1. Trang chủ
  2. » Giáo Dục - Đào Tạo

Structural and functional analysis of critical proteins involved in mRNA decay

191 313 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 191
Dung lượng 6,63 MB

Nội dung

STRUCTURAL AND FUNCTIONAL ANALYSIS OF CRITICAL PROTEINS INVOLVED IN mRNA DECAY CHENG ZHIHONG NATIONAL UNIVERSITY OF SINGAPORE 2006 STRUCTURAL AND FUNCTIONAL ANALYSIS OF CRITICAL PROTEINS INVOLVED IN mRNA DECAY CHENG ZHIHONG (B.Sc) Ease China University of Science and Technology A THESIS SUBMITTED FOR THE DEGREE OF DOCTOR OF PHILOSOPHY DEPARTMENT OF BIOLOGICAL SCIENCES NATIONAL UNIVERSITY OF SINGAPORE 2006 To My Wife i Index Index………………………………………………………………………………………i Acknowledgements …………………………………………………………….……… ii Table of Contents……………………………………………………………………… iii Abstract …………………………………………………………………………… viii Lists of Figures…………………………………………………………………… .… x Lists of Tables ……………………………………………………………………….…xii Lists of Abbreviations ……………………………………………………………… .xiii References………………………………………………………………………… .…147 Appendix I MOPS Minimal Medium …………………………………………… 168 Appendix II Publication list…………………………………………………………170 ii Acknowledgements I would like to thank sincerely my supervisor, Dr Song Haiwei, for offering me an opportunity being a postgraduate. Without his great guidance, patience and advice, I could not finish my Ph.D program successfully. Many thanks also go to our collaborator from Howard Hughes Medical Institute, The University of Arizona, Professor Roy Parker, Drs. Jeff Coller and Denise Muhlrad, for their great experiment data and precious discussions. I would like to give my appreciation to the members of my thesis committee: Associate Professor Kunchithapadam Swaminathan, Associate Professor Wang Yue from Institute of Molecular and Cell (IMCB) and Assistant Professor J Sivaraman from Department of Biological Sciences (NUS), for guidance and discussions throughout my studies. I also thank all my colleagues in my laboratory for their kind help. Thanks especially go to Dr. Kong Chunguang, Dr. Wu Mousheng, Miss She Meipei, Miss Chen Nan and Dr Zhou Zhihong for all the valuable discussions in all the experiments. I want to thank Dr. Christian, Dr. Rohini, Miss Portia and Sharon, for their critical reading of the manuscript of this thesis, and Lim Mengkiat for his great help in the experiment. I also thank all administrative staffs in Department of Biological Sciences (NUS) and IMCB for their supports. Thanks also go to the shared facilities in IMCB including DNA sequencing facility and Mass Spectrometry facility for experimental supports. Finally, I would like to thank my family, especially my wife for her full support, patience, encouragement and inspiration all the time. I could not image the situation without her precious support. iii Table of contents Chapter Introduction 1.1. Biological significance of mRNA decay……………………………………… 1.2. General mRNA decay pathway…………………………………………………1 1.2.1. Deadenylation…………………………………………………………… 1.2.2. Decapping……………………………………………………………… 1.2.2.1. The Dcp1-Dcp2 Decapping enzyme complex………………………6 1.2.2.2. Regulation of the decapping activity…………………………… 1.2.2.3. Scavenger decapping enzyme DcpS……………………………… .9 1.2.3. Enzymes involved in mRNA body degradation…………………………10 1.2.3.1. 5’ to 3’ degradation by Xrn1……………………………………….10 1.2.3.2. 3’ to 5’ degradation by the exosome complex………………… 11 1.3. mRNA quality control mechanisms targeting aberrant mRNAs………………13 1.3.1. Nonsense-mediated mRNA decay…………………………………… .13 1.3.1.1. NMD factors……………………………………………………….15 1.3.1.2. Translation and NMD…………………………………………… .16 1.3.1.3. Definition of premature termination codons……………………….18 1.3.1.4. Recognition of PTC in mammals……………………………… 20 1.3.2. Nonstop mRNA decay ………………………………………………… 22 1.4. Specialized mRNA decay pathways………………………………………… .23 1.5. Project I: Structural and functional studies of Ski8………………………… .27 1.5.1. Brief introduction of Ski8……………………………………………… 27 iv 1.5.2. Structural characteristics of WD-repeat proteins……………………… .29 1.5.3. Aims of this project………………………………………………………33 1.6. Project II: Structural and functional studies of Dhh1…………………………34 1.6.1. Brief review of Dhh1…………………………………………………….34 1.6.2. Structural characterization of Superfamily helicases…………… .35 1.6.3. Aims of this project………………………………………………………40 1.7. Project III: Structural and functional analysis of hUpf1……………………….41 1.7.1. Previous functional and biochemical studies of Upf1……………… .41 1.7.2. Structural studies of Superfamily helicases……………………………43 1.7.3. Aims of this project………………………………………………………44 Chapter Cloning, Protein Purification, Crystallization and Structure Determination 2.1. Gene cloning and protein expression strain construction…………………… .45 2.1.1. Yeast genomic DNA isolation………………………………………… .45 2.1.2. Polymerase chain reaction (PCR) ……………………………………….45 2.1.3. Agarose gel electrophoresis…………………………………………… .46 2.1.4. Purification of PCR products…………………………………………….46 2.1.5. Enzyme digestion, dephosphorylation and purification…………… .46 2.1.6. Ligation and transformation………………………………………… .47 2.1.7. Plasmid preparation and positive clone screening……………………….47 2.1.8. DNA sequencing……………………………………………………… 47 2.1.9. E. coli expression strain transfomation ………………………………….48 2.1.10. Protein expression test and expression strain storage……………………48 2.1.11. SDS-PAGE………………………………………………………………48 v 2.2. Protein purification………………………………………………………… .49 2.2.1. Large-scale cell culture for protein expression………………………… 49 2.2.2. Purification procedures……………………………………………… 49 2.2.2.1. Cell lysis………………………………………………………… .51 2.2.2.2. First GST affinity column chromatography……………………….51 2.2.2.3. Second GST affinity column chromatography…………………….51 2.2.2.4. Ion exchange chromatography………………………………… 51 2.2.2.5. Gel filtration chromatography………………………………… .52 2.3. Crystallization……………………………………………………………… .53 2.4. Structure determination…………………………………………………… .55 2.4.1. Heavy atom derivative preparation………………………………… 55 2.4.2. Data collection and processing………………………………………… 56 2.4.2.1. Data collection and processing of SeMet Ski8…………………….56 2.4.2.2. Data collection and processing of the Br derivative of Dhh1…… 57 2.4.2.3. Data collection and processing of SeMet hUpf1……………… 58 2.4.3. Structure determination………………………………………………… 59 2.4.3.1. Phasing, modeling and refinement of Ski8…………………… .59 2.4.3.2. Phasing, modeling and refinement of Dhh1……………………….62 2.4.3.3. Structure determination of hUpf1………………………………….65 2.5. Biochemical and molecular biological experiments……………………… .72 2.5.1. Experiments for Ski8………………………………………………… .72 2.5.1.1. Site-directed mutagenesis and yeast two-hybrid assay……………72 2.5.1.2. GST pull-down assay…………………………………………… .72 vi 2.5.2. Experiments for Dhh1……………………………………………………73 2.5.2.1. CD-spectroscopy………………………………………………… .73 2.5.2.2. Mutagenesis and in vivo mRNA turnover assays………………….73 2.5.2.3. Limited Proteolysis……………………………………………… .74 2.5.2.4. In vitro RNA binding assay……………………………………… 74 2.5.3. Experiments for hUpf1………………………………………………… 75 2.5.3.1. Mutagenesis and In vitro ATPase activity…………………………75 2.5.3.2 In vitro ATP binding assay……………………………………… .75 2.5.3.3. In vitro RNA binding assay……………………………………… 76 2.5.3.4. In vivo NMD analysis and P-body formation………………… .76 2.5.3.5. Surface plasmon resonance (SPR) ……………………………… .77 Chapter Crystal Structure and Mutagenesis Studies of Ski8 3.1. Results…………………………………………………………………………78 3.1.1. Overall structure determination………………………………………….78 3.1.2. Comparison with other WD repeat proteins…………………………… 80 3.1.3. Location of protein-protein interaction sites on the β propeller…………83 3.1.4. Mutational Analysis of Ski8…………………………………………… 87 3.2. Discussion………………………………………………………………… ….90 Chapter Structural and Functional Analysis of Dhh1 4.1. Results ……………………………………………………………………… 94 4.1.1. Structural overview of the Dhh1…………………………………………94 4.1.2. Structural Comparison ……………………………………………… 96 4.1.3. Location of the conserved sequence motifs…………………………… .98 vii 4.1.4. Interactions of the conserved Motifs……………………………………103 4.1.5. Identification of residues required for RNA binding ………………… 107 4.1.6. Conformational changes in Dhh1………………………………………114 4.2. Discussion………… ……………………………………………………… 116 Chapter Structural and Functional Insights into hUpf1 5.1. Results……………………………………………………………………… 120 5.1.1. Overall structure ……… ………………………………………………120 5.1.2. Nucleotide Binding site and ATP hydrolysis………………………… .124 5.1.3. Conformational change during the Upf1 ATPase cycle……………… 128 5.1.4. Allosteric effect of ATP binding coupled with RNA binding .……… .133 5.1.5. Differential effects of Upf1 mutants on P-body formation…………… 141 5.2. Discussion………………………………………………………………… .143 158 Lohman,T.M., Chao,K., Green,J.M., Sage,S., and Runyon,G.T. (1989). Large-scale purification and characterization of the Escherichia coli rep gene product. J. Biol. Chem., 264, 10139-10147. Lorentzen,E. and Conti,E. (2005). Structural basis of 3' end RNA recognition and exoribonucleolytic cleavage by an exosome RNase PH core. Mol Cell, 20, 473-481. Lorentzen,E., Walter,P., Fribourg,S., Evguenieva-Hackenberg,E., Klug,G., and Conti,E. (2005). The archaeal exosome core is a hexameric ring structure with three catalytic subunits. Nat Struct Mol Biol, 12, 575-581. Losson,R. and Lacroute,F. (1979). Interference of nonsense mutations with eukaryotic messenger RNA stability. Proc. Natl. Acad. Sci. U. S. A, 76, 5134-5137. Lorsch, J.R. and Herschlag, D. (1998a) The DEAD box protein eIF4A. 1. A minimal kinetic and thermodynamic framework reveals coupled binding of RNA and nucleotide. Biochemistry 37: 21802193 Lorsch, J.R. and Herschlag, D. (1998b) The DEAD box protein eIF4A. 2. A cycle of nucleotide and RNAdependent conformational changes. Biochemistry 37: 2194-2206 Lykke-Andersen J (2002) Identification of a human decapping complex associated with hUpf proteins in nonsense-mediated decay. Mol Cell Biol 22: 8114-8121 Lykke-Andersen J, Shu MD, Steitz JA (2000) Human Upf proteins target an mRNA for nonsense-mediated decay when bound downstream of a termination codon. Cell 103: 1121-1131 Lykke-Andersen,J., Shu,M.D., and Steitz,J.A. (2001). Communication of the position of exon-exon junctions to the mRNA surveillance machinery by the protein RNPS1. Science, 293, 1836-1839. Lykke-Andersen,J. and Wagner,E. (2005). Recruitment and activation of mRNA decay enzymes by two ARE-mediated decay activation domains in the proteins TTP and BRF-1. Genes Dev, 19, 351-361. Maderazo,A.B., He,F., Mangus,D.A., and Jacobson,A. (2000). Upf1p control of nonsense mRNA translation is regulated by Nmd2p and Upf3p. Mol Cell Biol, 20, 4591-4603. Maekawa, H., Nakagawa, T., Uno, Y., Kitamura, K. and Shimoda, C. (1994) The ste13+ gene encoding a putative RNA helicase is essential for nitrogen starvation-induced G1 arrest and initiation of sexual development in the fission yeast Schizosaccharomyces pombe. Mol. Gen. Genet. 244: 456-464 Malone, R.E., Bullard, S., Hermiston, M., Rieger, R., Cool, M., and Galbraith, A. 1991. Isolation of mutants defective in early steps of meiotic recombination in the yeast Saccharomyces cerevisiae. Genetics 128:79-88. Maquat, L.E. 2002. Molecular biology. Skiing toward nonstop mRNA decay. Science 295:2221-2222. Maquat LE (2004) Nonsense-mediated mRNA decay: splicing, translation and mRNP dynamics. Nat Rev Mol Cell Biol 5: 89-99 Maquat,L.E. (2005). Nonsense-mediated mRNA decay in mammals. J Cell Sci, 118, 1773-1776. Maquat,L.E. and Carmichael,G.G. (2001). Quality control of mRNA function. Cell, 104, 173-176. Masison, D.C., Blanc, A., Ribas, J.C., Carroll, K., Sonenberg, N., and Wickner, R.B. 1995. Decoying the cap- mRNA degradation system by a double-stranded RNA virus and poly(A)- mRNA surveillance by a yeast antiviral system. Mol. Cell. Biol. 15:2763-2771. 159 Marion,R.M., Fortes,P., Beloso,A., Dotti,C., and Ortin,J. (1999). A human sequence homologue of Staufen is an RNA-binding protein that is associated with polysomes and localizes to the rough endoplasmic reticulum. Mol Cell Biol, 19, 2212-2219. Matsumoto, Y., Sarkar, G., Sommer, S.S., and Wickner, R.B. 1993. A yeast antiviral protein, SKI8, shares a repeated amino acid sequence pattern with beta-subunits of G proteins and several other proteins. Yeast 9:43-51. Matsuzaki,F., Ohshiro,T., Ikeshima-Kataoka,H., and Izumi,H. (1998). miranda localizes staufen and prospero asymmetrically in mitotic neuroblasts and epithelial cells in early Drosophila embryogenesis. Development, 125, 4089-4098. Medghalchi SM, Frischmeyer PA, Mendell JT, Kelly AG, Lawler AM, Dietz HC (2001) Rent1, a transeffector of nonsense-mediated mRNA decay, is essential for mammalian embryonic viability. Hum Mol Genet 10: 99-105 Meister,G., Landthaler,M., Dorsett,Y., and Tuschl,T. (2004). Sequence-specific inhibition of microRNAand siRNA-induced RNA silencing. RNA, 10, 544-550. Mendell JT, ap Rhys CM, Dietz HC (2002) Separable roles for rent1/hUpf1 in altered splicing and decay of nonsense transcripts. Science 298: 419-422 Mendell,J.T., Medghalchi,S.M., Lake,R.G., Noensie,E.N., and Dietz,H.C. (2000). Novel Upf2p orthologues suggest a functional link between translation initiation and nonsense surveillance complexes. Mol Cell Biol, 20, 8944-8957. Mendell JT, Sharifi NA, Meyers JL, Martinez-Murillo F, Dietz HC (2004) Nonsense surveillance regulates expression of diverse classes of mammalian transcripts and mutes genomic noise. Nat Genet 36: 10731078 Menon,K.P. and Neufeld,E.F. (1994). Evidence for degradation of mRNA encoding alpha-L-iduronidase in Hurler fibroblasts with premature termination alleles. Cell Mol. Biol. (Noisy. -le-grand), 40, 999-1005. Meyer,S., Temme,C., and Wahle,E. (2004). Messenger RNA turnover in eukaryotes: pathways and enzymes. Crit Rev Biochem Mol Biol, 39, 197-216. Miller R, Gallo SM, Khalak HG, Weeks CM (1994) SnB: crystal structure determination via shake-andbake. J Appl Cryst 27: 613-621 Mitchell,P. and Tollervey,D. (2000). mRNA stability in eukaryotes. Curr Opin Genet Dev, 10, 193-198. Mitchell, P. and Tollervey, D. 2001. mRNA turnover. Curr. Opin. Cell Biol. 13:320-325. Mitchell, P. and Tollervey, D. 2003. An NMD pathway in yeast involving accelerated deadenylation and exosome-mediated 3'-->5' degradation. Mol. Cell 11:1405-1413. Mitchell, P., Petfalski, E., Shevchenko, A., Mann, M., and Tollervey, D. 1997. The exosome: a conserved eukaryotic RNA processing complex containing multiple 3'-->5' exoribonucleases. Cell 91:457-466. Morrissey,J.P., Deardorff,J.A., Hebron,C., and Sachs,A.B. (1999). Decapping of stabilized, polyadenylated mRNA in yeast pab1 mutants. Yeast, 15, 687-702. Moser,M.J., Holley,W.R., Chatterjee,A., and Mian,I.S. (1997). The proofreading domain of Escherichia coli DNA polymerase I and other DNA and/or RNA exonuclease domains. Nucleic Acids Res., 25, 5110-5118. 160 Muhlrad,D., Decker,C.J., and Parker,R. (1994). Deadenylation of the unstable mRNA encoded by the yeast MFA2 gene leads to decapping followed by 5'-->3' digestion of the transcript. Genes Dev, 8, 855-866. Muhlrad, D. and Parker, R. 1994. Premature translational termination triggers mRNA decapping. Nature 370:578-581. Mukherjee, D., Gao, M., O'Connor, J.P., Raijmakers, R., Pruijn, G., Lutz, C.S., and Wilusz, J. 2002. The mammalian exosome mediates the efficient degradation of mRNAs that contain AU-rich elements. EMBO J. 21:165-174. Murshudov, G.N., Vagin, A.A., and Dodson, E.J. 1997. Refinement of Macromolecular Structures by the Maximum-Likelihood Method. Acta Cryst. D 53:240-255. Nakagawa, Y., Morikawa, H., Hirata, I., Shiozaki, M., Matsumoto, A., Maemura, K., Nishikawa, T., Niki, M., Tanigawa, N., Ikegami, M., Katsu, K. and Akao, Y. (1999) Overexpression of rck/p54, a DEAD box protein, in human colorectal tumours. Br. J. Cancer 80: 914-917 Nakamura, A., Amikura, R., Hanyu, K. and Kobayashi, S. (2001) Me31B silences translation of oocytelocalizing RNAs through the formation of cytoplasmic RNP complex during Drosophila oogenesis. Development 128: 3233-3242 Navarro, R.E., Shim, E.Y., Kohara, Y., Singson, A. and Blackwell, T.K. (2001) cgh-1, a conserved predicted RNA helicase required for gametogenesis and protection from physiological germline apoptosis in C. elegans. Development 128: 3221-3232 Neer, E.J., Schmidt, C.J., Nambudripad, R., and Smith, T.F. 1994. The ancient regulatory-protein family of WD-repeat proteins. Nature 371:297-300. Newbury,S. and Woollard,A. (2004). The 5'-3' exoribonuclease xrn-1 is essential for ventral epithelial enclosure during C. elegans embryogenesis. RNA., 10, 59-65. Nicholls, A., Sharp, K.A., and Honig, B. 1991. Protein folding and association: insights from the interfacial and thermodynamic properties of hydrocarbons. Proteins 11:281-296. Ohnishi T, Yamashita A, Kashima I, Schell T, Anders KR, Grimson A, Hachiya T, Hentze MW, Anderson P, Ohno S (2003) Phosphorylation of hUPF1 induces formation of mRNA surveillance complexes containing hSMG-5 and hSMG-7. Mol Cell 12: 1187-1200 Orban,T.I. and Izaurralde,E. (2005). Decay of mRNAs targeted by RISC requires XRN1, the Ski complex, and the exosome. RNA, 11, 459-469. Otwinowski, Z. and Minor, W. 1997. Processing of X-ray diffraction data collected in oscillation mode. Methods Enzymol. 276:307-326. Page MF, Carr B, Anders KR, Grimson A, Anderson P (1999) SMG-2 is a phosphorylated protein required for mRNA surveillance in Caenorhabditis elegans and related to Upf1p of yeast. Mol Cell Biol 19: 5943-5951 Pal,M., Ishigaki,Y., Nagy,E., and Maquat,L.E. (2001). Evidence that phosphorylation of human Upfl protein varies with intracellular location and is mediated by a wortmannin-sensitive and rapamycinsensitive PI 3-kinase-related kinase signaling pathway. RNA, 7, 5-15. Palacios,I.M., Gatfield,D., St Johnston,D., and Izaurralde,E. (2004). An eIF4AIII-containing complex required for mRNA localization and nonsense-mediated mRNA decay. Nature, 427, 753-757. 161 Parker, R. and Song, H. (2004) The enzymes and control of eukaryotic mRNA turnover. Nat. Struct. Mol. Biol. 11: 121-127 Parker, R. and Song, H. 2004. The enzymes and control of eukaryotic mRNA turnover. Nat. Struct. Mol. Biol. 11:121-127. Patel,S.S. and Picha,K.M. (2000). Structure and function of hexameric helicases. Annu Rev Biochem, 69, 651-697. Pause, A., Methot, N. and Sonenberg, N. (1993) The HRIGRXXR region of the DEAD box RNA helicase eukaryotic translation initiation factor 4A is required for RNA binding and ATP hydrolysis. Mol. Cell. Biol. 13: 6789-6798 Pause, A. and Sonenberg, N. (1992) Mutational analysis of a DEAD box RNA helicase: the mammalian translation initiation factor eIF-4A. EMBO J. 11: 2643-2654 Pause, A. and Sonenberg, N. (1993) Helicases and RNA unwinding in translation. Curr. Opin. Struct. Biol. 3: 953-959 Pecina, A., Smith, K.N., Mezard, C., Murakami, H., Ohta, K., and Nicolas, A. 2002. Targeted stimulation of meiotic recombination. Cell 111:173-184. Peltz,S.W., Donahue,J.L., and Jacobson,A. (1992). A mutation in the tRNA nucleotidyltransferase gene promotes stabilization of mRNAs in Saccharomyces cerevisiae. Mol. Cell Biol., 12, 5778-5784. Perlick,H.A., Medghalchi,S.M., Spencer,F.A., Kendzior,R.J., Jr., and Dietz,H.C. (1996). Mammalian orthologues of a yeast regulator of nonsense transcript stability. Proc Natl Acad Sci U S A, 93, 1092810932. Perrakis, A., Morris, R. and Lamzin, V.S. (1999) Automated protein model building combined with iterative structure refinement. Nat. Struct. Biol. 6: 458-463 Piccirillo,C., Khanna,R., and Kiledjian,M. (2003). Functional characterization of the mammalian mRNA decapping enzyme hDcp2. RNA, 9, 1138-1147. Pickles, L.M., Roe, S.M., Hemingway, E.J., Stifani, S., and Pearl, L.H. 2002. Crystal structure of the Cterminal WD40 repeat domain of the human Groucho/TLE1 transcriptional corepressor. Structure (Camb ) 10:751-761. Qian,L., Theodor,L., Carter,M., Vu,M.N., Sasaki,A.W., and Wilkinson,M.F. (1993). T cell receptor-beta mRNA splicing: regulation of unusual splicing intermediates. Mol. Cell Biol., 13, 1686-1696. Reichert,V.L., Le Hir,H., Jurica,M.S., and Moore,M.J. (2002). 5' exon interactions within the human spliceosome establish a framework for exon junction complex structure and assembly. Genes Dev, 16, 2778-2791. Rehwinkel J, Letunic I, Raes J, Bork P, Izaurralde E (2005) Nonsense-mediated mRNA decay factors act in concert to regulate common mRNA targets. RNA 11: 1530-1544 Renault,L., Kuhlmann,J., Henkel,A., and Wittinghofer,A. (2001). Structural basis for guanine nucleotide exchange on Ran by the regulator of chromosome condensation (RCC1). Cell, 105, 245-255. Renault,L., Nassar,N., Vetter,I., Becker,J., Klebe,C., Roth,M., and Wittinghofer,A. (1998). The 1.7 A crystal structure of the regulator of chromosome condensation (RCC1) reveals a seven-bladed propeller. Nature, 392, 97-101. 162 Reverdatto,S.V., Dutko,J.A., Chekanova,J.A., Hamilton,D.A., and Belostotsky,D.A. (2004). mRNA deadenylation by PARN is essential for embryogenesis in higher plants. RNA, 10, 1200-1214. Rhee, S.K., Icho, T., and Wickner, R.B. 1989. Structure and nuclear localization signal of the SKI3 antiviral protein of Saccharomyces cerevisiae. Yeast 5:149-158. Robinson,R.C., Turbedsky,K., Kaiser,D.A., Marchand,J.B., Higgs,H.N., Choe,S., and Pollard,T.D. (2001). Crystal structure of Arp2/3 complex. Science, 294, 1679-1684. Rocak, S. and Linder, P. (2004) DEAD-box proteins: the driving forces behind RNA metabolism. Nat. Rev. Mol. Cell. Biol. 5: 232-241 Ruiz-Echevarria,M.J., Gonzalez,C.I., and Peltz,S.W. (1998). Identifying the right stop: determining how the surveillance complex recognizes and degrades an aberrant mRNA. EMBO J, 17, 575-589. Schwartz,D., Decker,C.J., and Parker,R. (2003). The enhancer of decapping proteins, Edc1p and Edc2p, bind RNA and stimulate the activity of the decapping enzyme. RNA, 9, 239-251. Schwartz,D.C. and Parker,R. (1999). Mutations in translation initiation factors lead to increased rates of deadenylation and decapping of mRNAs in Saccharomyces cerevisiae. Mol Cell Biol, 19, 5247-5256. Sengoku,T., Nureki,O., Nakamura,A., Kobayashi,S., and Yokoyama,S. (2006). Structural basis for RNA unwinding by the DEAD-box protein Drosophila Vasa. Cell, 125, 287-300. Serin G, Gersappe A, Black JD, Aronoff R, Maquat LE (2001) Identification and characterization of human orthologues to Saccharomyces cerevisiae Upf2 protein and Upf3 protein (Caenorhabditis elegans SMG4). Mol Cell Biol 21: 209-223 Seybert,A., Hegyi,A., Siddell,S.G., and Ziebuhr,J. (2000). The human coronavirus 229E superfamily helicase has RNA and DNA duplex-unwinding activities with 5'-to-3' polarity. RNA, 6, 1056-1068. Schmid, S.R. and Linder, P. (1991) Translation initiation factor 4A from Saccharomyces cerevisiae: analysis of residues conserved in the D-E-A-D family of RNA helicases. Mol. Cell Biol. 11: 3463-3471 She,M., Decker,C.J., Chen,N., Tumati,S., Parker,R., and Song,H. (2006). Crystal structure and functional analysis of Dcp2p from Schizosaccharomyces pombe. Nat Struct Mol Biol, 13, 63-70. She,M., Decker,C.J., Sundramurthy,K., Liu,Y., Chen,N., Parker,R., and Song,H. (2004). Crystal structure of Dcp1p and its functional implications in mRNA decapping. Nat Struct Mol Biol, 11, 249-256. Shen,C.P., Knoblich,J.A., Chan,Y.M., Jiang,M.M., Jan,L.Y., and Jan,Y.N. (1998). Miranda as a multidomain adapter linking apically localized Inscuteable and basally localized Staufen and Prospero during asymmetric cell division in Drosophila. Genes Dev, 12, 1837-1846. Sheth,U. and Parker,R. (2003). Decapping and decay of messenger RNA occur in cytoplasmic processing bodies. Science, 300, 805-808. Sheth,U. and Parker,R. (2006). Targeting of aberrant mRNAs to cytoplasmic processing bodies. Cell, 125, 1095-1109. Shi,H., Cordin,O., Minder,C.M., Linder,P., & Xu,R.M. (2004) Crystal structure of the human ATPdependent splicing and export factor UAP56. Proc Natl Acad Sci U S A 101, 17628-17633. Shi,H. and Xu,R.M. (2003). Crystal structure of the Drosophila Mago nashi-Y14 complex. Genes Dev., 17, 971-976. 163 Shibuya,T., Tange,T.O., Sonenberg,N., and Moore,M.J. (2004). eIF4AIII binds spliced mRNA in the exon junction complex and is essential for nonsense-mediated decay. Nat Struct Mol Biol, 11, 346-351. Shim,J., Lim,H., Yates,R., and Karin,M. (2002). Nuclear export of NF90 is required for interleukin-2 mRNA stabilization. Mol Cell, 10, 1331-1344. Shin,D.H., Brandsen,J., Jancarik,J., Yokota,H., Kim,R., and Kim,S.H. (2004). Structural analyses of peptide release factor from Thermotoga maritima reveal domain flexibility required for its interaction with the ribosome. J Mol Biol, 341, 227-239. Shyu,A.B., Greenberg,M.E., and Belasco,J.G. (1989). The c-fos transcript is targeted for rapid decay by two distinct mRNA degradation pathways. Genes Dev, 3, 60-72. Smith, T.F., Gaitatzes, C., Saxena, K., and Neer, E.J. 1999. The WD repeat: a common architecture for diverse functions. Trends Biochem. Sci. 24:181-185. Sondek, J., Bohm, A., Lambright, D.G., Hamm, H.E., and Sigler, P.B. 1996. Crystal structure of a Gprotein beta gamma dimer at 2.1A resolution. Nature 379:369-374. Song,H., Mugnier,P., Das,A.K., Webb,H.M., Evans,D.R., Tuite,M.F., Hemmings,B.A., and Barford,D. (2000). The crystal structure of human eukaryotic release factor eRF1--mechanism of stop codon recognition and peptidyl-tRNA hydrolysis. Cell, 100, 311-321. Sprague, E.R., Redd, M.J., Johnson, A.D., and Wolberger, C. 2000. Structure of the C-terminal domain of Tup1, a corepressor of transcription in yeast. EMBO J. 19:3016-3027. Steiger,M., Carr-Schmid,A., Schwartz,D.C., Kiledjian,M., and Parker,R. (2003). Analysis of recombinant yeast decapping enzyme. RNA, 9, 231-238. Stevens,A. (1980). An mRNA decapping enzyme from ribosomes of Saccharomyces cerevisiae. Biochem Biophys Res Commun, 96, 1150-1155. Stevens,A. (1988). mRNA-decapping enzyme from Saccharomyces cerevisiae: purification and unique specificity for long RNA chains. Mol Cell Biol, 8, 2005-2010. Stoecklin,G., Mayo,T., and Anderson,P. (2006). ARE-mRNA degradation requires the 5'-3' decay pathway. EMBO Rep, 7, 72-77. Story, R.M., Li, H. and Abelson, J.N. (2001) Crystal structure of a DEAD box protein from the hyperthermophile Methanococcus jannaschii. Proc. Natl. Acad. Sci. U S A 98: 1465-1470 Story RM, Steitz TA (1992) Structure of the recA protein-ADP complex. Nature 355: 374-376 Story,R.M., Weber,I.T., and Steitz,T.A. (1992). The structure of the E. coli recA protein monomer and polymer. Nature, 355, 318-325. Sun X, Perlick HA, Dietz HC, Maquat LE (1998) A mutated human homologue to yeast Upf1 protein has a dominant-negative effect on the decay of nonsense-containing mRNAs in mammalian cells. Proc Natl Acad Sci U S A 95: 10009-10014 Surosky, R.T., Strich, R., and Esposito, R.E. 1994. The yeast UME5 gene regulates the stability of meiotic mRNAs in response to glucose. Mol. Cell Biol. 14:3446-58. Takahashi, S., Araki, Y., Sakuno, T., and Katada, T. 2003. Interaction between Ski7p and Upf1p is required for nonsense-mediated 3'-to-5' mRNA decay in yeast. EMBO J. 22:3951-3959. 164 Tange,T.O., Nott,A., and Moore,M.J. (2004). The ever-increasing complexities of the exon junction complex. Curr. Opin. Cell Biol., 16, 279-284. Tanner,N.K. (2003). The newly identified Q motif of DEAD box helicases is involved in adenine recognition. Cell Cycle, 2, 18-19. Tanner, N.K., Cordin, O., Banroques, J., Doere, M. and Linder, P. (2003) The Q motif: a newly identified motif in DEAD box helicases may regulate ATP binding and hydrolysis. Mol. Cell 11: 127-138 Tanner, N.K. and Linder, P. (2001) DExD/H box RNA helicases: from generic motors to specific dissociation functions. Mol. Cell 8: 251-262 Ter-Avanesyan,M.D., Kushnirov,V.V., Dagkesamanskaya,A.R., Didichenko,S.A., Chernoff,Y.O., IngeVechtomov,S.G., and Smirnov,V.N. (1993). Deletion analysis of the SUP35 gene of the yeast Saccharomyces cerevisiae reveals two non-overlapping functional regions in the encoded protein. Mol. Microbiol., 7, 683-692. Terwilliger, T.C. and Berendzen, J. (1999) Automated MAD and MIR structure solution. Acta Crystallogr. D55: 849-861 Terwilliger, T.C. 2002. Automated structure solution, density modification and model building. Acta Crystallogr. D 58:1937-1940. Tesse, S., Storlazzi, A., Kleckner, N., Gargano, S., and Zickler, D. 2003. Localization and roles of Ski8p protein in Sordaria meiosis and delineation of three mechanistically distinct steps of meiotic homolog juxtaposition. Proc. Natl. Acad. Sci. U S A 100:12865-12870. Tharun, S., He, W., Mayes, A.E., Lennertz, P., Beggs, J.D. and Parker, R. (2000) Yeast Sm-like proteins function in mRNA decapping and decay. Nature 404: 515-518 Thermann,R., Neu-Yilik,G., Deters,A., Frede,U., Wehr,K., Hagemeier,C., Hentze,M.W., and Kulozik,A.E. (1998). Binary specification of nonsense codons by splicing and cytoplasmic translation. EMBO J., 17, 3484-3494. Thore,S., Mauxion,F., Seraphin,B., and Suck,D. (2003). X-ray structure and activity of the yeast Pop2 protein: a nuclease subunit of the mRNA deadenylase complex. EMBO Rep, 4, 1150-1155. Till,D.D., Linz,B., Seago,J.E., Elgar,S.J., Marujo,P.E., Elias,M.L., Arraiano,C.M., McClellan,J.A., McCarthy,J.E., and Newbury,S.F. (1998). Identification and developmental expression of a 5'-3' exoribonuclease from Drosophila melanogaster. Mech. Dev., 79, 51-55. Toh, E., Guerry, P., and Wickner, R.B. 1978. Chromosomal superkiller mutants of Saccharomyces cerevisiae. J. Bacteriol. 136:1002-1007. Tseng-Rogenski, S.S., Chong, J.L., Thomas, C.B., Enomoto, S., Berman, J. and Chang, T.H. (2003) Functional conservation of Dhh1p, a cytoplasmic DExD/H-box protein present in large complexes. Nucleic Acids Res. 31: 4995-5002 Tucker, M. and Parker, R. 2000. Mechanisms and control of mRNA decapping in Saccharomyces cerevisiae. Annu. Rev. Biochem. 69:571-595. Tucker,M., Valencia-Sanchez,M.A., Staples,R.R., Chen,J., Denis,C.L., and Parker,R. (2001). The transcription factor associated Ccr4 and Caf1 proteins are components of the major cytoplasmic mRNA deadenylase in Saccharomyces cerevisiae. Cell, 104, 377-386. 165 Tuteja,N. and Tuteja,R. (2004). Unraveling DNA helicases. Motif, structure, mechanism and function. Eur J Biochem, 271, 1849-1863. Uchida,N., Hoshino,S., Imataka,H., Sonenberg,N., and Katada,T. (2002). A novel role of the mammalian GSPT/eRF3 associating with poly(A)-binding protein in Cap/Poly(A)-dependent translation. J. Biol. Chem., 277, 50286-50292. Uetz, P., Giot, L., Cagney, G., Mansfield, T.A., Judson, R.S., Knight, J.R., Lockshon, D., Narayan, V., Srinivasan, M., Pochart, P., Qureshi-Emili, A., Li, Y., Godwin, B., Conover, D., Kalbfleisch, T., Vijayadamodar, G., Yang, M., Johnston, M., Fields, S., and Rothberg, J. M. (2000). A comprehensive analysis of protein-protein interactions in Saccharomyces cerevisiae. Nature 403:623-627. van der Voorn, L. and Ploegh, H.L. 1992. The WD-40 repeat. FEBS Lett. 307:131-134. van Dijk,E., Cougot,N., Meyer,S., Babajko,S., Wahle,E., and Seraphin,B. (2002). Human Dcp2: a catalytically active mRNA decapping enzyme located in specific cytoplasmic structures. EMBO J, 21, 6915-6924. van Dijk,E., Le Hir,H., and Seraphin,B. (2003). DcpS can act in the 5'-3' mRNA decay pathway in addition to the 3'-5' pathway. Proc Natl Acad Sci U S A, 100, 12081-12086. van Hoof, A., Frischmeyer, P.A., Dietz, H.C., and Parker, R. 2002. Exosome-mediated recognition and degradation of mRNAs lacking a termination codon. Science 295:2262-2264. van Hoof, A., Lennertz, P., and Parker, R. 2000. Yeast exosome mutants accumulate 3'-extended polyadenylated forms of U4 small nuclear RNA and small nucleolar RNAs. Mol. Cell. Biol. 20:441452. van Hoof,A., Lennertz,P., and Parker,R. (2000). Three conserved members of the RNase D family have unique and overlapping functions in the processing of 5S, 5.8S, U4, U5, RNase MRP and RNase P RNAs in yeast. EMBO J., 19, 1357-1365. van Hoof, A., and Parker, R. 1999. The exosome: a proteasome for RNA? Cell 99:347-350. van Hoof,A. and Parker,R. (2002). Messenger RNA degradation: beginning at the end. Curr Biol, 12, R285-R287. van Hoof,A., Staples,R.R., Baker,R.E., and Parker,R. (2000). Function of the ski4p (Csl4p) and Ski7p proteins in 3'-to-5' degradation of mRNA. Mol Cell Biol, 20, 8230-8243. Vasudevan,S. and Peltz,S.W. (2001). Regulated ARE-mediated mRNA decay in Saccharomyces cerevisiae. Mol Cell, 7, 1191-1200. Velankar, S.S., Soultanas, P., Dillingham, M.S., Subramanya, H.S. and Wigley, D.B. (1999) Crystal structures of complexes of PcrA DNA helicase with a DNA substrate indicate an inchworm mechanism. Cell 97: 75-84 Viswanathan,P., Chen,J., Chiang,Y.C., and Denis,C.L. (2003). Identification of multiple RNA features that influence CCR4 deadenylation activity. J Biol Chem, 278, 14949-14955. Voegtli, W,C., Madrona, A.Y., and Wilson, D.K. 2003. The structure of Aip1p, a WD repeat protein that regulates Cofilin-mediated actin depolymerization. J. Biol. Chem. 278:34373-34379. 166 Wagner,B.J., DeMaria,C.T., Sun,Y., Wilson,G.M., and Brewer,G. (1998). Structure and genomic organization of the human AUF1 gene: alternative pre-mRNA splicing generates four protein isoforms. Genomics, 48, 195-202. Wagner,E. and Lykke-Andersen,J. (2002). mRNA surveillance: the perfect persist. J. Cell Sci., 115, 30333038. Walker, J.E., Saraste, M., Runswick, M.J. and Gay, N.J. (1982) Distantly related sequences in the alphaand beta-subunits of ATP synthase, myosin, kinases and other ATP-requiring enzymes and a common nucleotide binding fold. EMBO J. 1: 945-951 Wall, M.A., Coleman, D.E., Lee, E., Iniguez-Lluhi, J.A., Posner, B.A., Gilman, A.G., and Sprang, S.R. 1995. The structure of the G protein heterotrimer Gi alpha beta gamma 2. Cell 83:1047-1058. Wang, Z. and Kiledjian, M. 2001. Functional link between the mammalian exosome and mRNA decapping. Cell 107:751-762. Wang,Z., Jiao,X., Carr-Schmid,A., and Kiledjian,M. (2002). The hDcp2 protein is a mammalian mRNA decapping enzyme. Proc Natl Acad Sci U S A, 99, 12663-12668. Wang, W, Czaplinski K, Rao Y, Peltz SW (2001) The role of Upf proteins in modulating the translation read-through of nonsense-containing transcripts. EMBO J 20: 880-890 Waterhouse, P.M., Wang, M.B., and Lough, T. 2001. Gene silencing as an adaptive defence against viruses. Nature 411:834-842. Welch,E.M. and Jacobson,A. (1999). An internal open reading frame triggers nonsense-mediated decay of the yeast SPT10 mRNA. EMBO J, 18, 6134-6145. Weng,Y., Czaplinski,K., and Peltz,S.W. (1996a). Genetic and biochemical characterization of mutations in the ATPase and helicase regions of the Upf1 protein. Mol Cell Biol, 16, 5477-5490. Weng,Y., Czaplinski,K., and Peltz,S.W. (1996b). Identification and characterization of mutations in the UPF1 gene that affect nonsense suppression and the formation of the Upf protein complex but not mRNA turnover. Mol Cell Biol, 16, 5491-5506. Weng,Y., Czaplinski,K., and Peltz,S.W. (1998). ATP is a cofactor of the Upf1 protein that modulates its translation termination and RNA binding activities. RNA, 4, 205-214. Westmoreland, T.J., Olson, J.A., Saito, W.Y., Huper, G., Marks, J.R. and Bennett, C.B. (2003) Dhh1 regulates the G1/S-checkpoint following DNA damage or BRCA1 expression in yeast. J. Surg. Res. 113: 62-73 Wickham,L., Duchaine,T., Luo,M., Nabi,I.R., and Desgroseillers,L. (1999). Mammalian staufen is a double-stranded-RNA- and tubulin-binding protein which localizes to the rough endoplasmic reticulum. Mol Cell Biol, 19, 2220-2230. Widner, W.R., and Wickner, R.B. 1993. Evidence that the SKI antiviral system of Saccharomyces cerevisiae acts by blocking expression of viral mRNA. Mol. Cell. Biol. 13:4331-4341. Wilusz,C.J., Gao,M., Jones,C.L., Wilusz,J., and Peltz,S.W. (2001). Poly(A)-binding proteins regulate both mRNA deadenylation and decapping in yeast cytoplasmic extracts. RNA, 7, 1416-1424. 167 Wong,I., Chao,K.L., Bujalowski,W., and Lohman,T.M. (1992). DNA-induced dimerization of the Escherichia coli rep helicase. Allosteric effects of single-stranded and duplex DNA. J. Biol. Chem., 267, 7596-7610. Wu. G., Xu, G., Schulman, B.A., Jeffrey, P.D., Harper, J.W., and Pavletich, N.P. 2003. Structure of a betaTrCP1-Skp1-beta-catenin complex: destruction motif binding and lysine specificity of the SCF(betaTrCP1) ubiquitin ligase. Mol. Cell 11:1445-1456. Wu,M., Reuter,M., Lilie,H., Liu,Y., Wahle,E., and Song,H. (2005). Structural insight into poly(A) binding and catalytic mechanism of human PARN. EMBO J, 24, 4082-4093. Yamamoto,Y., Sunohara,T., Jojima,K., Inada,T., and Aiba,H. (2003). SsrA-mediated trans-translation plays a role in mRNA quality control by facilitating degradation of truncated mRNAs. RNA., 9, 408-418. Yamashita,A., Chang,T.C., Yamashita,Y., Zhu,W., Zhong,Z., Chen,C.Y., and Shyu,A.B. (2005a). Concerted action of poly(A) nucleases and decapping enzyme in mammalian mRNA turnover. Nat Struct Mol Biol, 12, 1054-1063. Yamashita,A., Kashima,I., and Ohno,S. (2005b). The role of SMG-1 in nonsense-mediated mRNA decay. Biochim Biophys Acta, 1754, 305-315. Yamashita,A., Ohnishi,T., Kashima,I., Taya,Y., and Ohno,S. (2001). Human SMG-1, a novel phosphatidylinositol 3-kinase-related protein kinase, associates with components of the mRNA surveillance complex and is involved in the regulation of nonsense-mediated mRNA decay. Genes Dev, 15, 2215-2228. Yarranton,G.T., Das,R.H., and Gefter,M.L. (1979). Enzyme-catalyzed DNA unwinding. A DNA-dependent ATPase from E. coli. J. Biol. Chem., 254, 11997-12001. Zavialov,A.V., Buckingham,R.H., and Ehrenberg,M. (2001). A posttermination ribosomal complex is the guanine nucleotide exchange factor for peptide release factor RF3. Cell, 107, 115-124. Zhang,J. and Maquat,L.E. (1997). Evidence that translation reinitiation abrogates nonsense-mediated mRNA decay in mammalian cells. EMBO J, 16, 826-833. Zhang,S., Ruiz-Echevarria,M.J., Quan,Y., and Peltz,S.W. (1995). Identification and characterization of a sequence motif involved in nonsense-mediated mRNA decay. Mol Cell Biol, 15, 2231-2244. Zhao,R., Shen,J., Green,M.R., MacMorris,M., and Blumenthal,T. (2004). Crystal structure of UAP56, a DExD/H-box protein involved in pre-mRNA splicing and mRNA export. Structure, 12, 1373-1381. Zhouravleva,G., Frolova,L., Le,G., X, Le Guellec,R., Inge-Vechtomov,S., Kisselev,L., and Philippe,M. (1995). Termination of translation in eukaryotes is governed by two interacting polypeptide chain release factors, eRF1 and eRF3. EMBO J., 14, 4065-4072. Zuk,D. and Jacobson,A. (1998). A single amino acid substitution in yeast eIF-5A results in mRNA stabilization. EMBO J, 17, 2914-2925. Zuo,Y. and Deutscher,M.P. (2001). Exoribonuclease superfamilies: structural analysis and phylogenetic distribution. Nucleic Acids Res, 29, 1017-1026. 168 Appendix I MOPS Minimal Medium (Neidhardt et al., 1974) (1) 10x MOPS buffer (1 liter): Adjust pH to 7.4 with KOH, sterilize with 0.22μm filter, and store in 50ml aliquots at -20°C. Reagents MOPS Tricine FeSO4•7H2O NH4Cl K2SO4 CaCl2 MgCl2 NaCl (2) Concentration (mM) 400 40 0.1 95 2.76 0.005 5.3 500 Quantity (gram) 83.72 7.17 0.028 5.08 0.48 0.000555 0.0011 29.22 5x Amino acids stock (1 liter): Sterilize with 0.2μm filter. Reagents Ala Arg Asn Asp Cys Glu Gln Gly His Ile Leu Lys Phe Pro Ser Thr Trp Tyr Val Adenine Guanine Cytosine Uracil Thymine Concentration (mM) 2.5 2 0.5 3 4 2 18.3 0.5 1 1 Quantity (mg) 356.4 526.75 264.2 266.2 60.6 441.3 438.3 300.4 155.2 524.8 1049.6 730.3 330.4 230.2 1922.6 238.2 102.1 362.4 703.2 171.6 151.1 111.1 112.1 126.1 169 (3) 5000x Micronutrients (500ml) Reagents Na2MoO4•2H2O H3BO3 CoCl2 CuSO4 MnCl2 Zn(OAc)2 (4) Quantity (gram) 0.463 0.618 0.178 0.043 0.396 0.072 2000x Vitamin mix (10ml): Add a little NaOH to improve the solubility, sterilize with 0.2μm filter. Reagents Thiamine Pantothenic acid p-hydroxybenzoic acid p-aminobenzoic acid 2,3-dihydroxybenzoic acid Quantity (gram) 67.4 47.6 32 27.4 30.8 The recipe of MOPS minimal medium (10 liter) Reagents or buffers 10x MOPS buffer 20% Glucose 5x Amino acid stock Water 0.132 M K2HPO4 (be added after water) 2000x Vitamin stock 5000x Micronutrients Volumn (ml) 1000 300 2000 6600 100 0.2 170 Appendix II Publication list 1) Cheng Z, Liu Y, Wang C, Parker R, Song H. Crystal structure of Ski8p, a WDrepeat protein with dual roles in mRNA metabolism and meiotic recombination. Protein Sci. 2004 Oct;13(10):2673-84. (Cover story) 2) Cheng Z, Coller J, Parker R, Song H. Crystal structure and functional analysis of DEAD-box protein Dhh1p. RNA. 2005 Aug;11(8):1258-70. 3) Cheng Z, Muhlrad D, Lim M, Parker R, Song H. Structural and functional insights into the human Upf1 helicase core. EMBO. J 2007 Jan 10;26(1):253-64. 171 172 173 [...]... control of mRNA translation and degradation is important for gene expression in eukaryotic cells mRNA decay, including mRNA quality control, is a multistep processing event composed of deadenylation, decapping and degradation of the mRNA body Three proteins, hUpf1, Dhh1 and Ski8 involved in eukaryotic mRNA decay were structurally and functionally studied in this thesis Ski8 is a WD-repeat protein with... Upf3b) and is also one of the components of the exon-exon junction complex (EJC; Le Hir et al., 2000; Kim et al., 2001) Upf2 is perinuclear and might attach to exporting mRNAs by interacting with Upf3 (Lykke-Andersen et al., 2000) The crystal structure of the interacting domains of hUpf2 and hUpf3b shows that the RNA-binding domain (RBD) of Upf3 is involved in the interaction with one MIF4G domain of Upf2,... potential mapping combined with mutagenesis reveals that motifs I, V, and VI are involved in RNA binding In addition, trypsin digestion of the truncated Dhh1 in the absence or presence of RNA or ligand suggests that ATP binding enhances an RNAinduced conformational change Interestingly, some mutations located in the conserved motifs and at the interface between the two RecA-like domains confer dominant negative... blocks mRNA decapping Stimulate mRNA decapping Lsm7, eIF4G, eIF4A, eIF4B, Pab1 Dcp1, Dcp2, Edc1, Edc2, Small basic proteins Edc3 Contains five Edc3 regulates decapping of conserved domains RPS28B mRNA Pat1 No recognizable motifs Lsm1-7 Sm-like proteins Dhh1 DEAD-box protein Stimulates mRNA decapping and associates with deadenylases Stimulates mRNA decapping and formation of P-bodies in vivo Stimulate mRNA. .. Negative regulators include the poly(A)-binding protein 1 (Pab1) and the cap-binding protein (eIF4E) Pab1 couples decapping with deadenylation and inhibits decapping by promoting the formation of the translation initiation complex (Caponigro et al., 1995; Morrissey et al., 1999) In vivo and in vitro assays have shown that eIF4E can inhibit decapping activity by competitively binding to the 5’-cap structure... ssRNA binding channel, and a cycle of conformational change coupled to ATP binding and hydrolysis These conformational changes alter the likely ssRNA-binding channel in a manner that can explain how ATP binding destabilizes ssRNA binding to Upf1 Keywords: mRNA decay, nonsense-mediated mRNA decay, WD-repeat protein, Ski8, DEAD-box protein, Dhh1, RNA helicase, Upf1, X-ray crystallography x Lists of Figures... of hUpf1hd upon nucleotide binding and hydrolysis………………………………………………………… 132 Figure 5-5 Protein gel filtration profile of hUpf1 WT and mutants 1B∆ and 1C∆……………………………………………………………… 133 Figure 5-6 The channel between domains 1B and 1C involved in ssRNA binding………………………………………………………………….135 Figure 5-7 Allosteric effects of ATP binding/hydrolysis on RNA binding……… 137 Figure 5-8 Surface plasma resonance analysis. .. The crystal structure of the N-terminal domain of SMG7 reveals that this protein contains a 14-3-3-like phosphoserine-binding domain, which is involved in the association with phosphorylated Upf1 (Fukuhara et al., 2005) Conservation of this 14-3-3-like domain among SMG5, SMG6 and SMG7 suggests that these proteins act as similar adaptors in mediating dephosphorylation of Upf1 in NMD Name Yeast Mammal... eRF1 in a similar way as its prokaryotic counterpart RF3 (Frolova et al., 1996; Zavialov et al., 18 2001) Sequence analysis indicates that eRF3 contains at least two functional regions: an N-terminal region, which is not necessary for translation termination but is involved in binding to poly(A)-binding protein, suggesting a link between the termination event and the initiation process in protein biosynthesis,... resonance analysis of RNA binding to hUpf1…………139 Figure 5-9 Structure comparison of hUpf1hd-AMPPNP with hUpf1hd-ATPγS……………………………………………………… 141 Figure 5-10 Visualization of Dcp2-GFP in live yeast strains expressing Upf1 mutants………………………………………………………… 143 xii Lists of Tables Table 1-1 Critical proteins involved in general mRNA decay pathway…………… 3 Table 1-2 Regulators of mRNA decapping……………………………………… . STRUCTURAL AND FUNCTIONAL ANALYSIS OF CRITICAL PROTEINS INVOLVED IN mRNA DECAY CHENG ZHIHONG NATIONAL UNIVERSITY OF SINGAPORE 2006 STRUCTURAL AND FUNCTIONAL ANALYSIS. ANALYSIS OF CRITICAL PROTEINS INVOLVED IN mRNA DECAY CHENG ZHIHONG (B.Sc) Ease China University of Science and Technology A THESIS SUBMITTED FOR THE DEGREE OF DOCTOR OF PHILOSOPHY. expression in eukaryotic cells. mRNA decay, including mRNA quality control, is a multi- step processing event composed of deadenylation, decapping and degradation of the mRNA body. Three proteins,

Ngày đăng: 14/09/2015, 22:22

TỪ KHÓA LIÊN QUAN