite asthma model . 22 1.3 Overview of allergic asthma: the classic paradigm 24 1.4 Innate immune cells and asthma . 26 1.5 Innate immune cytokines and asthma . 31 1.6 Innate effector cells and asthma 35 1.7 Dendritic cells . 37 1.7.1 Origin of peripheral tissue DCs . 38 1.7.2 Heterogeneity of peripheral tissue DCs . 39 1.8 Lung dendritic cells . 40 1.8.1 Lung DC subsets 40 1.8.2 Lung DC function 41 1.8.3 Lung DCs in asthma . 42 1.8.4 Epithelial cells and DCs . 45 1.9 Adaptive immune system in asthma . 46 1.9.1 B cells in asthma 47 1.9.2 Th2 cells in asthma 47 1.9.3 Th1 cells in asthma 48 1.9.4 Th17 cells in asthma 49 1.9.5 CD8 T cells in asthma 51 1.10 Aims of the study 52 CHAPTER 2: Materials and Methods 54 2.1 Media and buffers . 54 2.2 Mice 57 2.3 Cell isolation . 60 2.3.1 Isolation of CD4 T cells by magnetic separation . 60 2.3.2 Adoptive transfer of CD4 T cells . 61 2.3.3 Sorting of CD4 T cells . 61 2.3.4 CFSE labeling of CD4 T cells . 62 2.3.5 Isolation of dendritic cells from lung Parenchymal . 62 2.3.6 Sorting of dendritic cells from lung draining lymph node . 64 2.4 Asthma model: sensitization and airway challenges 65 2.4.1 Allergen extraction . 65 2.4.2 Precipitation of Blo t-alum . 65 2.4.3 Sensitization and challenge protocol (intraperitoneal sensitization) . 65 2.4.4 Sensitization and challenge protocol (intransal sensitization) . 66 2.5 Bronchoalveolar lavage (BAL) analysis . 67 2.6 Ex vivo assays of mediastinal lymph node (MLN) . 68 2.6.1 Ex vivo restimulation of MLN cells . 68 2.6.2 Intracellular cytokine staining of re-stimulated MLN cells . 69 2.6.3 Ex vivo analysis of IL-4-producing innate and adaptive cells in MLN . 70 2.6.4 Ex vivo antigen presentation assay of MLN dendritic cells . 70 2.6.5 Ex vivo analysis of MLN dendritic cells 71 2.7 Ex vivo assays for lung parenchymal 72 2.7.1 Cytokine assay for lung homogenate . 72 2.7.2 Cytokine assay for sorted lung cells 72 2.7.3 GM-CSF receptor expression measurement of lung dendritic cells 73 2.8 Lung histology 74 2.8.1 Preparation of lung tissue . 74 2.8.2 Processing and sectioning of lung tissue . 75 2.8.3 Tissue mounting . 75 2.8.4 Staining 76 2.9 Lung immunofluorescence histology 79 2.10 Assessment of lung function . 79 2.11 Measurement of cytokines 81 2.12 Measurement of serum immunoglobulins 83 2.12.2 ELISA for Blo t-specific IgE . 85 2.12.3 Dotblots for Blo t-specific IgE and IgG . 86 2.13 Gel Filtration of Blo t extracts 86 2.14 In vivo and in vitro assays for bone marrow-derived dendritic cells 87 2.14.1 Generation of GM-CSF-derived bone marrow dendritic cell (BMDCs) . 87 2.14.2 Immunization of mice with BMDCs . 88 2.14.3 Stimulation of BMDCs with lipopolysaccharides (LPS) 89 2.14.4 Co-culture of BMDCs and CD4 T cells 89 2.15 Statistical analysis . 90 CHAPTER 3: Murine Model of Asthma Induced by Blo t allergen 91 3.1 Introduction . 91 3.2 Blo t induces a profound airway allergy phenotype through systemic sensitization. 91 3.2.1 Immunization protocol (systemic sensitization) 91 3.2.2 Increased serum immunoglobulin E production 92 3.2.3 Increased eosinophil and lymphocyte infiltration in the airway 93 3.3 Blo t induces a robust airway allergy phenotype through respiratory sensitization. 97 3.3.1 Immunization protocol (respiratory sensitization) . 97 3.3.2 Increased serum immunoglobulin E production 98 3.3.3 Increased eosinophils and lymphocytes in the airway . 99 3.3.4 Elevated Th2 cytokine production in mediastinal lymph node . 100 3.3.5 Mucus hyper-secretion in the lung . 101 3.3.6 Airway hyper-responsiveness (AHR) 102 3.4 Discussion . 103 CHAPTER 4: Characterization of Innate and Adaptive Immunity to Inhaled Blo t allergen 106 4.1 Introduction . 106 4.2 Examination of IL-4-eGFP+ cells in Blo t-immunized 4get mice 107 4.3 Th2 adjuvant-like property of Blo t 110 4.4 Discussion . 112 CHAPTER 5: Lung Dendritic Cells in Th2 Immunity Induced by Inhaled Blo t allergen 115 5.1 Introduction . 115 5.2 Ex vivo characterization of lung dendritic cells 116 5.3 Inhibited dendritic cell migration greatly diminishes Th2 immunity induced by inhaled Blo t . 121 5.4 In vivo depletion of lung CD103+ DCs does not alter the development of allergic responses to Blo t. 124 5.5 Lung CD11b+ DC deficiency abrogates the development of allergic responses to Blo t 128 5.6 CCR2-dependent monocyte-derived CD11b+ DCs are not required for the development of allergic responses to Blo t. . 134 5.7 Discussion . 137 CHAPTER 6: Granulocyte-Macrophage Colony-Stimulating Factor in the Development of Allergic Response Induced by Inhaled Blo t . 139 6.1 Introduction . 139 6.2 In vivo source of GM-CSF responding to inhaled Blo t . 140 6.3 Lung epithelium-derived GM-CSF mediates allergic responses induced by Blo t 144 6.4 Lung epithelium-derived GM-CSF is a critical regulator of CD11b+ DC Th2 cell priming . 148 6.5 Discussion . 154 CHAPTER 7: Direct Instrumental effect on Dendritic Cells Exerted by Blo t allergen . 157 7.1 Introduction . 157 7.2 Generation of GM-CSF-derived BMDCs . 159 7.3 Blo t-conditioned BMDCs could promote Th2 immunity in vivo 160 7.4 BMDCs conditioned by Blo t allergen fail to display TLR signaling activation 162 7.5 Discussion . 166 CHAPTER 8: Identification of Major Component in Blo t extracts Responsible for Inducing Th2 Immunity in vivo . 169 8.1 Introduction . 169 8.2 The activity of Blo t extracts in inducing asthmatic responses is protease sensitive 170 8.3 Biochemical characterization of airway allergy inducing activity in Blo t extracts. 173 8.4 Discussion . 175 CHAPTER 9: Final Discussion 178 9.1 Brief summary of our study 178 9.2 Final discussion of our study 179 9.3 Limitation and future direction of our study . 183 Reference . 185 Summary The Blomia tropicalis (Blo t) dust mite is prevalent in tropical and sub-tropical regions of the world. Although it is a leading cause of asthma, little is known how it induces allergy. Using a novel murine asthma model induced by intra nasal exposure to Blo t, we observed that a single intranasal sensitization to Blo t extract induces strong Th2 priming in the lung draining lymph node. Resident CD11b+ DCs preferentially transport antigen from the lung to the draining lymph node and are crucial for the initiation of Th2 CD4+ T cell responses. As a consequence, mice selectively deficient in CD11b+ DCs exhibited attenuated Th2 responses and more importantly did not develop any allergic inflammation. Conversely, mice deficient in CD103+ DCs and CCR2-dependent monocyte-derived DCs exhibited similar allergic inflammation compared to their wildtype counterparts. We also show that CD11b+ DCs constitutively express higher levels of GM-CSF receptor compared to CD103+ DCs and are thus selectively licensed by lung epithelial-derived GM-CSF to induce Th2 immunity. Taken together, our study identifies GM-CSF licensed CD11b+ lung DCs as a key component for induction of Th2 responses and represents a potential target for therapeutic intervention in allergy. List of figures Figure 3.2.1 Immunization protocol (systemic sensitization) 92 Figure 3.2.2 Immunoglobulin E (IgE) in the serum of immunized mice. . 93 Figure 3.2.3 Infiltration of cells into the airways in response to asthmatic. 94 Figure 3.2.4 Images of sorted BAL fluid cells (H&E staining). 95 Figure 3.2.5 Cell infiltration in BAL fluid of Blo t-treated mice. . 95 Figure 3.2.6 Cytokine production from lung draining lymph node (MLN) of Blo t-treated mice. 96 Figure 3.3.1 Immunization protocol (respiratory sensitization). . 97 Figure 3.3.2 Immunoglobulins in the serum of Blo t immunized mice. 99 Figure 3.3.3 Cell infiltration in BAL fluid of Blo t-treated mice. . 100 Figure 3.3.4 Cytokine production from lung draining lymph node (MLN) of Blo t-treated mice. 101 Figure 3.3.5 Representative histological images of PAS staining of the lung . 102 Fig 3.3.6 Airway hyper-responsiveness following methacholine inhalation. 103 Figure 4.2.1 Time points for MLN analysis in 4get mice after intranasal immunization. 108 Figure 4.2.2 Identification of IL-4-producing cells of MLN in 4get mice. . 108 Figure 4.2.3 Kinetics of IL-4-eGFP+ CD4 T cells in MLN of 4get mice. . 110 Figure 4.2.4 Kinetics of IL-4-eGFP+ innate cells in MLN of 4get mice. 110 Figure 4.3.1 Experimental design of adoptive transfer from DO11.10 × 4get mice mice. . 111 Figure 4.3.2 Percentage of OVA-specific-IL-4-eGFP+ CD4 T cells of total CD4 T cells in MLN. . 112 Figure 5.2.1 Kinetics of lung dendritic cells in draining lymph node. 117 Figure 5.2.2 Identification of lung dendritic cells and their recruitment in MLN. 118 Figure 5.2.3 OVA up-taking by lung dendritic cells in MLN. 120 Figure 5.2.4 Antigen presentation capacity of lung dendritic cells. 121 Figure 5.3 Inhibited dendritic cell migration greatly diminishes Th2 immunity induced by inhaled Blo t. . 124 Figure 5.4 In vivo depletion of lung CD103+ DCs does not alter the development of allergic responses to Blo t. . 128 Figure 5.5 Lung CD11b+ DC deficiency abrogates the development of allergic responses to Blo t. 133 Figure 5.6 CCR2-dependent monocyte-derived CD11b+ DCs are not required for the development of allergic responses to Blo t. . 136 Figure 6.2 In vivo source of GM-CSF upon Blo t immunization. . 144 Figure 6.3 Lung epithelium-derived GM-CSF mediates allergic responses induced by Blo t 148 10 Fogg, D.K., C. Sibon, C. Miled, S. Jung, P. Aucouturier, D.R. Littman, A. Cumano, and F. Geissmann. 2006. A clonogenic bone marrow progenitor specific for macrophages and dendritic cells. Science 311:83-87. Fort, M.M., J. Cheung, D. Yen, J. Li, S.M. Zurawski, S. Lo, S. Menon, T. Clifford, B. Hunte, R. Lesley, T. Muchamuel, S.D. Hurst, G. Zurawski, M.W. Leach, D.M. Gorman, and D.M. Rennick. 2001. IL-25 induces IL-4, IL-5, and IL-13 and Th2-associated pathologies in vivo. Immunity 15:985-995. Frandji, P., C. Oskeritzian, F. Cacaraci, J. Lapeyre, R. Peronet, B. David, J.G. Guillet, and S. Mecheri. 1993. Antigen-Dependent Stimulation by Bone-Marrow-Derived Mast-Cells of Mhc Class-Ii-Restricted T-Cell Hybridoma. Journal of Immunology 151:6318-6328. Furuhashi, K., T. Suda, H. Hasegawa, Y. Suzuki, D. Hashimoto, N. Enomoto, T. Fujisawa, Y. Nakamura, N. Inui, K. Shibata, H. Nakamura, and K. Chida. 2012. Mouse lung CD103+ and CD11bhigh dendritic cells preferentially induce distinct CD4+ T-cell responses. Am J Respir Cell Mol Biol 46:165-172. Gao, Y.F., Y. Wang de, T.C. Ong, S.L. Tay, K.H. Yap, and F.T. Chew. 2007. Identification and characterization of a novel allergen from Blomia tropicalis: Blo t 21. J Allergy Clin Immunol 120:105-112. GeurtsvanKessel, C.H., and B.N. Lambrecht. 2008. Division of labor between dendritic cell subsets of the lung. Mucosal Immunol 1:442-450. GeurtsvanKessel, C.H., M.A. Willart, L.S. van Rijt, F. Muskens, M. Kool, C. Baas, K. Thielemans, C. Bennett, B.E. Clausen, H.C. Hoogsteden, A.D. Osterhaus, G.F. Rimmelzwaan, and B.N. Lambrecht. 2008. Clearance of influenza virus from the lung depends on migratory langerin+CD11b- but not plasmacytoid dendritic cells. J Exp Med 205:1621-1634. Ginhoux, F., K. Liu, J. Helft, M. Bogunovic, M. Greter, D. Hashimoto, J. Price, N. Yin, J. Bromberg, S.A. Lira, E.R. Stanley, M. Nussenzweig, and M. Merad. 2009. The origin and development of nonlymphoid tissue CD103+ DCs. J Exp Med 206:3115-3130. Gong, J.L., K.M. McCarthy, J. Telford, T. Tamatani, M. Miyasaka, and E.E. Schneeberger. 1992. Intraepithelial airway dendritic cells: a distinct subset of pulmonary dendritic cells obtained by microdissection. J Exp Med 175:797-807. Gordon, S. 2003. Alternative activation of macrophages. Nat Rev Immunol 3:23-35. Gough, L., O. Schulz, H.F. Sewell, and F. Shakib. 1999. The cysteine protease activity of the major dust mite allergen Der p selectively enhances the immunoglobulin E antibody response. J Exp Med 190:1897-1902. Gould, H.J., and B.J. Sutton. 2008. IgE in allergy and asthma today. Nat Rev Immunol 8:205-217. Green, R.H., C.E. Brightling, S. McKenna, B. Hargadon, D. Parker, P. Bradding, A.J. Wardlaw, and I.D. Pavord. 2002. Asthma exacerbations and sputum eosinophil counts: a randomised controlled trial. Lancet 360:1715-1721. Greter, M., J. Helft, A. Chow, D. Hashimoto, A. Mortha, J. Agudo-Cantero, M. Bogunovic, E.L. Gautier, J. Miller, M. Leboeuf, G. Lu, C. Aloman, B.D. 190 Brown, J.W. Pollard, H. Xiong, G.J. Randolph, J.E. Chipuk, P.S. Frenette, and M. Merad. 2012. GM-CSF controls nonlymphoid tissue dendritic cell homeostasis but is dispensable for the differentiation of inflammatory dendritic cells. Immunity 36:1031-1046. Gunn, M.D., S. Kyuwa, C. Tam, T. Kakiuchi, A. Matsuzawa, L.T. Williams, and H. Nakano. 1999. Mice lacking expression of secondary lymphoid organ chemokine have defects in lymphocyte homing and dendritic cell localization. J Exp Med 189:451-460. Hamelmann, E., A. Oshiba, J. Paluh, K. Bradley, J. Loader, T. Potter, G. Larsen, and E. Gelfand. 1996. Requirement for CD8+ T cells in the development of airway hyperresponsiveness in a marine model of airway sensitization. J Exp Med 183:1719-1729. Hamilton, J.A. 2008. Colony-stimulating factors in inflammation and autoimmunity. Nat Rev Immunol 8:533-544. Hammad, H., M. Chieppa, F. Perros, M.A. Willart, R.N. Germain, and B.N. Lambrecht. 2009. House dust mite allergen induces asthma via Toll-like receptor triggering of airway structural cells. Nat Med 15:410-416. Hammad, H., M. Kool, T. Soullié, S. Narumiya, F. Trottein, H.C. Hoogsteden, and B.N. Lambrecht. 2007. Activation of the D prostanoid receptor suppresses asthma by modulation of lung dendritic cell function and induction of regulatory T cells. The Journal of Experimental Medicine 204:357-367. Hammad, H., and B.N. Lambrecht. 2008. Dendritic cells and epithelial cells: linking innate and adaptive immunity in asthma. Nat Rev Immunol 8:193-204. Hammad, H., M. Plantinga, K. Deswarte, P. Pouliot, M.A. Willart, M. Kool, F. Muskens, and B.N. Lambrecht. 2010. Inflammatory dendritic cells--not basophils--are necessary and sufficient for induction of Th2 immunity to inhaled house dust mite allergen. J Exp Med 207:2097-2111. Hansen, G., G. Berry, R.H. DeKruyff, and D.T. Umetsu. 1999. Allergen-specific Th1 cells fail to counterbalance Th2 cell-induced airway hyperreactivity but cause severe airway inflammation. J Clin Invest 103:175-183. Harrington, L.E., R.D. Hatton, P.R. Mangan, H. Turner, T.L. Murphy, K.M. Murphy, and C.T. Weaver. 2005. Interleukin 17-producing CD4+ effector T cells develop via a lineage distinct from the T helper type and lineages. Nat Immunol 6:1123-1132. Hawrylowicz, C.M., and A. O'Garra. 2005. Potential role of interleukin-10-secreting regulatory T cells in allergy and asthma. Nat Rev Immunol 5:271-283. He, R., M.K. Oyoshi, H. Jin, and R.S. Geha. 2007. Epicutaneous antigen exposure induces a Th17 response that drives airway inflammation after inhalation challenge. P Natl Acad Sci USA 104:15817-15822. Hintzen, G., L. Ohl, M.L. del Rio, J.I. Rodriguez-Barbosa, O. Pabst, J.R. Kocks, J. Krege, S. Hardtke, and R. Forster. 2006. Induction of tolerance to innocuous inhaled antigen relies on a CCR7-dependent dendritic cell-mediated antigen transport to the bronchial lymph node. J Immunol 177:7346-7354. 191 Hogan, S.P., H.F. Rosenberg, R. Moqbel, S. Phipps, P.S. Foster, P. Lacy, A.B. Kay, and M.E. Rothenberg. 2008. Eosinophils: Biological properties and role in health and disease. Clin Exp Allergy 38:709-750. Holmes, B.J., D. Diaz-Sanchez, R.A. Lawrence, E.B. Bell, R.M. Maizels, and D.M. Kemeny. 1996. The contrasting effects of CD8+ T cells on primary, established and Nippostrongylus brasiliensis-induced IgE responses. Immunology 88:252-260. Holt, P.G., S. Haining, D.J. Nelson, and J.D. Sedgwick. 1994. Origin and steady-state turnover of class II MHC-bearing dendritic cells in the epithelium of the conducting airways. J Immunol 153:256-261. Holt, P.G., C. Macaubas, P.A. Stumbles, and P.D. Sly. 1999. The role of allergy in the development of asthma. Nature 402:B12-17. Holt, P.G., J. Oliver, N. Bilyk, C. McMenamin, P.G. McMenamin, G. Kraal, and T. Thepen. 1993. Downregulation of the antigen presenting cell function(s) of pulmonary dendritic cells in vivo by resident alveolar macrophages. J Exp Med 177:397-407. Holt, P.G., M.A. Schon-Hegrad, and J. Oliver. 1988. MHC class II antigen-bearing dendritic cells in pulmonary tissues of the rat. Regulation of antigen presentation activity by endogenous macrophage populations. J Exp Med 167:262-274. Holt, P.G., D.H. Strickland, M.E. Wikström, and F.L. Jahnsen. 2008. Regulation of immunological homeostasis in the respiratory tract. Nat Rev Immunol 8:142-152. Hoshino, K., S. Kashiwamura, K. Kuribayashi, T. Kodama, T. Tsujimura, K. Nakanishi, T. Matsuyama, K. Takeda, and S. Akira. 1999. The absence of interleukin receptor-related T1/ST2 does not affect T helper cell type development and its effector function. J Exp Med 190:1541-1548. Huffman, J.A., W.M. Hull, G. Dranoff, R.C. Mulligan, and J.A. Whitsett. 1996. Pulmonary epithelial cell expression of GM-CSF corrects the alveolar proteinosis in GM-CSF-deficient mice. The Journal of clinical investigation 97:649-655. Hurst, S.D., T. Muchamuel, D.M. Gorman, J.M. Gilbert, T. Clifford, S. Kwan, S. Menon, B. Seymour, C. Jackson, T.T. Kung, J.K. Brieland, S.M. Zurawski, R.W. Chapman, G. Zurawski, and R.L. Coffman. 2002. New IL-17 Family Members Promote Th1 or Th2 Responses in the Lung: In Vivo Function of the Novel Cytokine IL-25. The Journal of Immunology 169:443-453. Hurst, S.D., B.W.P. Seymour, T. Muchamuel, V.P. Kurup, and R.L. Coffman. 2001. Modulation of inhaled antigen-induced IgE tolerance by ongoing Th2 responses in the lung. Journal of Immunology 166:4922-4930. Ishimitsu, R., H. Nishimura, T. Yajima, T. Watase, H. Kawauchi, and Y. Yoshikai. 2001. Overexpression of IL-15 in vivo enhances Tc1 response, which inhibits allergic inflammation in a murine model of asthma. J Immunol 166:1991-2001. 192 Ito, T., Y.H. Wang, O. Duramad, T. Hori, G.J. Delespesse, N. Watanabe, F.X. Qin, Z. Yao, W. Cao, and Y.J. Liu. 2005. TSLP-activated dendritic cells induce an inflammatory T helper type cell response through OX40 ligand. Journal of Experimental Medicine 202:1213-1223. Iwasaki, A., and R. Medzhitov. 2004. Toll-like receptor control of the adaptive immune responses. Nat Immunol 5:987-995. Jakubzick, C., F. Tacke, F. Ginhoux, A.J. Wagers, N. van Rooijen, M. Mack, M. Merad, and G.J. Randolph. 2008. Blood monocyte subsets differentially give rise to CD103+ and CD103- pulmonary dendritic cell populations. J Immunol 180:3019-3027. Johnson, J.R., R.E. Wiley, R. Fattouh, F.K. Swirski, B.U. Gajewska, A.J. Coyle, J.C. Gutierrez-Ramos, R. Ellis, M.D. Inman, and M. Jordana. 2004. Continuous exposure to house dust mite elicits chronic airway inflammation and structural remodeling. Am J Respir Crit Care Med 169:378-385. Jung, S., D. Unutmaz, P. Wong, G. Sano, K. De los Santos, T. Sparwasser, S. Wu, S. Vuthoori, K. Ko, F. Zavala, E.G. Pamer, D.R. Littman, and R.A. Lang. 2002. In vivo depletion of CD11c+ dendritic cells abrogates priming of CD8+ T cells by exogenous cell-associated antigens. Immunity 17:211-220. Kapsenberg, M.L. 2003. Dendritic-cell control of pathogen-driven T-cell polarization. Nat Rev Immunol 3:984-993. Kearley, J., J.E. Barker, D.S. Robinson, and C.M. Lloyd. 2005. Resolution of airway inflammation and hyperreactivity after in vivo transfer of CD4+CD25+ regulatory T cells is interleukin 10 dependent. J Exp Med 202:1539-1547. Kearley, J., K.F. Buckland, S.A. Mathie, and C.M. Lloyd. 2009. Resolution of allergic inflammation and airway hyperreactivity is dependent upon disruption of the T1/ST2-IL-33 pathway. Am J Respir Crit Care Med 179:772-781. Kearley, J., D.S. Robinson, and C.M. Lloyd. 2008. CD4+CD25+ regulatory T cells reverse established allergic airway inflammation and prevent airway remodeling. J Allergy Clin Immunol 122:617-624.e616. Kidon, M.I., W.C. Chiang, W.K. Liew, T.C. Ong, Y.S. Tiong, K.N. Wong, A.C. Angus, S.T. Ong, Y.F. Gao, K. Reginald, X.Z. Bi, H.S. Shang, and F.T. Chew. 2011. Mite component-specific IgE repertoire and phenotypes of allergic disease in childhood: the tropical perspective. Pediatr Allergy Immunol 22:202-210. Kim, C.H., J.H. Ahn, S.J. Kim, S.Y. Lee, Y.K. Kim, K.H. Kim, H.S. Moon, J.S. Song, S.H. Park, and S.S. Kwon. 2006. Co-administration of vaccination with DNA encoding T cell epitope on the Der p and BCG inhibited airway remodeling in a murine model of chronic asthma. J Asthma 43:345-353. Kim, H.Y., R.H. DeKruyff, and D.T. Umetsu. 2010. The many paths to asthma: phenotype shaped by innate and adaptive immunity. Nat Immunol 11:577-584. Kim, J., A. Woods, E. Becker-Dunn, and K. Bottomly. 1985. Distinct functional phenotypes of cloned Ia-restricted helper T cells. J Exp Med 162:188-201. King, I.L., M.A. Kroenke, and B.M. Segal. 2010. GM-CSF-dependent, CD103+ dermal dendritic cells play a critical role in Th effector cell differentiation 193 after subcutaneous immunization. Journal of Experimental Medicine 207:953-961. Kissenpfennig, A., S. Henri, B. Dubois, C. Laplace-Builhe, P. Perrin, N. Romani, C.H. Tripp, P. Douillard, L. Leserman, D. Kaiserlian, S. Saeland, J. Davoust, and B. Malissen. 2005. Dynamics and function of Langerhans cells in vivo: dermal dendritic cells colonize lymph node areas distinct from slower migrating Langerhans cells. Immunity 22:643-654. Klein, U., S. Casola, G. Cattoretti, Q. Shen, M. Lia, T. Mo, T. Ludwig, K. Rajewsky, and R. Dalla-Favera. 2006. Transcription factor IRF4 controls plasma cell differentiation and class-switch recombination. Nat Immunol 7:773-782. Kondo, Y., T. Yoshimoto, K. Yasuda, S. Futatsugi-Yumikura, M. Morimoto, N. Hayashi, T. Hoshino, J. Fujimoto, and K. Nakanishi. 2008. Administration of IL-33 induces airway hyperresponsiveness and goblet cell hyperplasia in the lungs in the absence of adaptive immune system. Int Immunol 20:791-800. Kotsimbos, A.T., M. Humbert, E. Minshall, S. Durham, R. Pfister, G. Menz, J. Tavernier, A.B. Kay, and Q. Hamid. 1997. Upregulation of alpha GM-CSF-receptor in nonatopic asthma but not in atopic asthma. The Journal of allergy and clinical immunology 99:666-672. Kumar, R.K., and P.S. Foster. 2001. Murine model of chronic human asthma. Immunol Cell Biol 79:141-144. Kumar, R.K., C. Herbert, and P.S. Foster. 2008. The "classical" ovalbumin challenge model of asthma in mice. Curr Drug Targets 9:485-494. Kurowska-Stolarska, M., B. Stolarski, P. Kewin, G. Murphy, C.J. Corrigan, S. Ying, N. Pitman, A. Mirchandani, B. Rana, N. van Rooijen, M. Shepherd, C. McSharry, I.B. McInnes, D. Xu, and F.Y. Liew. 2009. IL-33 amplifies the polarization of alternatively activated macrophages that contribute to airway inflammation. J Immunol 183:6469-6477. Lambrecht, B.N., M. De Veerman, A.J. Coyle, J.C. Gutierrez-Ramos, K. Thielemans, and R.A. Pauwels. 2000. Myeloid dendritic cells induce Th2 responses to inhaled antigen, leading to eosinophilic airway inflammation. J Clin Invest 106:551-559. Lambrecht, B.N., and H. Hammad. 2009. Biology of Lung Dendritic Cells at the Origin of Asthma. Immunity 31:412-424. Lambrecht, B.N., and H. Hammad. 2010. The role of dendritic and epithelial cells as master regulators of allergic airway inflammation. Lancet 376:835-843. Lambrecht, B.N., and H. Hammad. 2012. Lung dendritic cells in respiratory viral infection and asthma: from protection to immunopathology. Annu Rev Immunol 30:243-270. Lambrecht, B.N., B. Salomon, D. Klatzmann, and R.A. Pauwels. 1998. Dendritic cells are required for the development of chronic eosinophilic airway inflammation in response to inhaled antigen in sensitized mice. Journal of Immunology 160:4090-4097. Larché, M., D.S. Robinson, and A.B. Kay. 2003. The role of T lymphocytes in the pathogenesis of asthma. J Allergy Clin Immunol 111:450-463; quiz 464. 194 Le, P.T., S. Lazorick, L.P. Whichard, Y.C. Yang, S.C. Clark, B.F. Haynes, and K.H. Singer. 1990. Human thymic epithelial cells produce IL-6, granulocyte-monocyte-CSF, and leukemia inhibitory factor. Journal of Immunology 145:3310-3315. Lee, J.J., D. Dimina, M.P. Macias, S.I. Ochkur, M.P. McGarry, K.R. O'Neill, C. Protheroe, R. Pero, T. Nguyen, S.A. Cormier, E. Lenkiewicz, D. Colbert, L. Rinaldi, S.J. Ackerman, C.G. Irvin, and N.A. Lee. 2004. Defining a link with asthma in mice congenitally deficient in eosinophils. Science 305:1773-1776. Legge, K.L., and T.J. Braciale. 2003. Accelerated migration of respiratory dendritic cells to the regional lymph nodes is limited to the early phase of pulmonary infection. Immunity 18:265-277. Lenhoff, S., B. Sallerfors, and T. Olofsson. 1998. IL-10 as an autocrine regulator of CSF secretion by monocytes: Disparate effects on GM-CSF and G-CSF secretion. Experimental Hematology 26:299-304. Letuve, S., S. Lajoie-Kadoch, S. Audusseau, M.E. Rothenberg, P.O. Fiset, M.S. Ludwig, and Q. Hamid. 2006. IL-17E upregulates the expression of proinflammatory cytokines in lung fibroblasts. J Allergy Clin Immunol 117:590-596. Lewis, C., B. Aronow, J. Hutton, J. Santeliz, K. Dienger, N. Herman, F. Finkelman, and M. Wills-Karp. 2009. Unique and overlapping gene expression patterns driven by IL-4 and IL-13 in the mouse lung. J Allergy Clin Immunol 123:795-804.e798. Lewkowich, I.P., N.S. Herman, K.W. Schleifer, M.P. Dance, B.L. Chen, K.M. Dienger, A.A. Sproles, J.S. Shah, J. Köhl, Y. Belkaid, and M. Wills-Karp. 2005. CD4+CD25+ T cells protect against experimentally induced asthma and alter pulmonary dendritic cell phenotype and function. J Exp Med 202:1549-1561. Li, J.J., W. Wang, K.J. Baines, N.A. Bowden, P.M. Hansbro, P.G. Gibson, R.K. Kumar, P.S. Foster, and M. Yang. 2010. IL-27/IFN-gamma Induce MyD88-Dependent Steroid-Resistant Airway Hyperresponsiveness by Inhibiting Glucocorticoid Signaling in Macrophages. Journal of Immunology 185:4401-4409. Li, L., Y. Xia, A. Nguyen, L. Feng, and D. Lo. 1998. Th2-induced eotaxin expression and eosinophilia coexist with Th1 responses at the effector stage of lung inflammation. J Immunol 161:3128-3135. Liew, F.Y., N.I. Pitman, and I.B. McInnes. 2010. Disease-associated functions of IL-33: the new kid in the IL-1 family. Nat Rev Immunol 10:103-110. Lin, M.L., Y. Zhan, A.I. Proietto, S. Prato, L. Wu, W.R. Heath, J.A. Villadangos, and A.M. Lew. 2008. Selective suicide of cross-presenting CD8+ dendritic cells by cytochrome c injection shows functional heterogeneity within this subset. Proc Natl Acad Sci U S A 105:3029-3034. Lloyd, C.M., and C.M. Hawrylowicz. 2009. Regulatory T Cells in Asthma. Immunity 31:438-449. 195 Lockhart, E., A.M. Green, and J.L. Flynn. 2006. IL-17 production is dominated by gammadelta T cells rather than CD4 T cells during Mycobacterium tuberculosis infection. J Immunol 177:4662-4669. Lucey, D.R., A. Nicholsonweller, and P.F. Weller. 1989. Mature Human Eosinophils Have the Capacity to Express Hla-Dr. P Natl Acad Sci USA 86:1348-1351. MacKenzie, J.R., J. Mattes, L.A. Dent, and P.S. Foster. 2001. Eosinophils promote allergic disease of the lung by regulating CD4(+) Th2 lymphocyte function. Journal of Immunology 167:3146-3155. Mangan, P.R., L.E. Harrington, D.B. O'Quinn, W.S. Helms, D.C. Bullard, C.O. Elson, R.D. Hatton, S.M. Wahl, T.R. Schoeb, and C.T. Weaver. 2006. Transforming growth factor-beta induces development of the T(H)17 lineage. Nature 441:231-234. Masoli, M., D. Fabian, S. Holt, R. Beasley, and G.I.f.A.G. Program. 2004. The global burden of asthma: executive summary of the GINA Dissemination Committee report. Allergy 59:469-478. Matangkasombut, P., M. Pichavant, R.H. Dekruyff, and D.T. Umetsu. 2009. Natural killer T cells and the regulation of asthma. Mucosal Immunol 2:383-392. McKinley, L., J.F. Alcorn, A. Peterson, R.B. Dupont, S. Kapadia, A. Logar, A. Henry, C.G. Irvin, J.D. Piganelli, A. Ray, and J.K. Kolls. 2008. TH17 cells mediate steroid-resistant airway inflammation and airway hyperresponsiveness in mice. J Immunol 181:4089-4097. Merad, M., and M.G. Manz. 2009. Dendritic cell homeostasis. Blood 113:3418-3427. Mesnil, C., C.M. Sabatel, T. Marichal, M. Toussaint, D. Cataldo, P.V. Drion, P. Lekeux, F. Bureau, and C.J. Desmet. 2012. Resident CD11b(+)Ly6C(-) Lung Dendritic Cells Are Responsible for Allergic Airway Sensitization to House Dust Mite in Mice. PLoS One 7:e53242. Metcalf, D. 1986. The molecular biology and functions of the granulocyte-macrophage colony-stimulating factors. Blood 67:257-267. Miyahara, N., K. Takeda, T. Kodama, A. Joetham, C. Taube, J. Park, S. Miyahara, A. Balhorn, A. Dakhama, and E. Gelfand. 2004. Contribution of antigen-primed CD8+ T cells to the development of airway hyperresponsiveness and inflammation is associated with IL-13. J Immunol 172:2549-2558. Mohrs, M., K. Shinkai, K. Mohrs, and R.M. Locksley. 2001. Analysis of type immunity in vivo with a bicistronic IL-4 reporter. Immunity 15:303-311. Molet, S., Q. Hamid, F. Davoine, E. Nutku, R. Taha, N. Page, R. Olivenstein, J. Elias, and J. Chakir. 2001. IL-17 is increased in asthmatic airways and induces human bronchial fibroblasts to produce cytokines. J Allergy Clin Immun 108:430-438. Moro, K., T. Yamada, M. Tanabe, T. Takeuchi, T. Ikawa, H. Kawamoto, J. Furusawa, M. Ohtani, H. Fujii, and S. Koyasu. 2010. Innate production of T(H)2 cytokines by adipose tissue-associated c-Kit(+)Sca-1(+) lymphoid cells. Nature 463:540-544. 196 Mosmann, T.R., H. Cherwinski, M.W. Bond, M.A. Giedlin, and R.L. Coffman. 1986. Two types of murine helper T cell clone. I. Definition according to profiles of lymphokine activities and secreted proteins. J Immunol 136:2348-2357. Murphy, K.M., A.B. Heimberger, and D.Y. Loh. 1990. Induction by antigen of intrathymic apoptosis of CD4+CD8+TCRlo thymocytes in vivo. Science 250:1720-1723. Nagata, Y., H. Kamijuku, M. Taniguchi, S. Ziegler, and K. Seino. 2007. Differential role of thymic stromal lymphopoietin in the induction of airway hyperreactivity and Th2 immune response in antigen-induced asthma with respect to natural killer T cell function. Int Arch Allergy Immunol 144:305-314. Nair, M.G., Y. Du, J.G. Perrigoue, C. Zaph, J.J. Taylor, M. Goldschmidt, G.P. Swain, G.D. Yancopoulos, D.M. Valenzuela, A. Murphy, M. Karow, S. Stevens, E.J. Pearce, and D. Artis. 2009. Alternatively activated macrophage-derived RELM-{alpha} is a negative regulator of type inflammation in the lung. J Exp Med 206:937-952. Nakae, S., Y. Komiyama, A. Nambu, K. Sudo, M. Iwase, I. Homma, K. Sekikawa, M. Asano, and Y. Iwakura. 2002. Antigen-specific T cell sensitization is impaired in IL-17-deficient mice, causing suppression of allergic cellular and humoral responses. Immunity 17:375-387. Nakano, H., M.E. Free, G.S. Whitehead, S. Maruoka, R.H. Wilson, K. Nakano, and D.N. Cook. 2012. Pulmonary CD103(+) dendritic cells prime Th2 responses to inhaled allergens. Mucosal Immunol 5:53-65. Neeno, T., C.J. Krco, J. Harders, J. Baisch, S. Cheng, and C.S. David. 1996. HLA-DQ8 transgenic mice lacking endogenous class II molecules respond to house dust allergens: identification of antigenic epitopes. J Immunol 156:3191-3195. Neill, D.R., S.H. Wong, A. Bellosi, R.J. Flynn, M. Daly, T.K. Langford, C. Bucks, C.M. Kane, P.G. Fallon, R. Pannell, H.E. Jolin, and A.N. McKenzie. 2010. Nuocytes represent a new innate effector leukocyte that mediates type-2 immunity. Nature 464:1367-1370. Nials, A.T., and S. Uddin. 2008. Mouse models of allergic asthma: acute and chronic allergen challenge. Dis Model Mech 1:213-220. Nijman, H.W., M.J. Kleijmeer, M.A. Ossevoort, V.M. Oorschot, M.P. Vierboom, M. van de Keur, P. Kenemans, W.M. Kast, H.J. Geuze, and C.J. Melief. 1995. Antigen capture and major histocompatibility class II compartments of freshly isolated and cultured human blood dendritic cells. J Exp Med 182:163-174. O'Brien, R.M., W.R. Thomas, and A.M. Wootton. 1992. T cell responses to the purified major allergens from the house dust mite Dermatophagoides pteronyssinus. J Allergy Clin Immunol 89:1021-1031. Okumura, K., T. Takemori, T. Tokuhisa, and T. Tada. 1977. Specific enrichment of the suppressor T cell bearing I-J determinants: parallel functional and serological characterizations. J Exp Med 146:1234-1245. 197 Onai, N., A. Obata-Onai, M.A. Schmid, T. Ohteki, D. Jarrossay, and M.G. Manz. 2007. Identification of clonogenic common Flt3+M-CSFR+ plasmacytoid and conventional dendritic cell progenitors in mouse bone marrow. Nat Immunol 8:1207-1216. Ouyang, W., S.H. Ranganath, K. Weindel, D. Bhattacharya, T.L. Murphy, W.C. Sha, and K.M. Murphy. 1998. Inhibition of Th1 development mediated by GATA-3 through an IL-4-independent mechanism. Immunity 9:745-755. Park, H., Z. Li, X.O. Yang, S.H. Chang, R. Nurieva, Y.H. Wang, Y. Wang, L. Hood, Z. Zhu, Q. Tian, and C. Dong. 2005. A distinct lineage of CD4 T cells regulates tissue inflammation by producing interleukin 17. Nat Immunol 6:1133-1141. Paul-Dauphin, S., F. Karaca, T.J. Morgan, M. Millan-Agorio, A.A. Herod, and R. Kandiyoti. 2007. Probing Size Exclusion Mechanisms of Complex Hydrocarbon Mixtures: The Effect of Altering Eluent Compositions. Energy & Fuels 21:3484-3489. Pecaric-Petkovic, T., S.A. Didichenko, S. Kaempfer, N. Spiegl, and C.A. Dahinden. 2009. Human basophils and eosinophils are the direct target leukocytes of the novel IL-1 family member IL-33. Blood 113:1526-1534. Pene, J., S. Chevalier, L. Preisser, E. Venereau, M.H. Guilleux, S. Ghannam, J.P. Moles, Y. Danger, E. Ravon, S. Lesaux, H. Yssel, and H. Gascan. 2008. Chronically inflamed human tissues are infiltrated by highly differentiated Th17 lymphocytes. Journal of Immunology 180:7423-7430. Perrigoue, J.G., S.A. Saenz, M. Siracusa, E.J. Allenspach, B.C. Taylor, P.R. Giacomin, M.G. Nair, Y.R. Du, C. Zaph, M.R. Comeau, T.M. Laufer, and D. Artis. 2009a. Mhc Class Ii-Dependent Basophil-Cd4(+) T Cell Interactions Promote Th2 Cell-Dependent Immunity and Inflammation. Am J Trop Med Hyg 81:332-332. Perrigoue, J.G., S.A. Saenz, M.C. Siracusa, E.J. Allenspach, B.C. Taylor, P.R. Giacomin, M.G. Nair, Y. Du, C. Zaph, N. van Rooijen, M.R. Comeau, E.J. Pearce, T.M. Laufer, and D. Artis. 2009b. MHC class II-dependent basophil-CD4+ T cell interactions promote T(H)2 cytokine-dependent immunity. Nat Immunol 10:697-705. Piggott, D.A., S.C. Eisenbarth, L. Xu, S.L. Constant, J.W. Huleatt, C.A. Herrick, and K. Bottomly. 2005. MyD88-dependent induction of allergic Th2 responses to intranasal antigen. J Clin Invest 115:459-467. Plantinga, M., M. Guilliams, M. Vanheerswynghels, K. Deswarte, F. Branco-Madeira, W. Toussaint, L. Vanhoutte, K. Neyt, N. Killeen, B. Malissen, H. Hammad, and B.N. Lambrecht. 2013. Conventional and Monocyte-Derived CD11b(+) Dendritic Cells Initiate and Maintain T Helper Cell-Mediated Immunity to House Dust Mite Allergen. Immunity Pollard, A.M., and M.F. Lipscomb. 1990. Characterization of murine lung dendritic cells: similarities to Langerhans cells and thymic dendritic cells. J Exp Med 172:159-167. 198 Prefontaine, D., and Q. Hamid. 2007. Airway epithelial cells in asthma. J Allergy Clin Immunol 120:1475-1478. Prussin, C., and D.D. Metcalfe. 2006. IgE, mast cells, basophils, and eosinophils. J Allergy Clin Immun 117:S450-S456. Randolph, D.A., C.J. Carruthers, S.J. Szabo, K.M. Murphy, and D.D. Chaplin. 1999. Modulation of airway inflammation by passive transfer of allergen-specific Th1 and Th2 cells in a mouse model of asthma. J Immunol 162:2375-2383. Raue, H.P., J.D. Brien, E. Hammarlund, and M.K. Slifka. 2004. Activation of virus-specific CD8+ T cells by lipopolysaccharide-induced IL-12 and IL-18. J Immunol 173:6873-6881. Ray, A., A. Khare, N. Krishnamoorthy, Z. Qi, and P. Ray. 2010. Regulatory T cells in many flavors control asthma. Mucosal Immunol 3:216-229. Renz, H., G. Lack, J. Saloga, R. Schwinzer, K. Bradley, J. Loader, A. Kupfer, G. Larsen, and E. Gelfand. 1994. Inhibition of IgE production and normalization of airways responsiveness by sensitized CD8 T cells in a mouse model of allergen-induced sensitization. J Immunol 152:351-360. Rizzo, M.C., E. Fernandez-Caldas, D. Sole, and C.K. Naspitz. 1997. IgE antibodies to aeroallergens in allergic children in Sao Paulo, Brazil. Journal of investigational allergology & clinical immunology : official organ of the International Association of Asthmology (INTERASMA) and Sociedad Latinoamericana de Alergia e Inmunologia 7:242-248. Robinson, D.S., Q. Hamid, S. Ying, A. Tsicopoulos, J. Barkans, A.M. Bentley, C. Corrigan, S.R. Durham, and A.B. Kay. 1992. Predominant Th2-Like Bronchoalveolar Lymphocyte-T Population in Atopic Asthma. New Engl J Med 326:298-304. Romanet-Manent, S., D. Charpin, A. Magnan, A. Lanteaume, and D. Vervloet. 2002. Allergic vs nonallergic asthma: what makes the difference? Allergy 57:607-613. Rosenberg, H.F., S. Phipps, and P.S. Foster. 2007. Eosinophil trafficking in allergy and asthma. J Allergy Clin Immunol 119:1303-1310; quiz 1311-1302. Saenz, S.A., M.C. Siracusa, J.G. Perrigoue, S.P. Spencer, J.F. Urban, Jr., J.E. Tocker, A.L. Budelsky, M.A. Kleinschek, R.A. Kastelein, T. Kambayashi, A. Bhandoola, and D. Artis. 2010. IL25 elicits a multipotent progenitor cell population that promotes T(H)2 cytokine responses. Nature 464:1362-1366. Sanchez-Borges, M., A. Capriles-Hulett, F. Caballero-Fonseca, and E. Fernandez-Caldas. 2003. Mite and cockroach sensitization in allergic patients from Caracas, Venezuela. Annals of allergy, asthma & immunology : official publication of the American College of Allergy, Asthma, & Immunology 90:664-668. Schulz, O., H.F. Sewell, and F. Shakib. 1998. Proteolytic cleavage of CD25, the alpha subunit of the human T cell interleukin receptor, by Der p 1, a major mite allergen with cysteine protease activity. J Exp Med 187:271-275. 199 Seder, R., J. Boulay, F. Finkelman, S. Barbier, S. Ben-Sasson, G. Le Gros, and W. Paul. 1992. CD8+ T cells can be primed in vitro to produce IL-4. J Immunol 148:1652-1656. Sedgwick, J.D., and P.G. Holt. 1984. Suppression of IgE responses in inbred rats by repeated respiratory tract exposure to antigen: responder phenotype influences isotype specificity of induced tolerance. Eur J Immunol 14:893-897. Serbina, N.V., and E.G. Pamer. 2006. Monocyte emigration from bone marrow during bacterial infection requires signals mediated by chemokine receptor CCR2. Nat Immunol 7:311-317. Sertl, K., T. Takemura, E. Tschachler, V.J. Ferrans, M.A. Kaliner, and E.M. Shevach. 1986. Dendritic cells with antigen-presenting capability reside in airway epithelium, lung parenchyma, and visceral pleura. J Exp Med 163:436-451. Seshasayee, D., W.P. Lee, M. Zhou, J. Shu, E. Suto, J. Zhang, L. Diehl, C.D. Austin, Y.G. Meng, M. Tan, S.L. Bullens, S. Seeber, M.E. Fuentes, A.F. Labrijn, Y.M. Graus, L.A. Miller, E.S. Schelegle, D.M. Hyde, L.C. Wu, S.G. Hymowitz, and F. Martin. 2007. In vivo blockade of OX40 ligand inhibits thymic stromal lymphopoietin driven atopic inflammation. J Clin Invest 117:3868-3878. Shakib, F., O. Schulz, and H. Sewell. 1998. A mite subversive: cleavage of CD23 and CD25 by Der p enhances allergenicity. Immunology today 19:313-316. Shibata, Y., P.Y. Berclaz, Z.C. Chroneos, M. Yoshida, J.A. Whitsett, and B.C. Trapnell. 2001. GM-CSF regulates alveolar macrophage differentiation and innate immunity in the lung through PU.1. Immunity 15:557-567. Shirakawa, T., T. Enomoto, S. Shimazu, and J.M. Hopkin. 1997. The inverse association between tuberculin responses and atopic disorder. Science 275:77-79. Smithgall, M.D., M.R. Comeau, B.R. Yoon, D. Kaufman, R. Armitage, and D.E. Smith. 2008. IL-33 amplifies both Th1- and Th2-type responses through its activity on human basophils, allergen-reactive Th2 cells, iNKT and NK cells. Int Immunol 20:1019-1030. Sokol, C.L., N.Q. Chu, S. Yu, S.A. Nish, T.M. Laufer, and R. Medzhitov. 2009. Basophils function as antigen-presenting cells for an allergen-induced T helper type response. Nat Immunol 10:713-U763. Song, C., L. Luo, Z. Lei, B. Li, Z. Liang, G. Liu, D. Li, G. Zhang, B. Huang, and Z.H. Feng. 2008. IL-17-producing alveolar macrophages mediate allergic lung inflammation related to asthma. J Immunol 181:6117-6124. Sousa, C.R. 2006. Essay - Dendritic cells in a mature age. Nat Rev Immunol 6:476-483. Sporri, R., and C. Reis e Sousa. 2005. Inflammatory mediators are insufficient for full dendritic cell activation and promote expansion of CD4+ T cell populations lacking helper function. Nat Immunol 6:163-170. Sporri, R., and C.R.E. Sousa. 2005. Inflammatory mediators are insufficient for full dendritic cell activation and promote expansion of CD4(+) T cell populations lacking helper function. Nat Immunol 6:163-170. 200 Stampfli, M.R., R.E. Wiley, G.S. Neigh, B.U. Gajewska, X.F. Lei, D.P. Snider, Z. Xing, and M. Jordana. 1998. GM-CSF transgene expression in the airway allows aerosolized ovalbumin to induce allergic sensitization in mice. J Clin Invest 102:1704-1714. Steinfelder, S., J.F. Andersen, J.L. Cannons, C.G. Feng, M. Joshi, D. Dwyer, P. Caspar, P.L. Schwartzberg, A. Sher, and D. Jankovic. 2009. The major component in schistosome eggs responsible for conditioning dendritic cells for Th2 polarization is a T2 ribonuclease (omega-1). J Exp Med 206:1681-1690. Steinman, R.M. 1991. The dendritic cell system and its role in immunogenicity. Annu Rev Immunol 9:271-296. Steinman, R.M., and Z.A. Cohn. 1973. Identification of a novel cell type in peripheral lymphoid organs of mice. I. Morphology, quantitation, tissue distribution. J Exp Med 137:1142-1162. Still, W.C., M. Kahn, and A. Mitra. 1978. Rapid chromatographic technique for preparative separations with moderate resolution. The Journal of Organic Chemistry 43:2923-2925. Stock, P., V. Lombardi, V. Kohlrautz, and O. Akbari. 2009. Induction of airway hyperreactivity by IL-25 is dependent on a subset of invariant NKT cells expressing IL-17RB. J Immunol 182:5116-5122. Sullivan, B.M., H.E. Liang, J.K. Bando, D. Wu, L.E. Cheng, J.K. McKerrow, C.D. Allen, and R.M. Locksley. 2011. Genetic analysis of basophil function in vivo. Nat Immunol 12:527-535. Sung, S., S. Fu, C.J. Rose, F. Gaskin, S. Ju, and S. Beaty. 2006. A major lung CD103 (alphaE)-beta7 integrin-positive epithelial dendritic cell population expressing Langerin and tight junction proteins. J Immunol 176:2161-2172. Sung, S., C.E. Rose, and S.M. Fu. 2001. Intratracheal priming with ovalbumin- and ovalbumin 323-339 peptide-pulsed dendritic cells induces airway hyperresponsiveness, lung eosinophilia, goblet cell hyperplasia, and inflammation. Journal of immunology 166:1261-1271. Szabo, S.J., S.T. Kim, G.L. Costa, X.K. Zhang, C.G. Fathman, and L.H. Glimcher. 2000. A novel transcription factor, T-bet, directs Th1 lineage commitment. Cell 100:655-669. Szelenyi, I. 2000. Animal models of bronchial asthma. Inflamm Res 49:639-654. Tada, T., K. Okumura, and M. Taniguchi. 1972. Regulation of homocytotropic antibody formation in the rat. VII. Carrier functions in the anti-hapten homocytotropic antibody response. J Immunol 108:1535-1541. Tamachi, T., Y. Maezawa, K. Ikeda, S. Kagami, M. Hatano, Y. Seto, A. Suto, K. Suzuki, N. Watanabe, Y. Saito, T. Tokuhisa, I. Iwamoto, and H. Nakajima. 2006. IL-25 enhances allergic airway inflammation by amplifying a TH2 cell-dependent pathway in mice. J Allergy Clin Immunol 118:606-614. Tang, H., W. Cao, S.P. Kasturi, R. Ravindran, H.I. Nakaya, K. Kundu, N. Murthy, T.B. Kepler, B. Malissen, and B. Pulendran. 2010. The T helper type response to cysteine proteases requires dendritic cell-basophil cooperation via ROS-mediated signaling. Nat Immunol 11:608-617. 201 Taniguchi, M., K. Seino, and T. Nakayama. 2003. The NKT cell system: bridging innate and acquired immunity. Nat Immunol 4:1164-1165. Taube, C., X. Wei, C.H. Swasey, A. Joetham, S. Zarini, T. Lively, K. Takeda, J. Loader, N. Miyahara, T. Kodama, L.D. Shultz, D.D. Donaldson, E.H. Hamelmann, A. Dakhama, and E.W. Gelfand. 2004. Mast cells, Fc epsilon RI, and IL-13 are required for development of airway hyperresponsiveness after aerosolized allergen exposure in the absence of adjuvant. Journal of Immunology 172:6398-6406. Terashima, A., H. Watarai, S. Inoue, E. Sekine, R. Nakagawa, K. Hase, C. Iwamura, H. Nakajima, T. Nakayama, and M. Taniguchi. 2008. A novel subset of mouse NKT cells bearing the IL-17 receptor B responds to IL-25 and contributes to airway hyperreactivity. J Exp Med 205:2727-2733. Tillie-Leblond, I., D. Montani, B. Crestani, J. de Blic, M. Humbert, M. Tunon-de-Lara, A. Magnan, N. Roche, J. Ostinelli, and P. Chanez. 2009. Relation between inflammation and symptoms in asthma. Allergy 64:354-367. Traidl-Hoffmann, C., V. Mariani, H. Hochrein, K. Karg, H. Wagner, J. Ring, M.J. Mueller, T. Jakob, and H. Behrendt. 2005. Pollen-associated phytoprostanes inhibit dendritic cell interleukin-12 production and augment T helper type cell polarization. J Exp Med 201:627-636. Trompette, A., S. Divanovic, A. Visintin, C. Blanchard, R.S. Hegde, R. Madan, P.S. Thorne, M. Wills-Karp, T.L. Gioannini, J.P. Weiss, and C.L. Karp. 2009. Allergenicity resulting from functional mimicry of a Toll-like receptor complex protein. Nature 457:585-588. Trzpis, M., P.M. McLaughlin, L.M. de Leij, and M.C. Harmsen. 2007. Epithelial cell adhesion molecule: more than a carcinoma marker and adhesion molecule. The American journal of pathology 171:386-395. Tsai, J.J., H.H. Wu, H.D. Shen, E.L. Hsu, and S.R. Wang. 1998. Sensitization to Blomia tropicalis among asthmatic patients in Taiwan. Int Arch Allergy Immunol 115:144-149. Umetsu, D.T., J.J. McIntire, O. Akbari, C. Macaubas, and R.H. DeKruyff. 2002. Asthma: an epidemic of dysregulated immunity. Nat Immunol 3:715-720. Unkel, B., K. Hoegner, B.E. Clausen, P. Lewe-Schlosser, J. Bodner, S. Gattenloehner, H. Janssen, W. Seeger, J. Lohmeyer, and S. Herold. 2012. Alveolar epithelial cells orchestrate DC function in murine viral pneumonia. The Journal of clinical investigation 122:3652-3664. Vale, A.M., and H.W. Schroeder. 2010. Clinical consequences of defects in B-cell development. J Allergy Clin Immun 125:778-787. van de Laar, L., P.J. Coffer, and A.M. Woltman. 2012. Regulation of dendritic cell development by GM-CSF: molecular control and implications for immune homeostasis and therapy. Blood 119:3383-3393. Van Hove, C.L., T. Maes, G.F. Joos, and K.G. Tournoy. 2007. Prolonged inhaled allergen exposure can induce persistent tolerance. Am J Resp Cell Mol 36:573-584. 202 van Rijt, L., S. Jung, A. Kleinjan, N. Vos, M. Willart, C. Duez, H. Hoogsteden, and B. Lambrecht. 2005a. In vivo depletion of lung CD11c+ dendritic cells during allergen challenge abrogates the characteristic features of asthma. J Exp Med 201:981-991. van Rijt, L.S., S. Jung, A. Kleinjan, N. Vos, M. Willart, C. Duez, H.C. Hoogsteden, and B.N. Lambrecht. 2005b. In vivo depletion of lung CD11c+ dendritic cells during allergen challenge abrogates the characteristic features of asthma. J Exp Med 201:981-991. Varol, C., L. Landsman, D.K. Fogg, L. Greenshtein, B. Gildor, R. Margalit, V. Kalchenko, F. Geissmann, and S. Jung. 2007. Monocytes give rise to mucosal, but not splenic, conventional dendritic cells. The Journal of Experimental Medicine 204:171-180. von Hertzen, L., T. Klaukka, H. Mattila, and T. Haahtela. 1999. Mycobacterium tuberculosis infection and the subsequent development of asthma and allergic conditions. J Allergy Clin Immunol 104:1211-1214. von Mutius, E. 2009. Gene-environment interactions in asthma. J Allergy Clin Immunol 123:3-11; quiz 12-13. Vremec, D., J. Pooley, H. Hochrein, L. Wu, and K. Shortman. 2000. CD4 and CD8 expression by dendritic cell subtypes in mouse thymus and spleen. J Immunol 164:2978-2986. Wakashin, H., K. Hirose, Y. Maezawa, S. Kagami, A. Suto, N. Watanabe, Y. Saito, M. Hatano, T. Tokuhisa, Y. Iwakura, P. Puccetti, I. Iwamoto, and H. Nakajima. 2008. IL-23 and Th17 cells enhance Th2-cell-mediated eosinophilic airway inflammation in mice. Am J Respir Crit Care Med 178:1023-1032. Wan, H., H.L. Winton, C. Soeller, E.R. Tovey, D.C. Gruenert, P.J. Thompson, G.A. Stewart, G.W. Taylor, D.R. Garrod, M.B. Cannell, and C. Robinson. 1999. Der p facilitates transepithelial allergen delivery by disruption of tight junctions. J Clin Invest 104:123-133. Wang, Y.H., P. Angkasekwinai, N. Lu, K.S. Voo, K. Arima, S. Hanabuchi, A. Hippe, C.J. Corrigan, C. Dong, B. Homey, Z. Yao, S. Ying, D.P. Huston, and Y.J. Liu. 2007. IL-25 augments type immune responses by enhancing the expansion and functions of TSLP-DC-activated Th2 memory cells. Journal of Experimental Medicine 204:1837-1847. Waskow, C., K. Liu, G. Darrasse-Jeze, P. Guermonprez, F. Ginhoux, M. Merad, T. Shengelia, K. Yao, and M. Nussenzweig. 2008. The receptor tyrosine kinase Flt3 is required for dendritic cell development in peripheral lymphoid tissues. Nat Immunol 9:676-683. Webb, D.C., A.N. McKenzie, A.M. Koskinen, M. Yang, J. Mattes, and P.S. Foster. 2000. Integrated signals between IL-13, IL-4, and IL-5 regulate airways hyperreactivity. J Immunol 165:108-113. Wegmann, M. 2008. Animal models of chronic experimental asthma - strategies for the identification of new therapeutic targets. J Occup Med Toxicol Suppl 1:S4. 203 Wells, J., C. Cowled, A. Giorgini, D. Kemeny, and A. Noble. 2007a. Regulation of allergic airway inflammation by class I-restricted allergen presentation and CD8 T-cell infiltration. J Allergy Clin Immunol 119:226-234. Wells, J.W., C.J. Cowled, A. Giorgini, D.M. Kemeny, and A. Noble. 2007b. Regulation of allergic airway inflammation by class I-restricted allergen presentation and CD8 T-cell infiltration. J Allergy Clin Immunol 119:226-234. Willart, M.A., K. Deswarte, P. Pouliot, H. Braun, R. Beyaert, B.N. Lambrecht, and H. Hammad. 2012. Interleukin-1alpha controls allergic sensitization to inhaled house dust mite via the epithelial release of GM-CSF and IL-33. The Journal of experimental medicine 209:1505-1517. Williams, C.M.M., and S.J. Galli. 2000. Mast cells can amplify airway reactivity and features of chronic inflammation in an asthma model in mice. Journal of Experimental Medicine 192:455-462. Wills-Karp, M., J. Luyimbazi, X. Xu, B. Schofield, T.Y. Neben, C.L. Karp, and D.D. Donaldson. 1998. Interleukin-13: central mediator of allergic asthma. Science 282:2258-2261. Wilson, R.H., G.S. Whitehead, H. Nakano, M.E. Free, J.K. Kolls, and D.N. Cook. 2009. Allergic Sensitization through the Airway Primes Th17-dependent Neutrophilia and Airway Hyperresponsiveness. Am J Resp Crit Care 180:720-730. Wodnar-Filipowicz, A., C.H. Heusser, and C. Moroni. 1989. Production of the haemopoietic growth factors GM-CSF and interleukin-3 by mast cells in response to IgE receptor-mediated activation. Nature 339:150-152. Yang, M., R.K. Kumar, and P.S. Foster. 2010. Interferon-gamma and pulmonary macrophages contribute to the mechanisms underlying prolonged airway hyperresponsiveness. Clin Exp Allergy 40:163-173. Ying, S., B. O'Connor, J. Ratoff, Q. Meng, K. Mallett, D. Cousins, D. Robinson, G. Zhang, J. Zhao, T.H. Lee, and C. Corrigan. 2005. Thymic stromal lymphopoietin expression is increased in asthmatic airways and correlates with expression of Th2-attracting chemokines and disease severity. J Immunol 174:8183-8190. Yoshimoto, T., K. Yasuda, H. Tanaka, M. Nakahira, Y. Imai, Y. Fujimori, and K. Nakanishi. 2009. Basophils contribute to T(H)2-IgE responses in vivo via IL-4 production and presentation of peptide-MHC class II complexes to CD4(+) T cells. Nat Immunol 10:706-U754. Zhan, Y., Y. Xu, and A.M. Lew. 2012. The regulation of the development and function of dendritic cell subsets by GM-CSF: more than a hematopoietic growth factor. Molecular immunology 52:30-37. Zhang, D.H., L. Cohn, P. Ray, K. Bottomly, and A. Ray. 1997. Transcription factor GATA-3 is differentially expressed murine Th1 and Th2 cells and controls Th2-specific expression of the interleukin-5 gene. J Biol Chem 272:21597-21603. Zhou, B., M.R. Comeau, T.D. Smedt, H.D. Liggitt, M.E. Dahl, D.B. Lewis, D. Gyarmati, T. Aye, D.J. Campbell, and S.F. Ziegler. 2005. Thymic stromal 204 lymphopoietin as a key initiator of allergic airway inflammation in mice. Nat Immunol 6:1047-1053. Zhu, J., H. Yamane, and W.E. Paul. 2010. Differentiation of effector CD4 T cell populations (*). Annu Rev Immunol 28:445-489. Zosky, G.R., and P.D. Sly. 2007. Animal models of asthma. Clin Exp Allergy 37:973-988. 205 [...]... and airway hyper-responsiveness As a model of asthma, however, experimental acute allergic inflammation of the lung parenchyma has significant limitations Characteristic features airway remodelling of human asthma such as intraepithelial recruitment of eosinophils, lamina propria inflammation and subepithelial fibrosis are virtually absent in these models 1.2.2 Ovalbumin asthma model vs dust mite asthma. .. and acute asthma models, acute ovalbumin asthma model (ovalbumin as antigen) and acute dust mite model (dust mite allergen as antigen), which is the most relevant for this study 1.2.1 Chronic asthma model vs acute asthma model For years, attempts have been made to induce chronic asthma in mice (Kumar and Foster, 2001) These chronic asthma models have involved either repeated intratracheal/intranasal... mimicking of the cause and progression of human asthma Although different laboratory animals such as guinea pigs, dogs, sheep, rats have been implemented in asthma research, mice are the most commonly used in experimental models because of advantages such as the availability of various transgenic animals, the wide array of reagents available for analysis, the low cost of maintenance and the 20 CHAPTER... the nature of the allergen and the route of sensitization can significantly influence the overall innate and adaptive Furthermore, not only does respiratory exposures to OVA lead to inhalation tolerance , but continuous challenge with OVA via intranasal route in already sensitized animal results in an attenuation and even complete abrogation instead of an increase or maintenance of airway inflammation... prevalence of asthma keeps increasing and currently affects millions of people worldwide Apart from imposing a social burden in terms of quality of life, the cost of asthma patient health care also places a significant burden on public health and thus represents a major public health concern 1.1.1 Asthma as a major public asthma problem Approximately, 300 million people suffer from asthma and its prevalence... prevalence has been increasing over the past few decades (Braman, 2006) The increase in asthma and atopic diseases has been described as an epidemic event According to statistics released by American Academy of Allergy Asthma and Immunology, the prevalence of asthma is particularly high in developed countries with highest prevalence in the United Kingdom and New Zealand (Masoli et al., 2004) In developing... (Th2) cells are found in the lungs of almost all patients asthma, in particularly, patients with allergic asthma (Robinson et al., 1992) It is well established that Th2 cells are key players in the pathogenesis of asthma through the cytokines they produce (IL-4, IL-5 and IL-13) they mediate several hallmarks of asthma/ allergy, namely, eosinophilia, goblet cell hyperplasia, airway 24 CHAPTER 1: Introduction... allergic asthma, patients are usually interviewed about the incidence of symptoms, their day/night time occurrence and history of allergy and so on to facilitate the diagnosis of asthma 1.2 Animal model of asthma Clinical observations on asthmatic patients have laid the foundation knowledge for scientific studies on the pathogenesis of asthma At the very beginning, association 19 CHAPTER 1: Introduction... countries, asthma prevalence is increasing sharply with the progress of urbanization The increase in China and India will lead to a dramatic increase in the economic burden due to their giant populations (Masoli et al., 2004) Specifically, the high prevalence 16 CHAPTER 1: Introduction rate has markedly increased the cost of this disease as measured in health care dollars, time away from work and school, and... of symptoms, forced expiratory volume and peak expiratory flow rate In asthma research, nevertheless, it is more commonly classified according to the origin and cause of the disease, namely allergic asthma and non-allergic asthma as described earlier (Romanet-Manent et al., 2002) Allergic asthma, the most common type of asthma experienced by approximately 80% of asthmatic patients, is more widely investigated . Asthma as a chronic inflammatory disease 18 1.1. 4Clinical symptoms of asthma 19 1.2 Animal model of asthma 19 1.2.1 Chronic asthma model vs acute asthma model 21 1.2.2 Ovalbumin asthma model. mite asthma model 22 1.3 Overview of allergic asthma: the classic paradigm 24 1.4 Innate immune cells and asthma 26 1.5 Innate immune cytokines and asthma 31 1.6 Innate effector cells and asthma. promote asthma. Over the past 20 years, asthma research has therefore almost exclusively focused on inflammation as a cause of disease. 1.1.4 Clinical symptoms of asthma Allergic asthmatic patients