Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống
1
/ 208 trang
THÔNG TIN TÀI LIỆU
Thông tin cơ bản
Định dạng
Số trang
208
Dung lượng
5,83 MB
Nội dung
FUNCTIONAL ANALYSIS OF METALLOTHIONEIN-2A ISOFORM IN BREAST CANCER LIM DAINA [B.Appl.Sc. (Hons.), NUS] A THESIS SUBMITTED FOR THE DEGREE OF DOCTOR OF PHILOSOPHY DEPARTMENT OF ANATOMY YONG LOO LIN FACULTY OF MEDICINE NATIONAL UNIVERSITY OF SINGAPORE 2009 ACKNOWLEDGMENTS ACKNOWLEDGEMENTS I will like to thank the people that has been involved and contributed to this project. First and foremost, I will like to express my heartfelt gratitude to my supervisor and head of department, Prof Bay Boon Huat, for providing me an opportunity to pursue my PhD degree in the Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore (NUS). His dedicated guidance, support and encouragement have played an important part in making this project a successful one. Next, I will like to thank my co-supervisor, Dr. Yip George Wai Cheong, for his helpful suggestions and guidance in this project. I am grateful to my friends, Ms Koo Chuay Yeng for her encouragements, invaluable discussions and help on the analysis of the breast cancer clinicopathological data; Ms Alice Zin Mar Lwin for support and technical assistance during my pregnancy; Mr Lai Yiyang, Ms Yu Yingnan, Ms Yvonne Teng Huifang, Ms Grace Leong Shuxian, Ms Li Yinghui and all the present and former members from Prof Bay Boon Huat’s and Dr. Yip George Wai Cheong’s groups for their valuable discussion and friendship. My special thanks go to Dr. Liu Yang for his contribution on the structural modelling of the MT-2A protein mutant. I will like to express my appreciation to collaborators in the Department of Microbiology, Prof Sim Tiow Suan and Dr. Maurice Chan for the technical assistance rendered in the construction of the MT-2A overexpression vectors. I will like to thank the Department of Pathology, Singapore General Hospital for providing the breast cancer tissues sections and breast cancer TMAs. In particular, I am grateful to our collaborator, Assoc Prof Tan Puay Hoon (Department of Pathology, SGH) for the collaboration in this project and i ACKNOWLEDGEMENTS her guidance on the morphology of various breast pathology specimens; and Dr. Aye (Department of Pathology, SGH) for her guidance and verification on the MT immunostaining in breast TMAs. I will like to express my gratitude to the staff, with special thanks to Ms June Koh, in the core facilities of the teaching laboratory in the Department of Microbiology (NUS) for the use of the ABI7000 real-time PCR machine; Department of Pharmacology (NUS) for the use of Tecan2000 absorbance plate reader with special appreciation to Mr Wong Yong Jie (Department of Pharmacology, NUS) for his help. My apologies to those whom I have not mentioned by name I am indebted to them in many ways they have helped me. I will like to pay tribute to my husband, son and my immediate family members whose immense love and tremendous support has made this work possible. Last but not least, I will like to show my appreciation to National University of Singapore for providing me the research scholarship to pursue my PhD degree. ii TABLE OF CONTENTS TABLE OF CONTENTS ACKNOWLEDGEMENTS . i SUMMARY vi PUBLICATIONS ix LIST OF ABBREVIATIONS . x LIST OF FIGURES xiii LIST OF TABLES . xvi CHAPTER INTRODUCTION . 1.1 Breast anatomy and development 1.2. Breast cancer . 1.2.1. Classification of breast lesions . 1.2.1.1. Benign breast disorders .5 1.2.1.2. Non-invasive breast cancer .6 1.2.1.3. Invasive breast cancer .7 1.2.2. Epidemiology of breast cancer 11 1.2.3. Breast cancer symptoms and treatment 13 1.2.3.1. Surgery 13 1.2.3.2. Radiotherapy .14 1.2.3.3. Chemotherapy .17 1.2.3.4. Hormonal therapy 18 1.2.3.5. Targeted therapies 20 1.2.4. Risk factors of breast cancer 20 1.3. Cancer progression . 22 1.3.1. Cell proliferation . 22 1.3.2. Cell migration and invasion . 24 1.3.3. Cell death . 25 1.4. Biomarkers in breast cancer . 30 1.5. Metallothionein . 31 1.5.1 Biology of Metallothionein 31 1.5.2 Structure of MT 32 1.5.3. Protective effects of MT 34 1.5.3.1 Oxidative stress 34 1.5.3.2 Radiation 35 1.5.3.3 Infections 35 1.5.3.4 Alkylating agents 36 1.5.4. MT isoforms . 37 1.5.5. MT and cancer . 38 ii TABLE OF CONTENTS 1.6. Gene silencing . 39 1.6.1. Overview of gene silencing . 39 1.6.2. Mechanism of RNA interference 40 1.6.3. RNAi as a tool for gene analysis . 42 1.7. Scope of study 44 CHAPTER MATERIALS AND METHODS . 46 2.1. Antibodies and reagents 47 2.2. Cell culture 47 2.2.1. Maintenance of cell lines . 47 2.2.2. Cryopreservation of cells 48 2.3. Downregulation using siRNA transfection 49 2.3.1. Optimization of siRNA transfection 49 2.3.2. Silencing in MCF-7 breast cancer cells . 49 2.4. Cloning and overexpression of MT-2A 50 2.5. Quantitative real-time PCR . 51 2.5.1 Extraction of total RNA . 51 2.5.2 cDNA synthesis . 52 2.5.3 Quantitative real-time PCR 52 2.6. Automated Flow Cell Sorting (FACS) 54 2.7. Immunocytochemistry . 55 2.8. Growth curve analysis . 55 2.9. Cell proliferation assay . 56 2.10. Cell adhesion assay . 56 2.11. Cell cycle analysis 57 2.12. Cell migration assay 58 2.13. Invasion assay . 59 2.14. Superarray analysis . 60 2.15. Immunoblot analysis . 62 2.15.1. Protein extraction 62 2.15.2 Preparation of protein sample 62 2.15.3. Preparation of resolving and stacking gel . 63 2.15.4. SDS-PAGE . 64 2.15.5. Transfer of proteins . 64 iii TABLE OF CONTENTS 2.16. Electron microscopy 65 2.16.1 Transmission electron microscopy 65 2.16.2. Scanning electron microscopy 66 2.17. Scanning transmission ion micro-tomography (STIM) 66 2.18. Statistical analysis . 66 2.19. MT staining in invasive ductal breast carcinoma tissues 67 2.19.1. Patients and tissues . 67 2.19.2. Tissue microarrays 67 2.19.3. Clinicopathological parameters of patients of invasive ductal carcinomas . 68 2.19.4. Immunohistochemical staining 71 2.19.5. Scoring system . 71 2.19.6. Statistical analysis . 72 CHAPTER RESULTS . 73 3.1. Morphology of breast cell lines . 74 3.2. Expression of MT in breast cell lines . 76 3.3. Transfection in MCF-7 . 78 3.4. Down-regulation of MT-2A 81 3.5. Morphological changes after down-regulation of MT-2A . 85 3.6. Specificity of MT isoforms 88 3.6.1. Down-regulation of MT-1F . 88 3.7. Effect of down-regulation of MT-2A on cell proliferation 90 3.8. Effect of down-regulation of MT-2A on cell adhesion of breast cancer cells . 94 3.9. Effect of down-regulation of MT-2A on migration of breast cancer cells 95 3.10. Invasion of MCF-7 cells . 98 3.11. Cloning and expression of MT-2A plasmids . 98 3.12. Overexpression of MT-2A in MCF-7 cells 100 3.13. Structure of MT-2A and MT-2A’ . 102 3.14. Effect of overexpression of MT-2A on cell proliferation . 103 3.15. Differential effects of overexpression of MT-2A and MT-2A’ on cell migration 105 3.16. Differential expression of cancer related genes . 107 3.17. Differential expression of cell cycle related genes 111 3.18. Differential expression of cell cycle related proteins 116 iv TABLE OF CONTENTS 3.19. Differential expression of metastasis related proteins 119 3.21. Expression of MT in invasive ductal breast carcinoma tissues . 121 3.22. Association of MT cytoplasmic staining with clinicopathological parameters . 126 CHAPTER DISCUSSION . 137 4.1. General discussion 138 4.2. MT-2A and cell proliferation in breast cancer cells . 139 4.2.1. General overview of cell proliferation . 139 4.2.2. Role of MT-2A in cell proliferation 141 4.2.2.1. In vitro studies .141 4.2.2.2. Clinicopathological associations of MT with cell proliferation 147 4.3. MT-2A and breast cancer metastasis 151 4.3.1. General overview of cancer metastasis 151 4.3.2. Role of MT-2A in cancer metastasis 152 4.3.2.1. In vitro assay .152 4.3.2.2. Associations of MT-2A with lymph node metastasis in breast cancer patients .155 CHAPTER CONCLUSIONS AND FUTURE STUDIES 156 5.1. Conclusions . 157 5.2. Future studies 159 References 161 v SUMMARY SUMMARY Breast cancer is one of the most prevalent cancers in women worldwide. The rate of breast cancer has been increasing rapidly. Invasive ductal carcinoma makes up the bulk of all breast cancer cases. There has been a surge in the research on biomarkers in breast cancer for better evaluation and management of the disease. Metallothionein (MT) is a cysteine rich, low molecular weight protein that has a protective function against heavy metal detoxification, oxidative stress, radiation, infections and alkylating agents. MT has also been found to be associated with cell proliferation and apoptosis which has lead to the implication of MT in carcinogenesis. MT expression has been shown to be associated with a higher grade, more aggressive breast cancer and poorer prognosis. Despite so, the exact mechanism by which MT has had an impact on breast cancer has not been elucidated. Furthermore, there are ten functional isoforms in human, with MT-2A being the most abundant isoform in breast cancer. The exact roles of the individual MT isoforms in cancer progression have yet to be identified. This study aims to examine the functional roles of the most abundant MT isoform, MT-2A, in breast cancer progression. The results in this study showed that MT-2A has an effect on cell proliferation, cell death and metastasis in breast cancer. The data demonstrated that down-regulation of MT-2A in breast cancer cells led to an increase in cell death and a decrease in cell proliferation (with a rise in the sub G1 and G1 phase of the cell-cycle), while overexpression of MT-2A led to a significant increase in the G2/M phase of the cell cycle. Analysis of the expression of several cancer pathway-related and cell cyclerelated genes has shown significant altered regulation of several genes at both mRNA and protein level. MT-2A is postulated to affect the cell-cycle and cell proliferation via the ATM/Chk2/Cdc25a pathway. The gene expression results also indicated that another possible pathway by which MT-2A regulates vi SUMMARY cell proliferation is via the cyclin G1 or cyclin C/cdk8 pathway. Down-regulation of MT-2A also affected cell death as there was an apoptotic peak at the sub-G1 phase and SEM pictures had shown an increase in apoptotic bodies. Gene analysis revealed that this effect may be mediated via an increase in Bax or Cyclin G1 expression. In addition, it was also observed that cells, in which MT was downregulated, exhibited signs of entosis (a cell-eat-cell phenomenon) under TEM. The data has shown for the first time that MT-2A has an effect on metastasis. Down-regulation of MT-2A resulted in a significant decrease in the number of cells migrating through the transwell membrane while overexpression of MT-2A produced an opposite effect. It was shown that this phenomenon was specific to MT-2A isoform alone as down-regulation of MT-1F isoform was shown to have no significant effect on cell migration. From the gene expression analysis results, it is posited that MT-2A expression influences cell migration via differential regulation of the uPAR protein, through cMet. The uPA system is involved in metastasis and angiogenesis with uPAR being the primary modulator of the system. Moreover, cloning of the MT-2A gene has led to identification of a naturally occurring deletion mutant of the MT-2A gene, MT-2A’. The deletion mutant was found to have amino acids lacking in the amino terminus. Through reconstruction of MT-2A’ protein structure, the folding of the amino terminus was found to be affected. The deletion mutant was shown to have no difference to the native protein with regard to cell-cycle progression but was found to have a lesser potency in cell migration. Perhaps, cell migration via MT-2A mediation is dependent on the number of divalent ions MT-2A carries. MT expression was also examined in breast cancer tissues in a TMA format using general MT antibodies which recognises all MT isoforms. MT staining was observed to be present in both the cytoplasm and nucleus of the tumour cells. MT was documented to be expressed in the cytoplasm of vii SUMMARY the cancer cells in 122 cases (87.1 %), with only 18 cases (12.9 %) exhibiting no staining in the cytoplasm of the tumour cells. The percentage of MT staining in the nucleus was found to be relatively similar to the cytoplasm with 118 cases (84.3 %) showing positive MT staining and only 22 cases (15.7 %) showing absence of MT staining in the nucleus. The staining of MT was classified into two groups; presence or absence of MT staining and low and high MT staining for both cytoplasmic and nuclear staining. A significant relationship was found between MT staining with higher grade tumour; higher lymph node stage; absence of ER and closely related to PCNA staining. This verifies that MT expression is closely related to proliferation and metastasis. Hence from the in vitro and clinicopathological studies, it is concluded that MT-2A expression has an intimate relationship with cell proliferation and metastasis in breast cancer and could be a potential therapeutic target for drug design. viii REFERENCES Kim, R., Tanabe, K., Emi, M., Uchida, Y., Inoue, H., and Toge, T. Inducing cancer cell death by targeting transcription factors. Anticancer Drugs 2003;14: 3-11. Kirschstein, R. Menopausal hormone therapy: summary of a scientific workshop. Ann Intern Med 2003;138: 361-364. Klimczak, J., Wisniewska-Knypl, J. M., and Kolakowski, J. Stimulation of lipid peroxidation and heme oxygenase activity with inhibition of cytochrome P-450 monooxygenase in the liver of rats repeatedly exposed to cadmium. Toxicology 1984;32: 267-276. Klionsky, D. J. and Emr, S. D. Autophagy as a regulated pathway of cellular degradation. Science 2000;290: 1717-1721. Knudson, C. M. and Brown, N. M. Mitochondria potential, bax "activation," and programmed cell death. Methods Mol Biol 2008;414: 95-108. Kojima, Y., Berger, C., Vallee, B. L., and Kagi, J. H. Amino-acid sequence of equine renal metallothionein-1B. Proc Natl Acad Sci U S A 1976;73: 3413-3417. Kondo, Y., Rusnak, J. M., Hoyt, D. G., Settineri, C. E., Pitt, B. R., and Lazo, J. S. Enhanced apoptosis in metallothionein null cells. Mol Pharmacol 1997;52: 195-201. Kroismayr, R., Baranyi, U., Stehlik, C., Dorfleutner, A., Binder, B. R., and Lipp, J. HERC5, a HECT E3 ubiquitin ligase tightly regulated in LPS activated endothelial cells. J Cell Sci 2004;117: 4749-4756. Krysko, D. V., Denecker, G., Festjens, N., Gabriels, S., Parthoens, E., D'herde, K., and Vandenabeele, P. Macrophages use different internalization mechanisms to clear apoptotic and necrotic cells. Cell Death Differ 2006;13: 2011-2022. Kuerer, H. M., Newman, L. A., Buzdar, A. U., Hunt, K. K., Dhingra, K., Buchholz, T. A., Binkley, S. M., Ames, F. C., Feig, B. W., Ross, M. I., Hortobagyi, G. N., and Singletary, S. E. Residual metastatic axillary lymph nodes following neoadjuvant chemotherapy predict disease-free survival in patients with locally advanced breast cancer. Am J Surg 1998;176: 502-509. Kunigal, S., Lakka, S. S., Gondi, C. S., Estes, N., and Rao, J. S. RNAi-mediated downregulation of urokinase plasminogen activator receptor and matrix metalloprotease-9 in human breast cancer cells results in decreased tumor invasion, angiogenesis and growth. Int J Cancer 2007;121: 2307-2316. Kuwano, M., Uchiumi, T., Hayakawa, H., Ono, M., Wada, M., Izumi, H., and Kohno, K. The basic and clinical implications of ABC transporters, Y-box-binding protein-1 (YB-1) and angiogenesis-related factors in human malignancies. Cancer Sci 2003;94: 9-14. Lammer, C., Wagerer, S., Saffrich, R., Mertens, D., Ansorge, W., and Hoffmann, I. The cdc25B phosphatase is essential for the G2/M phase transition in human cells. J Cell Sci 1998;111 ( Pt 16): 2445-2453. 174 REFERENCES Le, D. M., Besson, A., Fogg, D. K., Choi, K. S., Waisman, D. M., Goodyer, C. G., Rewcastle, B., and Yong, V. W. Exploitation of astrocytes by glioma cells to facilitate invasiveness: a mechanism involving matrix metalloproteinase-2 and the urokinase-type plasminogen activator-plasmin cascade. J Neurosci 2003;23: 4034-4043. Lee, K. H., Choi, E. Y., Hyun, M. S., Jang, B. I., Kim, T. N., Lee, H. J., Eun, J. Y., Kim, H. G., Yoon, S. S., Lee, D. S., Kim, J. H., and Kim, J. R. Role of hepatocyte growth factor/c-Met signaling in regulating urokinase plasminogen activator on invasiveness in human hepatocellular carcinoma: a potential therapeutic target. Clin Exp Metastasis 2008;25: 89-96. Lee, R. C. and Ambros, V. An extensive class of small RNAs in Caenorhabditis elegans. Science 2001;294: 862-864. Li, C. I. and Daling, J. R. Changes in breast cancer incidence rates in the United States by histologic subtype and race/ethnicity, 1995 to 2004. Cancer Epidemiol Biomarkers Prev 2007;16: 2773-2780. Li, G., Satyamoorthy, K., and Herlyn, M. N-cadherin-mediated intercellular interactions promote survival and migration of melanoma cells. Cancer Res 2001;61: 3819-3825. Li, J. and Yuan, J. Caspases in apoptosis and beyond. Oncogene 2008;27: 6194-6206. Li, P., Nijhawan, D., Budihardjo, I., Srinivasula, S. M., Ahmad, M., Alnemri, E. S., and Wang, X. Cytochrome c and dATP-dependent formation of Apaf-1/caspase-9 complex initiates an apoptotic protease cascade. Cell 1997;91: 479-489. Li, T. Y., Kraker, A. J., Shaw, C. F., 3rd, and Petering, D. H. Ligand substitution reactions of metallothioneins with EDTA and apo-carbonic anhydrase. Proc Natl Acad Sci U S A 1980;77: 63346338. Linder, S., Havelka, A. M., Ueno, T., and Shoshan, M. C. Determining tumor apoptosis and necrosis in patient serum using cytokeratin 18 as a biomarker. Cancer Lett 2004;214: 1-9. Liu, J., Carmell, M. A., Rivas, F. V., Marsden, C. G., Thomson, J. M., Song, J. J., Hammond, S. M., Joshua-Tor, L., and Hannon, G. J. Argonaute2 is the catalytic engine of mammalian RNAi. Science 2004;305: 1437-1441. Liu, X., Rainey, J. J., Harriman, J. F., and Schnellmann, R. G. Calpains mediate acute renal cell death: role of autolysis and translocation. Am J Physiol Renal Physiol 2001;281: F728-738. Livak, K. J. and Schmittgen, T. D. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 2001;25: 402-408. Lochter, A. Plasticity of mammary epithelia during normal development and neoplastic progression. Biochem Cell Biol 1998;76: 997-1008. Lockshin, R. A. and Zakeri, Z. Apoptosis, autophagy, and more. Int J Biochem Cell Biol 2004a;36: 175 REFERENCES 2405-2419. Lockshin, R. A. and Zakeri, Z. Caspase-independent cell death? Oncogene 2004b;23: 2766-2773. Lohrer, H. and Robson, T. Overexpression of metallothionein in CHO cells and its effect on cell killing by ionizing radiation and alkylating agents. Carcinogenesis 1989;10: 2279-2284. Loman, N., Johannsson, O., Kristoffersson, U., Olsson, H., and Borg, A. Family history of breast and ovarian cancers and BRCA1 and BRCA2 mutations in a population-based series of early-onset breast cancer. J Natl Cancer Inst 2001;93: 1215-1223. Lopez-Tarruella, S. and Schiff, R. The dynamics of estrogen receptor status in breast cancer: re-shaping the paradigm. Clin Cancer Res 2007;13: 6921-6925. Lu, X. and Kang, Y. Organotropism of breast cancer metastasis. J Mammary Gland Biol Neoplasia 2007;12: 153-162. Ma, H., Bernstein, L., Pike, M. C., and Ursin, G. Reproductive factors and breast cancer risk according to joint estrogen and progesterone receptor status: a meta-analysis of epidemiological studies. Breast Cancer Res 2006;8: R43. Macrae, I. J., Li, F., Zhou, K., Cande, W. Z., and Doudna, J. A. Structure of Dicer and mechanistic implications for RNAi. Cold Spring Harb Symp Quant Biol 2006;71: 73-80. Madsen, C. D., Ferraris, G. M., Andolfo, A., Cunningham, O., and Sidenius, N. uPAR-induced cell adhesion and migration: vitronectin provides the key. J Cell Biol 2007;177: 927-939. Mahoney, L. J., Bird, B. L., Cooke, G. M., and Ball, D. G. Early diagnosis of breast cancer: experience in a consultant breast clinic. Can Med Assoc J 1977;116: 1129-1131. Mailand, N., Falck, J., Lukas, C., Syljuasen, R. G., Welcker, M., Bartek, J., and Lukas, J. Rapid destruction of human Cdc25A in response to DNA damage. Science 2000;288: 1425-1429. Maiuri, M. C., Le Toumelin, G., Criollo, A., Rain, J. C., Gautier, F., Juin, P., Tasdemir, E., Pierron, G., Troulinaki, K., Tavernarakis, N., Hickman, J. A., Geneste, O., and Kroemer, G. Functional and physical interaction between Bcl-X(L) and a BH3-like domain in Beclin-1. Embo J 2007;26: 2527-2539. Margolin, S. and Lindblom, A. Familial breast cancer, underlying genes, and clinical implications: a review. Crit Rev Oncog 2006;12: 75-113. Martin, D. A., Siegel, R. M., Zheng, L., and Lenardo, M. J. Membrane oligomerization and cleavage activates the caspase-8 (FLICE/MACHalpha1) death signal. J Biol Chem 1998;273: 4345-4349. Martinez, J., Patkaniowska, A., Urlaub, H., Luhrmann, R., and Tuschl, T. Single-stranded antisense siRNAs guide target RNA cleavage in RNAi. Cell 2002;110: 563-574. 176 REFERENCES Matsubara, J., Shida, T., Ishioka, K., Egawa, S., Inada, T., and Machida, K. Protective effect of zinc against lethality in irradiated mice. Environ Res 1986;41: 558-567. Matsubara, J., Tajima, Y., and Karasawa, M. Metallothionein induction as a potent means of radiation protection in mice. Radiat Res 1987a;111: 267-275. Matsubara, J., Tajima, Y., and Karasawa, M. Promotion of radioresistance by metallothionein induction prior to irradiation. Environ Res 1987b;43: 66-74. Matsuyama, S., Schendel, S. L., Xie, Z., and Reed, J. C. Cytoprotection by Bcl-2 requires the poreforming alpha5 and alpha6 helices. J Biol Chem 1998;273: 30995-31001. Mazar, A. P. Urokinase plasmi interactions: implications for tumor progression and therapy. Clin Cancer Res 2008;14: 5649-5655. Mcarthur, H. L. and Hudis, C. A. Breast cancer chemotherapy. Cancer J 2007;13: 141-147. Mccarthy, N. J., Whyte, M. K., Gilbert, C. S., and Evan, G. I. Inhibition of Ced-3/ICE-related proteases does not prevent cell death induced by oncogenes, DNA damage, or the Bcl-2 homologue Bak. J Cell Biol 1997;136: 215-227. Mccluggage, W. G., Maxwell, P., and Bharucha, H. Immunohistochemical detection of metallothionein and MIB1 in uterine cervical squamous lesions. Int J Gynecol Pathol 1998;17: 29-35. Mckiernan, J., Coyne, J., and Cahalane, S. Histology of breast development in early life. Arch Dis Child 1988;63: 136-139. Meister, G., Landthaler, M., Patkaniowska, A., Dorsett, Y., Teng, G., and Tuschl, T. Human Argonaute2 mediates RNA cleavage targeted by miRNAs and siRNAs. Mol Cell 2004;15: 185-197. Meplan, C., Richard, M. J., and Hainaut, P. Metalloregulation of the tumor suppressor protein p53: zinc mediates the renaturation of p53 after exposure to metal chelators in vitro and in intact cells. Oncogene 2000;19: 5227-5236. Meskel, H. H., Cherian, M. G., Martinez, V. J., Veinot, L. A., and Frei, J. V. Metallothionein as an epithelial proliferative compartment marker for DNA flow cytometry. Mod Pathol 1993;6: 755-760. Mette, M. F., Aufsatz, W., Van Der Winden, J., Matzke, M. A., and Matzke, A. J. Transcriptional silencing and promoter methylation triggered by double-stranded RNA. Embo J 2000;19: 5194-5201. Mian, I. S. Comparative sequence analysis of ribonucleases HII, III, II PH and D. Nucleic Acids Res 1997;25: 3187-3195. Michael, D. and Oren, M. The p53 and Mdm2 families in cancer. Curr Opin Genet Dev 2002;12: 5359. 177 REFERENCES Mididoddi, S., Mcguirt, J. P., Sens, M. A., Todd, J. H., and Sens, D. A. Isoform-specific expression of metallothionein mRNA in the developing and adult human kidney. Toxicol Lett 1996;85: 17-27. Mita, M., Satoh, M., Shimada, A., Okajima, M., Azuma, S., Suzuki, J. S., Sakabe, K., Hara, S., and Himeno, S. Metallothionein is a crucial protective factor against Helicobacter pylori-induced gastric erosive lesions in a mouse model. Am J Physiol Gastrointest Liver Physiol 2008;294: G877-884. Miyashita, T., Krajewski, S., Krajewska, M., Wang, H. G., Lin, H. K., Liebermann, D. A., Hoffman, B., and Reed, J. C. Tumor suppressor p53 is a regulator of bcl-2 and bax gene expression in vitro and in vivo. Oncogene 1994;9: 1799-1805. Miyashita, T. and Reed, J. C. Tumor suppressor p53 is a direct transcriptional activator of the human bax gene. Cell 1995;80: 293-299. Moffatt, P. and Denizeau, F. Metallothionein in physiological and physiopathological processes. Drug Metab Rev 1997;29: 261-307. Molinari, E., Gilman, M., and Natesan, S. Proteasome-mediated degradation of transcriptional activators correlates with activation domain potency in vivo. Embo J 1999;18: 6439-6447. Montgomery, M. K. and Fire, A. Double-stranded RNA as a mediator in sequence-specific genetic silencing and co-suppression. Trends Genet 1998;14: 255-258. Moore-Higgs, G. J. Radiation options for early stage breast cancer. Semin Oncol Nurs 2006;22: 233241. Mori, H., Sugie, S., Yoshimi, N., Hara, A., and Tanaka, T. Control of cell proliferation in cancer prevention. Mutat Res 1999;428: 291-298. Morita, N., Kiryu, S., and Kiyama, H. p53-independent cyclin G expression in a group of mature neurons and its enhanced expression during nerve regeneration. J Neurosci 1996;16: 5961-5966. Moriyama, T., Kataoka, H., Hamasuna, R., Yoshida, E., Sameshima, T., Iseda, T., Yokogami, K., Nakano, S., Koono, M., and Wakisaka, S. Simultaneous up-regulation of urokinase-type plasminogen activator (uPA) and uPA receptor by hepatocyte growth factor/scatter factor in human glioma cells. Clin Exp Metastasis 1999;17: 873-879. Moubarak, R. S., Yuste, V. J., Artus, C., Bouharrour, A., Greer, P. A., Menissier-De Murcia, J., and Susin, S. A. Sequential activation of poly(ADP-ribose) polymerase 1, calpains, and Bax is essential in apoptosis-inducing factor-mediated programmed necrosis. Mol Cell Biol 2007;27: 4844-4862. Mourelatos, Z., Dostie, J., Paushkin, S., Sharma, A., Charroux, B., Abel, L., Rappsilber, J., Mann, M., and Dreyfuss, G. miRNPs: a novel class of ribonucleoproteins containing numerous microRNAs. Genes Dev 2002;16: 720-728. Muller, T., Schuckelt, R., and Jaenicke, L. Evidence for radical species as intermediates in 178 REFERENCES cadmium/zinc-metallothionein-dependent DNA damage in vitro. Environ Health Perspect 1994;102 Suppl 3: 27-29. Murphy, D., Mcgown, A. T., Crowther, D., Mander, A., and Fox, B. W. Metallothionein levels in ovarian tumours before and after chemotherapy. Br J Cancer 1991;63: 711-714. Muzio, M., Stockwell, B. R., Stennicke, H. R., Salvesen, G. S., and Dixit, V. M. An induced proximity model for caspase-8 activation. J Biol Chem 1998;273: 2926-2930. Nagamine, T., Suzuki, K., Kondo, T., Nakazato, K., Kakizaki, S., Takagi, H., and Nakajima, K. Interferon-alpha-induced changes in metallothionein expression in liver biopsies from patients with chronic hepatitis C. Can J Gastroenterol 2005;19: 481-486. Nagata, A., Igarashi, M., Jinno, S., Suto, K., and Okayama, H. An additional homolog of the fission yeast cdc25+ gene occurs in humans and is highly expressed in some cancer cells. New Biol 1991;3: 959-968. Nagel, W. W. and Vallee, B. L. Cell cycle regulation of metallothionein in human colonic cancer cells. Proc Natl Acad Sci U S A 1995;92: 579-583. Napoli, C., Lemieux, C., and Jorgensen, R. Introduction of a Chimeric Chalcone Synthase Gene into Petunia Results in Reversible Co-Suppression of Homologous Genes in trans. Plant Cell 1990;2: 279289. Narod, S., Lynch, H., Conway, T., Watson, P., Feunteun, J., and Lenoir, G. Increasing incidence of breast cancer in family with BRCA1 mutation. Lancet 1993;341: 1101-1102. Nartey, N., Cherian, M. G., and Banerjee, D. Immunohistochemical localization of metallothionein in human thyroid tumors. Am J Pathol 1987;129: 177-182. Ng, K. W., Leong, D. T., and Hutmacher, D. W. The challenge to measure cell proliferation in two and three dimensions. Tissue Eng 2005;11: 182-191. Nicolini, A., Carpi, A., and Tarro, G. Biomolecular markers of breast cancer. Front Biosci 2006;11: 1818-1843. Niquet, J., Liu, H., and Wasterlain, C. G. Programmed neuronal necrosis and status epilepticus. Epilepsia 2005;46 Suppl 5: 43-48. Nishimura, H., Nishimura, N., and Tohyama, C. Immunohistochemical localization of metallothionein in developing rat tissues. J Histochem Cytochem 1989a;37: 715-722. Nishimura, H., Nishimura, N., and Tohyama, C. Localization of metallothionein in the genital organs of the male rat. J Histochem Cytochem 1990;38: 927-933. Nishimura, N., Nishimura, H., and Tohyama, C. Localization of metallothionein in female reproductive 179 REFERENCES organs of rat and guinea pig. J Histochem Cytochem 1989b;37: 1601-1607. Nobbenhuis, M. and Cleton, F. J. Febrile neutropenic events in cancer patients: treatment for fever and neutropenia in young adult patients during intensive chemotherapy for solid tumours. J Cancer Res Clin Oncol 1992;118: 395-399. O'neill, V. J. and Twelves, C. J. Oral cancer treatment: developments in chemotherapy and beyond. Br J Cancer 2002;87: 933-937. Ogier-Denis, E., Houri, J. J., Bauvy, C., and Codogno, P. Guanine nucleotide exchange on heterotrimeric Gi3 protein controls autophagic sequestration in HT-29 cells. J Biol Chem 1996;271: 28593-28600. Oh, S. H., Deagen, J. T., Whanger, P. D., and Weswig, P. H. Biological function of metallothionein. V. Its induction in rats by various stresses. Am J Physiol 1978;234: E282-285. Ohsumi, Y. Molecular dissection of autophagy: two ubiquitin-like systems. Nat Rev Mol Cell Biol 2001;2: 211-216. Ohtsuka, T., Jensen, M. R., Kim, H. G., Kim, K. T., and Lee, S. W. The negative role of cyclin G in ATM-dependent p53 activation. Oncogene 2004;23: 5405-5408. Oka, H., Shiozaki, H., Kobayashi, K., Inoue, M., Tahara, H., Kobayashi, T., Takatsuka, Y., Matsuyoshi, N., Hirano, S., Takeichi, M., and Et Al. Expression of E-cadherin cell adhesion molecules in human breast cancer tissues and its relationship to metastasis. Cancer Res 1993;53: 1696-1701. Okamoto, K. and Beach, D. Cyclin G is a transcriptional target of the p53 tumor suppressor protein. Embo J 1994;13: 4816-4822. Okamoto, K., Li, H., Jensen, M. R., Zhang, T., Taya, Y., Thorgeirsson, S. S., and Prives, C. Cyclin G recruits PP2A to dephosphorylate Mdm2. Mol Cell 2002;9: 761-771. Oltvai, Z. N., Milliman, C. L., and Korsmeyer, S. J. Bcl-2 heterodimerizes in vivo with a conserved homolog, Bax, that accelerates programmed cell death. Cell 1993;74: 609-619. Orth, K., O'rourke, K., Salvesen, G. S., and Dixit, V. M. Molecular ordering of apoptotic mammalian CED-3/ICE-like proteases. J Biol Chem 1996;271: 20977-20980. Ostrakhovitch, E. A., Olsson, P. E., Jiang, S., and Cherian, M. G. Interaction of metallothionein with tumor suppressor p53 protein. FEBS Lett 2006;580: 1235-1238. Ostrakhovitch, E. A., Olsson, P. E., Von Hofsten, J., and Cherian, M. G. P53 mediated regulation of metallothionein transcription in breast cancer cells. J Cell Biochem 2007;102: 1571-1583. Overholtzer, M., Mailleux, A. A., Mouneimne, G., Normand, G., Schnitt, S. J., King, R. W., Cibas, E. S., and Brugge, J. S. A nonapoptotic cell death process, entosis, that occurs by cell-in-cell invasion. 180 REFERENCES Cell 2007;131: 966-979. Oyama, T., Take, H., Hikino, T., Iino, Y., and Nakajima, T. Immunohistochemical expression of metallothionein in invasive breast cancer in relation to proliferative activity, histology and prognosis. Oncology 1996;53: 112-117. Ozmen, V. and Cabioglu, N. Sentinel lymph node biopsy for breast cancer: current controversies. Breast J 2006;12: S134-142. Paine, T. M., Soule, H. D., Pauley, R. J., and Dawson, P. J. Characterization of epithelial phenotypes in mortal and immortal human breast cells. Int J Cancer 1992;50: 463-473. Palmiter, R. D., Findley, S. D., Whitmore, T. E., and Durnam, D. M. MT-III, a brain-specific member of the metallothionein gene family. Proc Natl Acad Sci U S A 1992;89: 6333-6337. Pan, G., O'rourke, K., and Dixit, V. M. Caspase-9, Bcl-XL, and Apaf-1 form a ternary complex. J Biol Chem 1998;273: 5841-5845. Panemangalore, M., Banerjee, D., Onosaka, S., and Cherian, M. G. Changes in the intracellular accumulation and distribution of metallothionein in rat liver and kidney during postnatal development. Dev Biol 1983;97: 95-102. Parker, S. L., Tong, T., Bolden, S., and Wingo, P. A. Cancer statistics, 1997. CA Cancer J Clin 1997;47: 5-27. Partridge, A. H., Burstein, H. J., and Winer, E. P. Side effects of chemotherapy and combined chemohormonal therapy in women with early-stage breast cancer. J Natl Cancer Inst Monogr 2001: 135-142. Patierno, S. R., Costa, M., Lewis, V. M., and Peavy, D. L. Inhibition of LPS toxicity for macrophages by metallothionein-inducing agents. J Immunol 1983;130: 1924-1929. Pattingre, S., Tassa, A., Qu, X., Garuti, R., Liang, X. H., Mizushima, N., Packer, M., Schneider, M. D., and Levine, B. Bcl-2 antiapoptotic proteins inhibit Beclin 1-dependent autophagy. Cell 2005;122: 927939. Pauley, R. J., Soule, H. D., Tait, L., Miller, F. R., Wolman, S. R., Dawson, P. J., and Heppner, G. H. The MCF10 family of spontaneously immortalized human breast epithelial cell lines: models of neoplastic progression. Eur J Cancer Prev 1993;2 Suppl 3: 67-76. Paunesku, T., Mittal, S., Protic, M., Oryhon, J., Korolev, S. V., Joachimiak, A., and Woloschak, G. E. Proliferating cell nuclear antigen (PCNA): ringmaster of the genome. Int J Radiat Biol 2001;77: 10071021. Perl, A. K., Wilgenbus, P., Dahl, U., Semb, H., and Christofori, G. A causal role for E-cadherin in the transition from adenoma to carcinoma. Nature 1998;392: 190-193. 181 REFERENCES Persson, I., Thurfjell, E., and Holmberg, L. Effect of estrogen and estrogen-progestin replacement regimens on mammographic breast parenchymal density. J Clin Oncol 1997;15: 3201-3207. Petering, D. H., Zhu, J., Krezoski, S., Meeusen, J., Kiekenbush, C., Krull, S., Specher, T., and Dughish, M. Apo-metallothionein emerging as a major player in the cellular activities of metallothionein. Exp Biol Med (Maywood) 2006;231: 1528-1534. Petros, A. M., Olejniczak, E. T., and Fesik, S. W. Structural biology of the Bcl-2 family of proteins. Biochim Biophys Acta 2004;1644: 83-94. Piotrowski, J. K., Bolanowska, W., and Sapota, A. Evaluation of metallothionein content in animal tissues. Acta Biochim Pol 1973;20: 207-215. Pluijm, G., Lowik, C., and Papapoulos, S. Tumour progression and angiogenesis in bone metastasis from breast cancer: new approaches to an old problem. Cancer Treat Rev 2000;26: 11-27. Polyak, K. On the birth of breast cancer. Biochim Biophys Acta 2001;1552: 1-13. Poortmans, P. M., Collette, L., Bartelink, H., Struikmans, H., Van Den Bogaert, W. F., Fourquet, A., Jager, J. J., Hoogenraad, W., Muller, R. P., Dubois, J. B., Bolla, M., Van Der Hulst, M., WarlamRodenhuis, C. C., Pierart, M., and Horiot, J. C. The addition of a boost dose on the primary tumour bed after lumpectomy in breast conserving treatment for breast cancer. A summary of the results of EORTC 22881-10882 "boost versus no boost" trial. Cancer Radiother 2008;12: 565-570. Popiela, T. J., Klimek, M., Wicherek, L., Dutsch-Wicherek, M., Galazka, K., and Rudnicka-Sosin, L. The characterization of the exposure to immune mediated apoptosis and the regulation of immune cytotoxic activity in the environment of a neoplasm and in decidua. Neuro Endocrinol Lett 2006;27: 779-785. Preston, R. J. and Williams, G. M. DNA-reactive carcinogens: mode of action and human cancer hazard. Crit Rev Toxicol 2005;35: 673-683. Pugliese, M. S., Beatty, J. D., Tickman, R. J., Allison, K. H., Atwood, M. K., Szymonifka, J., Arthurs, Z. M., Huynh, P. P., and Dawson, J. H. Impact and Outcomes of Routine Microstaging of Sentinel Lymph Nodes in Breast Cancer: Significance of the pN0(i+) and pN1mi Categories. Ann Surg Oncol 2008. Quaife, C. J., Cherne, R. L., Newcomb, T. G., Kapur, R. P., and Palmiter, R. D. Metallothionein overexpression suppresses hepatic hyperplasia induced by hepatitis B surface antigen. Toxicol Appl Pharmacol 1999;155: 107-116. Quaife, C. J., Findley, S. D., Erickson, J. C., Froelick, G. J., Kelly, E. J., Zambrowicz, B. P., and Palmiter, R. D. Induction of a new metallothionein isoform (MT-IV) occurs during differentiation of stratified squamous epithelia. Biochemistry 1994;33: 7250-7259. 182 REFERENCES Rack, B., Janni, W., Gerber, B., Strobl, B., Schindlbeck, C., Klanner, E., Rammel, G., Sommer, H., Dimpfl, T., and Friese, K. Patients with recurrent breast cancer: does the primary axillary lymph node status predict more aggressive tumor progression? Breast Cancer Res Treat 2003;82: 83-92. Ranson, M., Andronicos, N. M., O'mullane, M. J., and Baker, M. S. Increased plasminogen binding is associated with metastatic breast cancer cells: differential expression of plasminogen binding proteins. Br J Cancer 1998;77: 1586-1597. Reimer, C. L., Borras, A. M., Kurdistani, S. K., Garreau, J. R., Chung, M., Aaronson, S. A., and Lee, S. W. Altered regulation of cyclin G in human breast cancer and its specific localization at replication foci in response to DNA damage in p53+/+ cells. J Biol Chem 1999;274: 11022-11029. Richards, M. P. and Cousins, R. J. Mammalian zinc homeostasis: requirement for RNA and metallothionein synthesis. Biochem Biophys Res Commun 1975;64: 1215-1223. Rickert, P., Seghezzi, W., Shanahan, F., Cho, H., and Lees, E. Cyclin C/CDK8 is a novel CTD kinase associated with RNA polymerase II. Oncogene 1996;12: 2631-2640. Rivadeneira, D. E., Simmons, R. M., Christos, P. J., Hanna, K., Daly, J. M., and Osborne, M. P. Predictive factors associated with axillary lymph node metastases in T1a and T1b breast carcinomas: analysis in more than 900 patients. J Am Coll Surg 2000;191: 1-6; discussion 6-8. Rosen, P. R., Groshen, S., Saigo, P. E., Kinne, D. W., and Hellman, S. A long-term follow-up study of survival in stage I (T1N0M0) and stage II (T1N1M0) breast carcinoma. J Clin Oncol 1989;7: 355-366. Rosens, P. P. Rosen's Breast Pathology, 3rd edition.: Lippincott Williams & Wilkins, 2008. Roses, D. F., Harris, M. N., Potter, D. A., and Gumport, S. L. Total mastectomy with complete axillary dissection. Ann Surg 1981;194: 4-8. Rosse, T., Olivier, R., Monney, L., Rager, M., Conus, S., Fellay, I., Jansen, B., and Borner, C. Bcl-2 prolongs cell survival after Bax-induced release of cytochrome c. Nature 1998;391: 496-499. Rotondo, G. and Frendewey, D. Purification and characterization of the Pac1 ribonuclease of Schizosaccharomyces pombe. Nucleic Acids Res 1996;24: 2377-2386. Roylance, R., Gorman, P., Harris, W., Liebmann, R., Barnes, D., Hanby, A., and Sheer, D. Comparative genomic hybridization of breast tumors stratified by histological grade reveals new insights into the biological progression of breast cancer. Cancer Res 1999;59: 1433-1436. Rupp, H. and Weser, U. Circular dichroism of metallothioneins. A structural approach. Biochim Biophys Acta 1978;533: 209-226. Sadhu, K., Reed, S. I., Richardson, H., and Russell, P. Human homolog of fission yeast cdc25 mitotic inducer is predominantly expressed in G2. Proc Natl Acad Sci U S A 1990;87: 5139-5143. 183 REFERENCES Schedin, P. Pregnancy-associated breast cancer and metastasis. Nat Rev Cancer 2006;6: 281-291. Schilder, R. J., Hall, L., Monks, A., Handel, L. M., Fornace, A. J., Jr., Ozols, R. F., Fojo, A. T., and Hamilton, T. C. Metallothionein gene expression and resistance to cisplatin in human ovarian cancer. Int J Cancer 1990;45: 416-422. Schwartz, G. K. and Shah, M. A. Targeting the cell cycle: a new approach to cancer therapy. J Clin Oncol 2005;23: 9408-9421. Scott, R. C., Juhasz, G., and Neufeld, T. P. Direct induction of autophagy by Atg1 inhibits cell growth and induces apoptotic cell death. Curr Biol 2007;17: 1-11. Sen, G. L. and Blau, H. M. A brief history of RNAi: the silence of the genes. Faseb J 2006;20: 12931299. Sens, M. A., Somji, S., Garrett, S. H., Beall, C. L., and Sens, D. A. Metallothionein isoform overexpression is associated with breast cancers having a poor prognosis. Am J Pathol 2001;159: 2126. Seow, A., Koh, W. P., Chia, K. S., Shi, L. M., Lee, H. P., and Shanmugaratnam, K. Trends in cancer incidence in Singapore 1968-2002. Singapore Cancer Registry Report No. 6. 2004. Shaw, L. M. Tumor cell invasion assays. Methods Mol Biol 2005;294: 97-105. Shibuya, K., Nishimura, N., Suzuki, J. S., Tohyama, C., Naganuma, A., and Satoh, M. Role of metallothionein as a protective factor against radiation carcinogenesis. J Toxicol Sci 2008;33: 651-655. Sijen, T., Vijn, I., Rebocho, A., Van Blokland, R., Roelofs, D., Mol, J. N., and Kooter, J. M. Transcriptional and posttranscriptional gene silencing are mechanistically related. Curr Biol 2001;11: 436-440. Singletary, S. E. and Connolly, J. L. Breast cancer staging: working with the sixth edition of the AJCC Cancer Staging Manual. CA Cancer J Clin 2006;56: 37-47; quiz 50-31. Sirvent, J. J., Aguilar, M. C., Olona, M., Pelegri, A., Blazquez, S., and Gutierrez, C. Prognostic value of apoptosis in breast cancer (pT1-pT2). A TUNEL, p53, bcl-2, bag-1 and Bax immunohistochemical study. Histol Histopathol 2004;19: 759-770. Slamon, D. J., Clark, G. M., Wong, S. G., Levin, W. J., Ullrich, A., and Mcguire, W. L. Human breast cancer: correlation of relapse and survival with amplification of the HER-2/neu oncogene. Science 1987;235: 177-182. Sluyser, M. Role of estrogen receptor variants in the development of hormone resistance in breast cancer. Clin Biochem 1992;25: 407-414. Smigal, C., Jemal, A., Ward, E., Cokkinides, V., Smith, R., Howe, H. L., and Thun, M. Trends in breast 184 REFERENCES cancer by race and ethnicity: update 2006. CA Cancer J Clin 2006;56: 168-183. Sobocinski, P. Z., Canterbury, W. J., Jr., Mapes, C. A., and Dinterman, R. E. Involvement of hepatic metallothioneins in hypozincemia associated with bacterial infection. Am J Physiol 1978;234: E399406. Song, J. J., Smith, S. K., Hannon, G. J., and Joshua-Tor, L. Crystal structure of Argonaute and its implications for RISC slicer activity. Science 2004;305: 1434-1437. Sonnichsen, B., Koski, L. B., Walsh, A., Marschall, P., Neumann, B., Brehm, M., Alleaume, A. M., Artelt, J., Bettencourt, P., Cassin, E., Hewitson, M., Holz, C., Khan, M., Lazik, S., Martin, C., Nitzsche, B., Ruer, M., Stamford, J., Winzi, M., Heinkel, R., Roder, M., Finell, J., Hantsch, H., Jones, S. J., Jones, M., Piano, F., Gunsalus, K. C., Oegema, K., Gonczy, P., Coulson, A., Hyman, A. A., and Echeverri, C. J. Full-genome RNAi profiling of early embryogenesis in Caenorhabditis elegans. Nature 2005;434: 462-469. Stacker, S. A., Achen, M. G., Jussila, L., Baldwin, M. E., and Alitalo, K. Lymphangiogenesis and cancer metastasis. Nat Rev Cancer 2002;2: 573-583. Steeg, P. S. Tumor metastasis: mechanistic insights and clinical challenges. Nat Med 2006;12: 895-904. Stennicke, H. R., Jurgensmeier, J. M., Shin, H., Deveraux, Q., Wolf, B. B., Yang, X., Zhou, Q., Ellerby, H. M., Ellerby, L. M., Bredesen, D., Green, D. R., Reed, J. C., Froelich, C. J., and Salvesen, G. S. Procaspase-3 is a major physiologic target of caspase-8. J Biol Chem 1998;273: 27084-27090. Stillfried, G. E., Saunders, D. N., and Ranson, M. Plasminogen binding and activation at the breast cancer cell surface: the integral role of urokinase activity. Breast Cancer Res 2007;9: R14. Streeter, O. E., Jr., Vicini, F. A., Keisch, M., Astrahan, M. A., Jozsef, G., Silverstein, M., Silberman, H., Cohen, D., and Skinner, K. A. MammoSite radiation therapy system. Breast 2003;12: 491-496. Sutherland, R. L. and Musgrove, E. A. Cyclins and breast cancer. J Mammary Gland Biol Neoplasia 2004;9: 95-104. Syntichaki, P., Xu, K., Driscoll, M., and Tavernarakis, N. Specific aspartyl and calpain proteases are required for neurodegeneration in C. elegans. Nature 2002;419: 939-944. Tan, Y., Sinniah, R., Bay, B. H., and Singh, G. Metallothionein expression and nuclear size in benign, borderline, and malignant serous ovarian tumours. J Pathol 1999;189: 60-65. Tassan, J. P., Jaquenoud, M., Leopold, P., Schultz, S. J., and Nigg, E. A. Identification of human cyclindependent kinase 8, a putative protein kinase partner for cyclin C. Proc Natl Acad Sci U S A 1995;92: 8871-8875. Thompson, E. W., Paik, S., Brunner, N., Sommers, C. L., Zugmaier, G., Clarke, R., Shima, T. B., Torri, J., Donahue, S., Lippman, M. E., and Et Al. Association of increased basement membrane invasiveness 185 REFERENCES with absence of estrogen receptor and expression of vimentin in human breast cancer cell lines. J Cell Physiol 1992;150: 534-544. Thor, A. A revised staging system for breast cancer. Breast J 2004;10 Suppl 1: S15-18. Thornalley, P. J. and Vasak, M. Possible role for metallothionein in protection against radiation-induced oxidative stress. Kinetics and mechanism of its reaction with superoxide and hydroxyl radicals. Biochim Biophys Acta 1985;827: 36-44. Tibbetts, R. S., Brumbaugh, K. M., Williams, J. M., Sarkaria, J. N., Cliby, W. A., Shieh, S. Y., Taya, Y., Prives, C., and Abraham, R. T. A role for ATR in the DNA damage-induced phosphorylation of p53. Genes Dev 1999;13: 152-157. Tibbetts, R. S., Cortez, D., Brumbaugh, K. M., Scully, R., Livingston, D., Elledge, S. J., and Abraham, R. T. Functional interactions between BRCA1 and the checkpoint kinase ATR during genotoxic stress. Genes Dev 2000;14: 2989-3002. Tong, D., Czerwenka, K., Sedlak, J., Schneeberger, C., Schiebel, I., Concin, N., Leodolter, S., and Zeillinger, R. Association of in vitro invasiveness and gene expression of estrogen receptor, progesterone receptor, pS2 and plasminogen activator inhibitor-1 in human breast cancer cell lines. Breast Cancer Res Treat 1999;56: 91-97. Townsend, C. M., Beauchamp, R. D., Evers, M., and Mattox, K. L. Sabiston Textbook of Surgery: The Biological Basis of Modern Surgical Practice, 18th edition. Philadelphia, PA: Saunders Elsevier, 2007. Tran, C. D., Huynh, H., Van Den Berg, M., Van Der Pas, M., Campbell, M. A., Philcox, J. C., Coyle, P., Rofe, A. M., and Butler, R. N. Helicobacter-induced gastritis in mice not expressing metallothionein-I and II. Helicobacter 2003;8: 533-541. Tsujikawa, K., Suzuki, N., Sagawa, K., Itoh, M., Sugiyama, T., Kohama, Y., Otaki, N., Kimura, M., and Mimura, T. Induction and subcellular localization of metallothionein in regenerating rat liver. Eur J Cell Biol 1994;63: 240-246. Uchida, Y., Takio, K., Titani, K., Ihara, Y., and Tomonaga, M. The growth inhibitory factor that is deficient in the Alzheimer's disease brain is a 68 amino acid metallothionein-like protein. Neuron 1991;7: 337-347. Udom, A. O. and Brady, F. O. Reactivation in vitro of zinc-requiring apo-enzymes by rat liver zincthionein. Biochem J 1980;187: 329-335. Umbas, R., Isaacs, W. B., Bringuier, P. P., Schaafsma, H. E., Karthaus, H. F., Oosterhof, G. O., Debruyne, F. M., and Schalken, J. A. Decreased E-cadherin expression is associated with poor prognosis in patients with prostate cancer. Cancer Res 1994;54: 3929-3933. Vachon, C. M., Sellers, T. A., Carlson, E. E., Cunningham, J. M., Hilker, C. A., Smalley, R. L., Schaid, D. J., Kelemen, L. E., Couch, F. J., and Pankratz, V. S. Strong evidence of a genetic determinant for 186 REFERENCES mammographic density, a major risk factor for breast cancer. Cancer Res 2007;67: 8412-8418. Vahteristo, P., Bartkova, J., Eerola, H., Syrjakoski, K., Ojala, S., Kilpivaara, O., Tamminen, A., Kononen, J., Aittomaki, K., Heikkila, P., Holli, K., Blomqvist, C., Bartek, J., Kallioniemi, O. P., and Nevanlinna, H. A CHEK2 genetic variant contributing to a substantial fraction of familial breast cancer. Am J Hum Genet 2002;71: 432-438. Van Diest, P. J., Baak, J. P., Matze-Cok, P., Wisse-Brekelmans, E. C., Van Galen, C. M., Kurver, P. H., Bellot, S. M., Fijnheer, J., Van Gorp, L. H., Kwee, W. S., and Et Al. Reproducibility of mitosis counting in 2,469 breast cancer specimens: results from the Multicenter Morphometric Mammary Carcinoma Project. Hum Pathol 1992;23: 603-607. Van Diest, P. J., Van Der Wall, E., and Baak, J. P. Prognostic value of proliferation in invasive breast cancer: a review. J Clin Pathol 2004;57: 675-681. Van Kan, J. A. and Andrew A. Bettiol, K. A., Ee Jin Teo, Tze Sum, Frank Watt Proton beam writing: a progress review. International Journal of Nanotechnology 2004;1: 464 - 479 Vasak, M., Galdes, A., Hill, H. A., Kagi, J. H., Bremner, I., and Young, B. W. Investigation of the structure of metallothioneins by proton nuclear magnetic resonance spectroscopy. Biochemistry 1980;19: 416-425. Verbeek, B. S., Adriaansen-Slot, S. S., Vroom, T. M., Beckers, T., and Rijksen, G. Overexpression of EGFR and c-erbB2 causes enhanced cell migration in human breast cancer cells and NIH3T3 fibroblasts. FEBS Lett 1998;425: 145-150. Vermeulen, K., Van Bockstaele, D. R., and Berneman, Z. N. The cell cycle: a review of regulation, deregulation and therapeutic targets in cancer. Cell Prolif 2003;36: 131-149. Voinnet, O. RNA silencing as a plant immune system against viruses. Trends Genet 2001;17: 449-459. Voinnet, O. RNA silencing: small RNAs as ubiquitous regulators of gene expression. Curr Opin Plant Biol 2002;5: 444-451. Waalkes, T. P., Gehrke, C. W., Tormey, D. C., Woo, K. B., Kuo, K. C., Synder, J., and Hansen, H. Biologic markers in breast carcinoma. IV. Serum fucose-protein ratio. Comparisons with carcinoembryonic antigen and human chorionic gonadotrophin. Cancer 1978;41: 1871-1882. Walsh, T., Casadei, S., Coats, K. H., Swisher, E., Stray, S. M., Higgins, J., Roach, K. C., Mandell, J., Lee, M. K., Ciernikova, S., Foretova, L., Soucek, P., and King, M. C. Spectrum of mutations in BRCA1, BRCA2, CHEK2, and TP53 in families at high risk of breast cancer. Jama 2006;295: 13791388. Warbrick, E. The puzzle of PCNA's many partners. Bioessays 2000;22: 997-1006. Weigelt, B., Peterse, J. L., and Van 'T Veer, L. J. Breast cancer metastasis: markers and models. Nat 187 REFERENCES Rev Cancer 2005;5: 591-602. Weinberg, O. K., Marquez-Garban, D. C., and Pietras, R. J. New approaches to reverse resistance to hormonal therapy in human breast cancer. Drug Resist Updat 2005;8: 219-233. Wengstrom, Y., Haggmark, C., Strander, H., and Forsberg, C. Perceived symptoms and quality of life in women with breast cancer receiving radiation therapy. Eur J Oncol Nurs 2000;4: 78-88; discussion 8990. Winge, D. R. and Miklossy, K. A. Domain nature of metallothionein. J Biol Chem 1982;257: 34713476. Wlostowski, T. Involvement of metallothionein and copper in cell proliferation. Biometals 1993;6: 7176. Wolter, K. G., Hsu, Y. T., Smith, C. L., Nechushtan, A., Xi, X. G., and Youle, R. J. Movement of Bax from the cytosol to mitochondria during apoptosis. J Cell Biol 1997;139: 1281-1292. Wood, D. P., Jr., Klein, E., Fair, W. R., and Chaganti, R. S. Metallothionein gene expression in bladder cancer exposed to cisplatin. Mod Pathol 1993;6: 33-35. Wu-Scharf, D., Jeong, B., Zhang, C., and Cerutti, H. Transgene and transposon silencing in Chlamydomonas reinhardtii by a DEAH-box RNA helicase. Science 2000;290: 1159-1162. Wulfing, C., Van Ahlen, H., Eltze, E., Piechota, H., Hertle, L., and Schmid, K. W. Metallothionein in bladder cancer: correlation of overexpression with poor outcome after chemotherapy. World J Urol 2007;25: 199-205. Xu, K., Tavernarakis, N., and Driscoll, M. Necrotic cell death in C. elegans requires the function of calreticulin and regulators of Ca(2+) release from the endoplasmic reticulum. Neuron 2001;31: 957971. Yan, L. X., Huang, X. F., Shao, Q., Huang, M. Y., Deng, L., Wu, Q. L., Zeng, Y. X., and Shao, J. Y. MicroRNA miR-21 overexpression in human breast cancer is associated with advanced clinical stage, lymph node metastasis and patient poor prognosis. Rna 2008;14: 2348-2360. Yang, J., Liu, X., Bhalla, K., Kim, C. N., Ibrado, A. M., Cai, J., Peng, T. I., Jones, D. P., and Wang, X. Prevention of apoptosis by Bcl-2: release of cytochrome c from mitochondria blocked. Science 1997;275: 1129-1132. Yang, X., Chang, H. Y., and Baltimore, D. Autoproteolytic activation of pro-caspases by oligomerization. Mol Cell 1998;1: 319-325. Yap, X., Tan, H. Y., Huang, J., Lai, Y., Yip, G. W., Tan, P. H., and Bay, B. H. Over-expression of metallothionein predicts chemoresistance in breast cancer. J Pathol 2008. 188 REFERENCES Yoshimori, T. Autophagy: a regulated bulk degradation process inside cells. Biochem Biophys Res Commun 2004;313: 453-458. Yu, L., Strandberg, L., and Lenardo, M. J. The selectivity of autophagy and its role in cell death and survival. Autophagy 2008;4: 567-573. Yu, X., Wu, Z., and Fenselau, C. Covalent sequestration of melphalan by metallothionein and selective alkylation of cysteines. Biochemistry 1995;34: 3377-3385. Yuyama, Y., Yagihashi, A., Hirata, K., Ohmura, T., Suzuki, Y., Okamoto, J., Yamada, T., Okazaki, Y., Watanabe, Y., Okazaki, A., Toda, K., Okazaki, M., Yajima, T., Kameshima, H., Araya, J., and Watanabe, N. Neoadjuvant intra-arterial infusion chemotherapy combined with hormonal therapy for locally advanced breast cancer. Oncol Rep 2000;7: 797-801. Zamore, P. D., Tuschl, T., Sharp, P. A., and Bartel, D. P. RNAi: double-stranded RNA directs the ATPdependent cleavage of mRNA at 21 to 23 nucleotide intervals. Cell 2000;101: 25-33. Zauberman, A., Lupo, A., and Oren, M. Identification of p53 target genes through immune selection of genomic DNA: the cyclin G gene contains two distinct p53 binding sites. Oncogene 1995;10: 23612366. Zhang, M., Zhang, P., Zhang, C., Sun, J., Wang, L., Li, J., Tian, Z., and Chen, W. Prognostic significance of Bcl-2 and Bax protein expression in the patients with oral squamous cell carcinoma. J Oral Pathol Med 2008. Zhao, L., Samuels, T., Winckler, S., Korgaonkar, C., Tompkins, V., Horne, M. C., and Quelle, D. E. Cyclin G1 has growth inhibitory activity linked to the ARF-Mdm2-p53 and pRb tumor suppressor pathways. Mol Cancer Res 2003;1: 195-206. Zhou, Q. and Salvesen, G. S. Activation of pro-caspase-7 by serine proteases includes a non-canonical specificity. Biochem J 1997;324 ( Pt 2): 361-364. Zitvogel, L., Casares, N., Pequignot, M. O., Chaput, N., Albert, M. L., and Kroemer, G. Immune response against dying tumor cells. Adv Immunol 2004;84: 131-179. 189 [...]... develop into invasive cancer 1.2.1.3 Invasive breast cancer Invasive ductal breast cancer is the most common form of invasive breast cancer accounting for most of the invasive breast cancer This occurs when the cancerous cells that originate from the ductal cells infiltrate into the surrounding normal tissues of the duct Other forms of invasive breast cancer include lobular breast cancer, which as the... 1.2.3 Breast cancer symptoms and treatment Breast cancer in its early stage is usually painless The typical first symptom of breast cancer is a lump in the breast (Bullough 1980) However 90 % of breast lumps are benign and include cysts and fibroadenoma Tell-tale signs of breast cancer other than presence of lumps include thickening in an area of the breast, change in the size or shape of the breast, ... (2006) Upregulation of metallothionein isoforms in keloid keratinocytes Int J Mol Med (17)2: 385-389 4 Lim D., Chan M., Yip G.W., Sim T.S., Bay B.H Metallothionein- 2A is involved in proliferation in breast cancer Manuscript in preparation, 2009 5 Lim D., Yip G.W., Tan P.H., Chan M., Sim T.S., Bay B.H Metallothionein- 2A has a positive effect on breast cancer metastasis Manuscript in preparation, 2009... carcinoma in situ These include cytological and histopathological features in the lesions Proliferative lesions with atypical hyperplasia result in a moderately elevated risk for breast cancer (Rosens 2008) 1.2.1.2 Non-invasive breast cancer Non-invasive breast cancer is also known as breast cancer in situ There are two forms of such breast cancer: ductal cancer in situ (DCIS) or lobular cancer in situ... females of 26 % (178,480 cases) in the United States (Jemal et al 2007) In the United States, there was a total of 394,891 cases of invasive breast cancer and 59,837 cases of in situ breast cancer from 1975 to 2003 in women 40 years old and above in the nine oldest SEER cancer registry areas of the U.S (Jemal, et 11 INTRODUCTION al 2007) The rising incidence is reflected by the increased use of mammography... Down-regulation of MT -2A resulted in cell cycle G1 arrest 93 Figure 27 Down-regulation of MT -2A using siMT2A_1 and siMT2A_2 resulted in an increased adhesiveness to collagen 1 matrix when compared to siNegative 94 Figure 28 Down-regulation of MT -2A using siMT2A_1 and siMT2A_2 resulted in an increased adhesiveness to fibronectin matrix when compared to siNegative 95 Figure 29 Down-regulation of. .. colorectal cancer, which accounts for less than half of that in breast cancer (14.4 % of the total cancer cases) Breast cancer remains as the highest ranking cancer in the three major ethnic groups The age standardized rates were highest in the Chinese female, followed by the Malay and Indian females Breast cancer has the highest age standardized mortality rate in Singaporean females (Seow, et al 2004) 12 INTRODUCTION... of Cancer related genes using Cancer Pathway Finder to examine the genes induced and repressed after siMT2A_1 and siMT2A_2 treatment 107 Table 7 Tabulation of CT values of 6 housekeeping genes in Cancer PathwayFinder Superarray for normalization of ΔCT values for the various gene of interest in siMT2A_1 treated samples with respect to siNegative treated samples 110 Table 8 Tabulation of. .. Treatment of MCF-7 cells with siMT -2A induced a reduction in c-met 120 Figure 43 Negative MT immunostaining in both the cytoplasm and nucleus of the carcinoma 123 Figure 44 Categorization of MT intensity scoring for the cytoplasm and nucleus 124 Figure 45 IRS of cytoplasmic MT-staining 125 xiv LIST OF FIGURES Figure 46 IRS of nuclear MT-staining 125 Figure 47 Bar charts showing... siMT2A _1 and siMT2A_2 on the MT -2A gene 81 Figure 15 Manipulation of MT -2A expression in MCF-7 cells by silencing the MT -2A gene with siRNA 82 Figure 16 Immunocytochemistry with primary monoclonal anti-MT E9 antibody and DAB staining after treatment with (A) siMT2A_1, (B) siMT2A_2 and (C) siNegative 83 Figure 17 Expression of MT isoforms in siMT2A treated (siMT2A_1 and siMT2A_2) . FUNCTIONAL ANALYSIS OF METALLOTHIONEIN- 2A ISOFORM IN BREAST CANCER LIM DAINA [B.Appl.Sc. (Hons.), NUS] A THESIS SUBMITTED FOR THE DEGREE OF DOCTOR OF PHILOSOPHY DEPARTMENT OF. SUMMARY Breast cancer is one of the most prevalent cancers in women worldwide. The rate of breast cancer has been increasing rapidly. Invasive ductal carcinoma makes up the bulk of all breast cancer. impact on breast cancer has not been elucidated. Furthermore, there are ten functional isoforms in human, with MT -2A being the most abundant isoform in breast cancer. The exact roles of the individual