1. Trang chủ
  2. » Giáo Dục - Đào Tạo

xuehui thesis 2007

201 215 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Nội dung

DIFFERENT FUNCTIONS OF NOTCH ACTIVATION ON FORMATION AND MAINTENANCE OF RHOMBOMERE BOUNDARIES QIU XUEHUI A THESIS SUBMITTED FOR THE DEGREE OF DOCTOR OF PHILOSOPHY DEPARTMENT OF BIOCHEMISRTY NATIONAL UNIVERSITY OF SINGAPORE 2007 Acknowledgements I would like to express my deepest gratitude to my supervisor, Dr Yun-Jin Jiang for his invaluable advice, guidance and forbearance over the past five years. Dr Jiang’s depth of scientific knowledge never ceased to amaze me and I have truly enjoyed working under him during my studies. I would like to thank Dr Karuna Sampath, Dr Peng Jinrong and Dr Alan Munn for guidance during my rotating period. Their passion in science has provided me a lot of inspiration and also gave me a chance to pursue my real interest. I would also like to thank Dr Wen Zilong for providing me this opportunity to my PhD. work in IMCB. I would like to extend my sincere thanks to my fellow colleagues in the laboratory, Chiaw-Hwee, Chengjin, Ma Ming, Kate, Ashok, Shangwei, Li Qing, Kenny, Steven and Kian Hong for creating a joyful and conductive working environment. I would also like to thank my ex-collegues, Haoying, Stephanie, Nick, Nguyet, Rida and our visiting scientist Hsiao Chung-Der for the helpful discussion during my project. Furthermore, I would like to specifically thank Chen Jun and Tang Lang for their encouragement during my studies. Most importantly, the support from Danio Unit has greatly facilitated my work, especially to Dr May-Su You. Finally, I would like to thank my family members. My parents have been taking care of my daughter for me without any complain. Moreover, they have given me their encouragements and made me feel confident. In addition, I would like to thank my husband Chen Chunhua. He gives me his moral support and without his love I could not complete my projects. Lastly, I would like to thank my lovely daughter, Chen Jiayi. She brings me a lot of happiness since she was born. i Table of contents Page Acknowledgements i Table of contents ii List of abbreviations vii List of tables ix List of figures x List of publications xii Summary xiv Chapter Introduction 1.1 General introduction 1.2 Hindbrain segmentation 1.2.1 Hox genes in hindbrain patterning 1.2.2 Meis and Pbx in hindbrain patterning 1.2.3 Val and Krox-20 in hindbrain patterning 1.2.4 Vhnf1 and Iro7 in hindbrain patterning 1.2.5 Cdx factors in hindbrain segmentation 1.2.6 Fgf signaling in hindbrain segmentation 10 1.2.7 RA signaling in hindbrain patterning 12 1.3 Ephs and ephrins mediate cell sorting in the hindbrain 13 1.4 Zebrafish as a research model 16 1.5 Sequence of appearance of zebrafish hindbrain boundaries 17 1.6 Boundaries act as signaling center 17 1.7 General introduction of Notch signaling pathway 20 1.8 Notch signaling in Boundary formation 23 ii 1.8.1 Notch signaling in somite boundary formation 24 1.8.2 Notch signaling in the D/V boundary formation in Drosophila wing disc 26 1.8.3 Notch signaling in Drosophila leg segment boundary formation 27 1.8.4 Notch signaling in rhombomere boundary formation 28 1.9 Wnt signaling pathway 30 1.10 Wnt signaling interplays with Notch signaling in the rhombomere boundary formation/maintenance 32 1.11 Glial boundaries 34 1.12 Notch signaling in gliogenesis 35 1.13 Glia-derived signals in gliogenesis 37 1.14 Aim and object of this study 38 Chapter Materials and Methods 2.1 Production and purification of GST fusion proteins 46 2.2 GST pull-down assays 46 2.3 Immunoprecipitation (IP) 47 2.4 in vitro ubiquitination assay 47 2.5 Antisense and sense probe synthesis 48 2.6 Whole-mount in situ hybridization 48 2.7 Detection of fluorescein-labelled probe 49 2.8 Crystat sectioning 49 2.9 Fish maintenance 50 2.10 Viewing anesthetized embryos 50 2.11 Inhibition of cell proliferation 50 2.12 Live embryo imaging 50 2.13 Quick lysis of adult fins 51 2.14 Total RNA extraction 51 iii 2.15 Reverse transcription PCR (RT-PCR) 51 2.16 Immunohistochemical staining 52 2.17 5’/3’ Rapid amplification of cDNA end (RACE) by kit (Roche) 53 2.18 Brdu staining 53 2.19 Cell death assay 54 2.20 Morpholino microinjections 55 2.21 Synthesis of 5’-capped mRNA 55 2.22 DAPT treatment 56 2.23 Heat shock induction 56 Chapter Notch activation is required for the rhombomere boundary maintenance 3.1 Summary 63 3.2 Results 3.2.1 rfng is expressed in the rhombomere boundaries 64 3.2.2 mibta52b mutants display more severe rhomobomere boundary defects than mibtfi91 mutants 3.2.3 Progressive cellular changes within rhomomere boundaries in mibta52b mutants 65 66 3.2.4 Cell adhesion and Wnt signaling are affected differentially in mibtfi91 and mibta52b mutants 66 3.2.5 Cell proliferation is reduced in mibta52b mutants, while inhibition of cell proliferation in wild-type embryos did not result in boundary defects 67 3.2.6 Influence of neurogenesis on rhombomere boundary maintenance 3.2.6.1 Nrarp-deficient embryos have more boundary cells 68 3.2.6.2 hdac1-MO can rescue the boundary defects in mibta52b mutants 69 3.2.7 Disruption of rhombomere boundaries is Su(H)-dependent and dosage-dependent 70 3.2.8 Overexpression of dn-xSu(H) by heat shock beginning at tail bud to 8s stage results in rhombomere boundary disruption 72 iv 3.3 Discussion 73 Chapter Notch1a and Notch3 play a distinct role from Notch1b in rhombomere boundary formation 4.1 Summary 86 4.2 Results 4.2.1 Effects on the expression of notch genes in mibta52b mutants 87 4.2.2 Clone of full-length notch1b 87 4.2.3 Knock-down of notch3 function in noctch1a mutants led to the loss of rhombomere boundaries and neuronal hyperplasia 88 4.2.4 Loss of notch1b function led to a transformation of non-boundary cells into boundary cells and neuronal hypoplasia 89 4.2.5 Two dachsous1 homologues are expressed in the hindbrain and are affected differentially to the change of Notch activation 91 4.2.6 Overexpression of activation of Notch1a leads to excessive gliogenesis at the expense of neurons 4.3 Discussion 92 93 Chapter Wnt signaling in the rhombomere boundary formation 5.1 Summary 117 5.2 Results 5.2.1 Expression of Wnt pathway genes in the rhombomere boundaries 117 5.2.2 Impairment of rhomomere boundaries in Frizzled7b-deficient embryos 118 5.2.3 Mib can interact and ubiquitinate Wnt1, Wnt4 and Wnt8b 119 5.3 Discussion 120 Chapter Loss of Cntfrα results in p53-dependent rhombomere boundary expansion 6.1 Summary 128 6.2 Results v 6.2.1 Clone of full-length cntfrα gene 128 6.2.2 Expression of cntfrα in wild-type zebrafish embryos 129 6.2.3 Mopholino-induced blocking of cntfrα in vivo 129 6.2.4 Loss of cntfrα results in rhombomere boundary expansion 130 6.2.5 Regulation of neurogenesis and gliogenesis in the hindbrain by Cntf signaling 131 6.2.6 Developmental defects observed in Cntfrα-deficient zebrafish embryos are caused by a massive cellular apoptosis and is p53-dependent 132 6.2.7 Cntf signaling interplays with Notch signaling in regulating neurogenesis and boundary formation 133 6.3 Discussion 134 Chapter General discussion 148 Chapter References 154 vi List of abbreviations aa amino acid ANK ankyrin repeats AP alkine phosphatase BCIP 5-Bromo-4-chloro-3-indolyl-phosphate bp base pair BrdU bromodeoxyuridine cntfr α ciliary neutrophic factor receptor α component DAB diaminobenzidine DAPT N-[N-(3,5-Difluorophenacetyl-L-alanyl)]-S-phenylglycine t-Butyl ester DEAB 4-(diethylamino)benzaldehyde DIG digoxygenin DMSO dimethyl sulfoxide DNA deoxyribonucleotide triphosphate DOTAP N-[1-(2,3-Dioleoyloxy)propyl]-N,N,Ntrimethylammonium methylsulfate dpf days post fertilization EDTA Ethylenediaminetetracetic acid disodium Hdac1 histone deacetylase HEPES N-2-hydroxyethylpiperazine-N'-2-ethanesulfonic acid HES Hairly/Enhancer of Split hpf hours post-fertilization IPTG isopropyl β-D thiogalactoside kb kilo base pair kD kilo dalton MAB maleic acid buffer minute vii MO morpholino mRNA messenger RNA NBT 4-Nitroblue tetrazolium chloride ng nanogram NTP 2'-nucleoside 5'-triphosphate PBS phosphate-buffered saline PBST phosphate-buffered saline plus 1% Tween-20 PFA paraformaldehyde PMSF phenylmethylsulfonyl fluoride POD peroxidase PTU 1-pheny-2-thiourea r rhombomere RNA ribonucleic acid RT-PCR reverse transcription polymerase chain reaction rTdT recombinant terminal deoxynucleotidyl transferase s somite SDS sodium dodecyl sulfate SSC sodium chloride-trisodium citrate solution SSCT sodium chloride-trisodium citrate solution plus 1% Tween-20 Su(H) Suppressor of Hairless TCA trichloroacetic acid TCF T cell factor Tricaine 3-amino benzoic acidethylester TSA tyramide signal amplification TUNEL terminal transferase mediated dUTP nick end-labeling UTR untranslated region viii List of tables Table 2.1 Primers used in CS2-myc or PGEX-wnt constructs. Table 2.2 List of molecular makers used in this study. 57 57-58 Table 2.3 Primers used in identifying hsp70:GAL4/+ and UAS:myc-notch1a-intra/+ transgenic line. Table 2.4 Primers used in RT-PCR for cloning partial or full-length genes. 58 58-59 Table 2.5 Primes used in functional studies of cntfrα morphants. 59 Table 2.6 Primers used in 5’-RACE to clone full-length notch1b sequence. 59 Table 2.7 Primers used in 3’-RACE to clone full-length cntfrα sequence. 60 Table 2.8 Morpholinos used in the thesis. 61 Table 2.9 Primers used for checking splicing products. 62 Table 2.10 Function of the markers and antibodies used in this thesis. 62 Table 3.1 Effects of foxb1.2 expression in su(h) morpholino injected embryos. 84 ix Leimeister C., Dale K., Fischer A., Klamt B., Hrabe dA, Radtke F., McGrew M.J., Pourquie O. and Jouve C., Palmeirim I., Henrique D., Beckers J., Gossler A., Ish-Horowicz D. and Pourquie O. (2000) Notch signalling is required for cyclic expression of the hairy-like gene HES1 in the presomitic mesoderm. Development 127, 1421-9. Lekven A.C., Buckles G.R., Kostakis, N. and Moon R.T. (2003) Wnt1 and wnt10b function redundantly at the zebrafish midbrain-hindbrain boundary. Dev. Biol. 254, 172-87. Lekven A.C., Thorpe C.J., Waxman J.S. and Moon R.T. (2001) Zebrafish wnt8 encodes two wnt8 proteins on a bicistronic transcript and is required for mesoderm and neurectoderm patterning. Dev. Cell 1, 103-14. Lele Z., Folchert A., Concha M., Rauch G.J., Geisler R., Rosa F., Wilson S.W., Hammerschmidt M. and Bally-Cuif L. (2002) parachute/n-cadherin is required for morphogenesis and maintained integrity of the zebrafish neural tube. Development 129, 3281-94. Leve C., Gajewski M., Rohr K.B. and Tautz D. (2001) Homologues of c-hairy1 (her9) and lunatic fringe in zebrafish are expressed in the developing central nervous system, but not in the presomitic mesoderm. Dev. Genes Evol. 211, 493-500. Levesque G., Yu G., Nishimura M., Zhang D.M., Levesque L., Yu H., Xu D., Liang Y., Rogaeva E., Ikeda M., Duthie M., Murgolo N., Wang L., VanderVere P., Bayne M.L., Strader C.D., Rommens J.M., Fraser P.E. and St George-Hyslop P. (1999) Presenilins interact with armadillo proteins including neural-specific plakophilin-related protein and betacatenin. J. Neurochem. 72, 999-1008. Lewis J. (1998) Notch signalling and the control of cell fate choices in vertebrates. Semin. Cell Dev. Biol. 9, 583-9. Liu A, Li J.Y., Bromleigh C., Lao Z., Niswander L.A. and Joyner A.L. (2003) FGF17b and FGF18 have different midbrain regulatory properties from FGF8b or activated FGF receptors. Development 130, 6175-85. 170 Liu A. and Joyner A.L. (2001) Early anterior/posterior patterning of the midbrain and cerebellum. Annu. Rev. Neurosci 24, 869-96. Liu A., Losos K. and Joyner A.L. (1999) FGF8 can activate Gbx2 and transform regions of the rostral mouse brain into a hindbrain fate. Development 126, 4827-38. Lumsden A. (1990) The cellular basis of segmentation in the developing hindbrain. Trends Neurosci. 13, 329-35. Lumsden A. and Guthrie S. (1991) Alternating patterns of cell surface properties and neural crest cell migration during segmentation of the chick hindbrain. Development Suppl. 2, 9-15. Lumsden A. and Keynes R. (1989) Segmental patterns of neuronal development in the chick hindbrain. Nature 337, 424-8. Lumsden A. and Krumlauf R. (1996) Patterning the vertebrate neuraxis. Science 274, 1109-15. Lyons D.A., Guy A.T. and Clarke J.D. (2003) Monitoring neural progenitor fate through multiple rounds of division in an intact vertebrate brain. Development 130, 3427-36. Ma M. and Jiang Y.J. (2007) Jagged2a-Notch signaling mediates cell fate choice in zebrafish pronephric duct. PLoS Genet. 3,e18. Maden M. (2002) Retinoid signalling in the development of the central nervous system. Nat. Rev. Neurosci. 3, 843-53. Major R.J. and Irvine K.D. (2005) Influence of Notch on dorsoventral compartmentalization and actin organization in the Drosophila wing. Development 132, 3823-33. Malatesta P., Hack M.A., Hartfuss E., Kettenmann H., Klinkert W., Kirchhoff F. and Gotz M. (2003) Neuronal or glial progeny: regional differences in radial glia fate. Neuron 37, 751-64 Mann R.S. and Affolter M. (1998) Hox proteins meet more partners. Curr. Opin. Genet. Dev. 8, 423-9. Manzanares M., Bel-Vialar S., Ariza-McNaughton L., Ferretti E., Marshall H., Maconochie M.M., Blasi F. and Krumlauf R. (2001) Independent regulation of initiation and maintenance 171 phases of Hoxa3 expression in the vertebrate hindbrain involve auto- and cross-regulatory mechanisms. Development 128, 3595-607. Manzanares M., Cordes S., Kwan C.T., Sham M.H., Barsh G.S. and Krumlauf R. (1997) Segmental regulation of Hoxb-3 by kreisler. Nature 387, 191-5. Manzanares M., Nardelli J., Gilardi-Hebenstreit P., Marshall H., Giudicelli F., MartinezPastor M.T., Krumlauf R. and Charnay P. (2002) Krox20 and kreisler co-operate in the transcriptional control of segmental expression of Hoxb3 in the developing hindbrain. EMBO J. 21, 365-76. Marcus R.C. and Easter S.S., Jr. (1995) Expression of glial fibrillary acidic protein and its relation to tract formation in embryonic zebrafish (Danio rerio). J. Comp. Neurol. 359, 365-81. Marshall H., Morrison A., Studer M., Popperl H. and Krumlauf R. (1996) Retinoids and Hox genes. FASEB J 10, 969-78. Martinez-Arias A., Zecchini V. and Brennan K. (2002) CSL-independent Notch signalling: a checkpoint in cell fate decisions during development? Curr. Opin. Genet. Dev. 12, 524-33. Matsumoto K., Nishihara S., Kamimura M., Shiraishi T., Otoguro T., Uehara M., Maeda Y., Ogura K., Lumsden A. and Ogura T. (2004) The prepattern transcription factor Irx2, a target of the FGF8/MAP kinase cascade, is involved in cerebellum formation. Nat. Neurosci. 7, 605-12. Matsunaga E., Katahira T. and Nakamura H. (2002) Role of Lmx1b and Wnt1 in mesencephalon and metencephalon development. Development 129, 5269-77. Matsuno K., Diederich R.J., Go M.J., Blaumueller C.M. and Artavanis-Tsakonas S. (1995) Deltex acts as a positive regulator of Notch signaling through interactions with the Notch ankyrin repeats. Development 121, 2633-44. Maves L. and Kimmel C.B. (2005) Dynamic and sequential patterning of the zebrafish posterior hindbrain by retinoic acid. Dev. Biol. 285, 593-605. 172 Maves L., Jackman W. and Kimmel C.B. (2002) FGF3 and FGF8 mediate a rhombomere signaling activity in the zebrafish hindbrain. Development 129, 3825-37. McClintock J.M., Kheirbek M.A. and Prince V.E. (2002) Knockdown of duplicated zebrafish hoxb1 genes reveals distinct roles in hindbrain patterning and a novel mechanism of duplicate gene retention. Development 129, 2339-54. McGinnis W. and Krumlauf R. (1992) Homeobox genes and axial patterning. Cell 68, 283-302. McGrew M.J., Dale J.K., Fraboulet S. and Pourquie O. (1998) The lunatic fringe gene is a target of the molecular clock linked to somite segmentation in avian embryos. Curr. Biol. 8, 97982. McMahon A.P., Joyner A.L., Bradley A. and McMahon J.A. (1992) The midbrain-hindbrain phenotype of Wnt-1-/Wnt-1- mice results from stepwise deletion of engrailed-expressing cells by 9.5 days postcoitum. Cell 69, 581-95. Mercier P., Simeone A., Cotelli F. and Boncinelli E. (1995) Expression pattern of two otx genes suggests a role in specifying anterior body structures in zebrafish. Int. J. Dev. Biol. 39, 55973. Metcalfe W.K., Myers P.Z., Trevarrow B., Bass M.B. and Kimmel C.B. (1986) Segmental homologies among reticulospinal neurons in the hindbrain of the zebrafish larva. J. Comp. Neurol. 251, 147-59. Micchelli C.A. and Blair S.S. (1999) Dorsoventral lineage restriction in wing imaginal discs requires Notch. Nature 401, 473-600. Milan M. and Cohen S.M. (2003) A re-evaluation of the contributions of Apterous and Notch to the dorsoventral lineage restriction boundary in the Drosophila wing. Development 130, 553-62. Moens C.B. and Prince V.E. (2002) Constructing the hindbrain: insights from the zebrafish. Dev. Dyn. 224, 1-17. Moens C.B., Cordes S.P., Giorgianni M.W., Barsh G.S. and Kimmel C.B. (1998) Equivalence in the genetic control of hindbrain segmentation in fish and mouse. Development 125, 381-91. 173 Moens C.B., Yan Y.L., Appel B., Force A.G. and Kimmel C.B. (1996) valentino: a zebrafish gene required for normal hindbrain segmentation. Development 122, 3981-90. Morimoto M., Takahashi Y., Endo M. and Saga Y. (2005) The Mesp2 transcription factor establishes segmental borders by suppressing Notch activity. Nature 435, 354-9. Morrison S.J. (2001) Neuronal differentiation: proneural genes inhibit gliogenesis. Curr. Biol. 1, R349-51. Mukhopadhyay M., Shtrom S., Rodriguez-Esteban C., Chen L., Tsukui T., Gomer L., Dorward D.W., Glinka A., Grinberg A., Huang S.P., Niehrs C., Belmonte J.C. and Westphal H. (2001) Dickkopf1 is required for embryonic head induction and limb morphogenesis in the mouse. Dev. Cell 1, 423-34. Mumm J.S. and Kopan R. (2000) Notch signaling: from the outside in. Dev. Biol. 228, 151-65. Nasevicius A. and Ekker S.C. (2000) Effective targeted gene 'knockdown' in zebrafish. Nat. Genet. 26, 216-20. Niederreither K., Vermot J., Schuhbaur B., Chambon P. and Dolle P. (2000) Retinoic acid synthesis and hindbrain patterning in the mouse embryo. Development 127, 75-85 Ninkovic J., Tallafuss A., Leucht C., Topczewski J., Tannhauser B., Solnica-Krezel L. and Solnica-Krezel L, Bally-Cuif L. (2005) Inhibition of neurogenesis at the zebrafish midbrainhindbrain boundary by the combined and dose-dependent activity of a new hairy/E(spl) gene pair. Development 132, 75-88. Nolte C., Amores A., Nagy K.E., Postlethwait J. and Featherstone M. (2003) The role of a retinoic acid response element in establishing the anterior neural expression border of Hoxd4 transgenes. Mech. Dev. 120, 325-35. Oates A.C. and Ho R.K. (2002) Hairy/E(spl)-related (Her) genes are central components of the segmentation oscillator and display redundancy with the Delta/Notch signaling pathway in the formation of anterior segmental boundaries in the zebrafish. Development 129, 2929-46. 174 Odenthal J. and Nusslein-Volhard C. (1998) fork head domain genes in zebrafish. Dev. Genes Evol. 208, 245-58. O'Hara F.P., Beck E., Barr L.K., Wong L.L., Kessler D.S. and Riddle R.D. (2005) Zebrafish Lmx1b.1 and Lmx1b.2 are required for maintenance of the isthmic organizer. Development 132, 3163-73. Oka C., Nakano T., Wakeham A., de la Pompa J.L., Mori C., Sakai T., Okazaki S., Kawaichi M., Shiota K., Mak T.W. and Honjo T. (1995) Disruption of the mouse RBP-J kappa gene results in early embryonic death. Development 121, 3291-301. Oppenheim R.W., Prevette D., Yin Q.W., Collins F. and MacDonald J. (1991) Control of embryonic motoneuron survival in vivo by ciliary neurotrophic factor. Science 29, 1616-8. Oxtoby E. and Jowett T. (1993) Cloning of the zebrafish krox-20 gene (krx-20) and its expression during hindbrain development. Nucleic Acids Res. 21, 1087-95. Palmeirim I., Henrique D., Ish-Horowicz D. and Pourquie O. (1997) Avian hairy gene expression identifies a molecular clock linked to vertebrate segmentation and somitogenesis. Cell 91, 639-48. Park H.C., Boyce J., Shin J. and Appel B. (2005) Oligodendrocyte specification in zebrafish requires notch-regulated cyclin-dependent kinase inhibitor function. J. Neurosci. 20, 6836-44. Patten B.A., Peyrin J.M., Weinmaster G. and Corfas G. (2003) Sequential signaling through Notch1 and erbB receptors mediates radial glia differentiation. J. Neurosci. 23, 6132-40. Patten B.A., Sardi S.P., Koirala S., Nakafuku M. and Corfas G. (2006) Notch1 signaling regulates radial glia differentiation through multiple transcriptional mechanisms. J. Neurosci. 26, 3102-8. Pezeron G., Anselme I., Laplante M., Ellingsen S., Becker T.S., Rosa F.M., Charnay P., Schneider-Maunoury S., Mourrain P. and Ghislain J. (2006) Duplicate sfrp1 genes in zebrafish: sfrp1a is dynamically expressed in the developing central nervous system, gut and lateral line. Gene Expr. Patterns 6, 835-42. 175 Pinson K.I., Brennan J., Monkley S., Avery B.J. and Skarnes W.C. (2000) An LDL-receptorrelated protein mediates Wnt signalling in mice. Nature 407, 535-8. Pitsouli C. and Delidakis C. (2005) The interplay between DSL proteins and ubiquitin ligases in Notch signaling. Development 132, 4041-50. Pöpperl H., Bienz M., Studer M., Chan S.K., Aparicio S., Brenner S., Mann R.S. and Krumlauf R. (1995) Segmental expression of Hoxb-1 is controlled by a highly conserved autoregulatory loop dependent upon exd/pbx. Cell 81, 1031-42 Prince V.E., Moens C.B., Kimmel C.B. and Ho R.K. (1998) Zebrafish hox genes: expression in the hindbrain region of wild-type and mutants of the segmentation gene, valentino. Development 125, 393-406. Puelles L., Javier M.F. and Martinez-de-la-Torre M. (1996) A segmental map of architectonic subdivisions in the diencephalon of the frog Rana perezi: acetylcholinesterase-histochemical observations. Brain Behav. Evol. 47, 279-310. Qiu X., Xu H., Haddon C., Lewis J. and Jiang Y.J. (2004) Sequence and embryonic expression of three zebrafish fringe genes: lunatic fringe, radical fringe, and manic fringe. Dev. Dyn. 231, 621-30. Raible F. and Brand M. (2004) Divide et Impera--the midbrain-hindbrain boundary and its organizer. Trends Neurosci. 27, 727-34. Rajan P. and McKay R.D. (1998) Multiple routes to astrocytic differentiation in the CNS. J. Neurosci. 18, 3620–29. Rajan P., Symes A.J. and Fink J.S. (1996) STAT proteins are activated by ciliary neurotrophic factor in cells of central nervous system origin. J. Neurosci. Res. 43, 403-11. Ramain P., Khechumian K., Seugnet L., Arbogast N., Ackermann C. and Heitzler P. (2001) Novel Notch alleles reveal a Deltex-dependent pathway repressing neural fate. Curr. Biol. 11, 1729-38. 176 Rauskolb C. (2001) The establishment of segmentation in the Drosophila leg. Development 128, 4511-21. Rauskolb C. and Irvine K.D. (1999) Notch-mediated segmentation and growth control of the Drosophila leg. Dev. Biol. 210, 339-50. Ray W.J., Yao M., Nowotny P., Mumm J., Zhang W., Wu J.Y., Kopan R. and Goate A.M. (1999) Evidence for a physical interaction between presenilin and Notch. Proc. Natl. Acad. Sci. U S A 96, 3263-8. Reifers F., Bohli H., Walsh E.C., Crossley P.H., Stainier D.Y. and Brand M. (1998) Fgf8 is mutated in zebrafish acerebellar (ace) mutants and is required for maintenance of midbrainhindbrain boundary development and somitogenesis. Development 125, 2381-95. Rhinn M., Picker A. and Brand M. (2006) Global and local mechanisms of forebrain and midbrain patterning. Curr. Opin. Neurobiol. 16, 5-12. Rida P.C., Le Minh N., Jiang Y.J. (2004) A Notch feeling of somite segmentation and beyond. Dev. Biol. 265, 2-22. Riley B.B., Chiang M.Y., Storch E.M., Heck R., Buckles G.R. and Lekven A.C. (2004) Rhombomere boundaries are Wnt signaling centers that regulate metameric patterning in the zebrafish hindbrain. Dev. Dyn. 231, 278-91. Rio C., Rieff H.I., Qi P., Khurana T.S. and Corfas G. (1997) Neuregulin and erbB receptors play a critical role in neuronal migration. Neuron 19, 39-50. Rodriguez I. (2004) The dachsous gene, a member of the cadherin family, is required for Wgdependent pattern formation in the Drosophila wing disc. Development 131, 3195-206. Rodriguez-Esteban C., Schwabe J.W., De La Pena J., Foys B., Eshelman B. and Belmonte J.C. (1997) Radical fringe positions the apical ectodermal ridge at the dorsoventral boundary of the vertebrate limb. Nature. 386, 360-6. 177 Rosso S.B., Sussman D., Wynshaw-Boris A. and Salinas P.C. (2005) Wnt signaling through Dishevelled, Rac and JNK regulates dendritic development. Nat. Neurosci. 8, 34-42. Roy N.M. and Sagerstrom C.G. (2004) An early Fgf signal required for gene expression in the zebrafish hindbrain primordium. Brain Res. Dev. Brain Res. 148, 27-42. Sakai Y., Meno C., Fujii H., Nishino J., Shiratori H., Saijoh Y., Rossant J. and Hamada H. (2001) The retinoic acid-inactivating enzyme CYP26 is essential for establishing an uneven distribution of retinoic acid along the anterio-posterior axis within the mouse embryo. Genes Dev. 15, 213-25. Salsi V. and Zappavigna V. (2006) Hoxd13 and Hoxa13 directly control the expression of the EphA7 Ephrin tyrosine kinase receptor in developing limbs. J. Biol.Chem. 281, 1992-9. Sato N., Meijer L., Skaltsounis L., Greengard P. and Brivanlou A.H. (2004) Maintenance of pluripotency in human and mouse embryonic stem cells through activation of Wnt signaling by a pharmacological GSK-3-specific inhibitor. Nat. Med. 10, 55-63. Sato Y., Yasuda K. and Takahashi Y. (2002) Morphological boundary forms by a novel inductive event mediated by Lunatic fringe and Notch during somitic segmentation. Development 129, 3633-44. Sawada A., Fritz A., Jiang Y.J., Yamamoto A., Yamasu K., Kuroiwa A., Saga Y. and Takeda H. (2000) Zebrafish Mesp family genes, mesp-a and mesp-b are segmentally expressed in the presomitic mesoderm, and Mesp-b confers the anterior identity to the developing somites. Development 127, 1691-702. Scheer N., Groth A., Hans S. and Campos-Ortega J.A. (2001) An instructive function for Notch in promoting gliogenesis in the zebrafish retina. Development 128, 1099-107. Schilling T.F. and Kimmel C.B. (1994) Segment and cell type lineage restrictions during pharyngeal arch development in the zebrafish embryo. Development 120, 483-94. Schilling T.F., Prince V. and Ingham P.W. (2001) Plasticity in zebrafish hox expression in the hindbrain and cranial neural crest. Dev. Biol. 231, 201-16. 178 Schreiber-Agus N., Horner J., Torres R., Chiu F.C. and DePinho R.A. (1993) Zebra fish myc family and max genes: differential expression and oncogenic activity throughout vertebrate evolution. Mol. Cell. Biol. 13, 2765-75. Sendtner M., Carroll P., Holtmann B., Hughes R.A. and Thoenen H. (1994) Ciliary neurotrophic factor. J Neurobiol. 25, 1436-53. Sendtner M., Gotz R., Holtmann B., Escary J.L., Masu Y., Carroll P., Wolf E., Brem G., Brulet P. and Thoenen H. (1996) Cryptic physiological trophic support of motoneurons by LIF revealed by double gene targeting of CNTF and LIF. Curr. Biol. 6, 686-94. Shamah S.M., Lin M.Z., Goldberg J.L., Estrach S., Sahin M., Hu L., Bazalakova M., Neve R.L., Corfas G., Debant A. and Greenberg M.E. (2001) EphA receptors regulate growth cone dynamics through the novel guanine nucleotide exchange factor ephexin. Cell 105, 233-44. Sharma V.M., Draheim K.M. and Kelliher M.A. (2007) The Notch1/c-Myc pathway in T cell leukemia. Cell Cycle 6, 927-30. Shellenbarger D.L. and Mohler J.D. (1978) Temperature-sensitive periods and autonomy of pleiotropic effects of l(1)Nts1, a conditional notch lethal in Drosophila. Dev. Biol. 62, 432-46. Shen W.F., Montgomery J.C., Rozenfeld S., Moskow J.J., Lawrence H.J., Buchberg A.M. and Largman C. (1997a) AbdB-like Hox proteins stabilize DNA binding by the Meis1 homeodomain proteins. Mol. Cell Biol. 17, 6448-58. Shen W.F., Rozenfeld S., Lawrence H.J. and Largman C. (1997b) The Abd-B-like Hox homeodomain proteins can be subdivided by the ability to form complexes with Pbx1a on a novel DNA target. J. Biol. Chem. 272, 8198-206. Shimazaki T., Shingo T. and Weiss S. (2001) The ciliary neurotrophic factor/leukemia inhibitory factor/gp130 receptor complex operates in the maintenance of mammalian forebrain neural stem cells. J. Neurosci. 21, 7642-53. Shimizu T., Bae Y.K. and Hibi M. (2006) Cdx-Hox code controls competence for responding to Fgfs and retinoic acid in zebrafish neural tissue. Development 133, 4709-19. 179 Sieger D., Tautz D. and Gajewski M. (2003) The role of Suppressor of Hairless in Notch mediated signalling during zebrafish somitogenesis. Mech. Dev. 120, 1083-94. Sieger D., Tautz D. and Gajewski M. (2004) her11 is involved in the somitogenesis clock in zebrafish. Dev. Genes Evol. 214, 393-406. Skromne I., Thorsen D., Hale M., Prince V.E. and Ho R.K. (2007) Repression of the hindbrain developmental program by Cdx factors is required for the specification of the vertebrate spinal cord. Development 134, 2147-58. Sleptsova-Friedrich I., Li, Y., Emelyanov A., Ekker M., Korzh V. and Ge R. (2001) fgfr3 and regionalization of anterior neural tube in zebrafish. Mech. Dev. 102, 213-7. Smith A., Robinson V., Patel K. and Wilkinson D.G. (1997) The EphA4 and EphB1 receptor tyrosine kinases and ephrin-B2 ligand regulate targeted migration of branchial neural crest cells. Curr. Biol. 7, 561-70. Stahl N. and Yancopoulos G.D. (1994) The tripartite CNTF receptor complex: activation and signaling involves components shared with other cytokines. J. Neurobiol. 25, 1454-66. Strooper B.D. and Annaert W. (2001) Presenilins and the intramembrane proteolysis of proteins: facts and fiction. Nat. Cell Biol. 3, E221-E225. Struhl G. and Greenwald I. (1999) Presenilin is required for activity and nuclear access of Notch in Drosophila. Nature 8, 522-5. Sun Y., Nadal-Vicens M., Misono S., Lin M.Z., Zubiaga A., Hua X., Fan G. and Greenberg M.E. (2001) Neurogenin promotes neurogenesis and inhibits glial differentiation by independent mechanisms. Cell 104, 365-76. Taga T. and Kishimoto T. (1997) Gp130 and the interleukin-6 family of cytokines. Annu. Rev. Immunol. 15, 797-819. Takahashi Y, Kitajima S, Inoue T, Kanno J and Saga Y. (2005) Differential contributions of Mesp1 and Mesp2 to the epithelialization and rostro-caudal patterning of somites. Development 132, 787-96. 180 Takahashi Y., Inoue T., Gossler A. and Saga Y. (2003) Feedback loops comprising Dll1, Dll3 and Mesp2, and differential involvement of Psen1 are essential for rostrocaudal patterning of somites. Development 130, 4259-68. Takahashi Y., Koizumi K., Takagi A., Kitajima S., Inoue T., Koseki H. and Saga Y. (2000) Mesp2 initiates somite segmentation through the Notch signalling pathway. Nat. Genet. 25, 3906. Takke C., Dornseifer P., v Weizsacker E. and Campos-Ortega J.A. (1999) her4, a zebrafish homologue of the Drosophila neurogenic gene E(spl), is a target of NOTCH signalling. Development 126, 1811-21. Tamai K., Semenov M., Kato Y., Spokony R., Liu C., Katsuyama Y., Hess F., Saint-Jeannet J.P. and He X. (2000) LDL-receptor-related proteins in Wnt signal transduction. Nature 407, 530-5. Tanaka M., Tamura K., Noji S., Nohno T. and Ide H. (1997) Induction of additional limb at the dorsal-ventral boundary of a chick embryo. Dev. Biol. 182, 191-203. Taneja R., Thisse B., Rijli F.M., Thisse C., Bouillet P., Dolle P. and Chambon P. (1996) The expression pattern of the mouse receptor tyrosine kinase gene MDK1 is conserved through evolution and requires Hoxa-2 for rhombomere-specific expression in mouse embryos. Dev. Biol. 177, 397-412. Tanigaki K., Nogaki F., Takahashi J., Tashiro K., Kurooka H. and Honjo T. (2001) Notch1 and Notch3 instructively restrict bFGF-responsive multipotent neural progenitor cells to an astroglial fate. Neuron 29, 45-55. Tepass U., Godt D. and Winklbauer R. (2002) Cell sorting in animal development: signalling and adhesive mechanisms in the formation of tissue boundaries. Curr. Opin. Genet. Dev. 12, 57282. 181 Thaeron C., Avaron F., Casane D., Borday V., Thisse B., Thisse C., Boulekbache H. and Laurenti P. (2000) Zebrafish evx1 is dynamically expressed during embryogenesis in subsets of interneurones, posterior gut and urogenital system. Mech. Dev. 99, 167-72. Theil T., Frain M., Gilardi-Hebenstreit P., Flenniken A., Charnay P. and Wilkinson D.G. (1998) Segmental expression of the EphA4 (Sek-1) receptor tyrosine kinase in the hindbrain is under direct transcriptional control of Krox-20. Development 125, 443-52. Thisse C., Neel H., Thisse B., Daujat S. and Piette J. (2000) The Mdm2 gene of zebrafish (Danio rerio): preferential expression during development of neural and muscular tissues, and absence of tumor formation after overexpression of its cDNA during early embryogenesis. Differentiation 66, 61-70. Timmerman L.A., Grego-Bessa J., Raya A., Bertran E., Perez-Pomares J.M., Diez J., Aranda S., Palomo S., McCormick F., Izpisua-Belmonte J.C. and de la Pompa J.L.(2004) Notch promotes epithelial-mesenchymal transition during cardiac development and oncogenic transformation. Genes Dev. 18, 99-115. Tongiorgi E., Bernhardt R.R., Zinn K. and Schachner M. (1995) Tenascin-C mRNA is expressed in cranial neural crest cells, in some placodal derivatives, and in discrete domains of the embryonic zebrafish brain. J. Neurobiol. 28, 391-407. Topczewska J.M., Topczewski J., Szostak A., Solnica-Krezel L. and Hogan B.L. (2003) Developmentally regulated expression of two members of the Nrarp family in zebrafish. Gene Expr. Patterns. 3, 169-71. Trainor P.A., Krumlauf R. (2000) Patterning the cranial neural crest: hindbrain segmentation and Hox gene plasticity. Nat. Rev. Neurosci. 1, 116-24. Trevarrow B., Marks D.L. and Kimmel C.B. (1990) Organization of hindbrain segments in the zebrafish embryo. Neuron 4, 669-79. Ungar A.R. and Calvey C.R. (2002) Zebrafish frizzled7b is expressed in prechordal mesoderm, brain and paraxial mesoderm. Mech. Dev. 118, 165-9. 182 Ungar A.R., Kelly G.M. and Moon R.T. (1995) Wnt4 affects morphogenesis when misexpressed in the zebrafish embryo. Mech. Dev. 52, 153-64. Veeman M.T., Axelrod J.D. and Moon R.T. (2003) A second canon. Functions and mechanisms of beta-catenin-independent Wnt signaling. Dev. Cell 5, 367-77. Voiculescu O., Taillebourg E., Pujades C., Kress C., Buart S., Charnay P. and SchneiderMaunoury S. (2001) Hindbrain patterning: Krox20 couples segmentation and specification of regional identity. Development 128, 4967-78. Waskiewicz A.J., Rikhof H.A. and Moens C.B. (2002) Eliminating zebrafish pbx proteins reveals a hindbrain ground state. Dev. Cell 3, 723-33. Waskiewicz A.J., Rikhof H.A., Hernandez R.E. and Moens C.B. (2001) Zebrafish Meis functions to stabilize Pbx proteins and regulate hindbrain patterning. Development 128, 4139-51. Westin J. and Lardelli M. (1997) Three novel Notch genes in zebrafish: implications for vertebrate Notch gene evolution and function. Dev. Genes Evol. 207, 51-63. Wiellette E.L. and Sive H. (2003) vhnf1 and Fgf signals synergize to specify rhombomere identity in the zebrafish hindbrain. Development 130, 3821-29. Wilkinson D. G., Bhatt S., Cook M., Boncinelli E. and Krumlauf R. (1989) Segmental expression of Hox-2 homoeobox-containing genes in the developing mouse hindbrain. Nature 341, 405-9. Wilkinson D.G., Bhatt S., Chavrier P., Bravo R. and Charnay P. (1989) Segment-specific expression of a zinc-finger gene in the developing nervous system of the mouse. Nature 337, 4614. Wilson S.W., Easter S.S. Jr. (1991) Stereotyped pathway selection by growth cones of early epiphysial neurons in the embryonic zebrafish. Development 112, 723-46 Wingate R. J. and Lumsden A. (1996) Persistence of rhombomeric organisation in the postsegmental hindbrain. Development 122, 2143-52. 183 Woo K. and Fraser S.E. (1998) Specification of the hindbrain fate in the zebrafish. Dev. Biol. 197, 283-96. Wu J.Y. and Rao Y. (1999) Fringe: defining borders by regulating the notch pathway. Curr. Opin. Neurobiol. 9, 537-43. Wu J.Y. and Rao Y. (1999) Fringe: defining borders by regulating the notch pathway. Curr. Opin. Neurobiol.9, 537-43. Xu Q., Alldus G., Holder N. and Wilkinson D.G. (1995) Expression of truncated Sek-1 receptor tyrosine kinase disrupts the segmental restriction of gene expression in the Xenopus and zebrafish hindbrain. Development 121, 4005-16. Xu Q., Mellitzer G., Robinson V. and Wilkinson D.G. (1999) In vivo cell sorting in complementary segmental domains mediated by Eph receptors and ephrins. Nature 399, 267-71. Yanagawa S., van Leeuwen F., Wodarz A., Klingensmith J. and Nusse R. (1995) The dishevelled protein is modified by wingless signaling in Drosophila. Genes Dev. 9, 1087-97. Yasuhiko Y., Haraguchi S., Kitajima S., Takahashi Y., Kanno J. and Saga Y. (2006) Tbx6mediated Notch signaling controls somite-specific Mesp2 expression. Proc. Natl. Acad. Sci. U S A 103, 3651-6. Yoon K., Nery S., Rutlin M.L., Radtke F., Fishell G. and Gaiano N. (2004) Fibroblast growth factor receptor signaling promotes radial glial identity and interacts with Notch1 signaling in telencephalic progenitors. J. Neurosci. 24, 9497-506. Yoshida M. and Colman D.R. (2000) Glial-defined rhombomere boundaries in developing Xenopus hindbrain. J. Comp. Neurol. 424, 47-57. Zecchin E., Conigliaro A., Tiso N., Argenton F. and Bortolussi M. (2005) Expression analysis of jagged genes in zebrafish embryos. Dev. Dyn. 233, 638-45. Zerucha T. and Prince V.E. (2001) Cloning and developmental expression of a zebrafish meis2 homeobox gene. Mech. Dev. 102, 247-50. 184 Zhang C., Li Q. and Jiang Y.J. (2007b) Zebrafish Mib and Mib2 are mutual E3 ubiquitin ligase with common and specific Delta substrates. J.Mol.Biol. 366, 1115-28. Zhang C., Li Q., Lim C.H., Qiu X. and Jiang Y.J. (2007a) The characterization of zebrafish antimorphic mib alleles reveals that Mib and Mind bomb-2 (Mib2) function redundantly. Dev. Biol. 305, 14-27. Zhang N. and Gridley T. (1998) Defects in somite formation in lunatic fringe-deficient mice. Nature 394, 374-7. Zhao Q., Dobbs-McAuliffe B. and Linney E. (2005) Expression of cyp26b1 during zebrafish early development. Gene Expr. Patterns. 5, 363-9. Zigmond R.E. and Sun Y. (1997) Regulation of neuropeptide expression in sympathetic neurons. Paracrine and retrograde influences. Ann. N. Y. Acad. Sci. 814, 181-97. 185 [...]... Wilkinson, D.G (2004) Notch activation regulates the segregation and differentiation of rhombomere boundary cells in the zebrafish hindbrain Dev Cell 6, 539-50 Zhang C., Li Q., Lim C.H., Qiu X and Jiang Y.J (2007) The characterization of zebrafish antimorphic mib alleles reveals that Mib and Mind bomb-2 (Mib2) function redundantly Dev Biol 305, 14-27 xiii Summary In vertebrates, the hindbrain is subdivided... (Kanki and Ho, 1997) Loss of cdx1a and cdx4 results in the failure of the development of spinal cord together with the posterior expansion of hindbrain territory (Shimizu et al., 2006; Skromne et al., 2007) Despite the expansion of r7/r8 region, the native anterior hindbrain appeared to be intact More interestingly, the expanded hindbrain is organized into segmental units and is arranged in a mirror-image... val expression is expanded All these results support a posteriorizing role for RA (Begemann et al., 2001; Grandel et al., 2002) However, neither the concentration of RA nor the localization of its synthesis is critical for the proper pattern of hindbrain (Maves and Kimmel, 2005) Moreover, the duration of RA exposure is also not critical for the generation of nested domains of RA-responsive gene expression... exogenous RA Therefore, it is believed that the RA responsiveness along the anterior-posterior axis of hindbrain is regulated primarily by the dynamic expression of RA-degrading enzymes (Hernandez et al., 2007) In addition to the Hox gene expression, RA signaling is also required for the expression of vHnf1 in the posterior hindbrain (Hernandez et al., 2004), which in turn acts as a repressor to regulate... homeodomain transcription factor Lmx1b is suggested to be essential for both the initiation of Fgf8 expression and the maintenance of several other genes, such as Wnt, En1, Pax2 and Gbx2 (Guo et al., 2007) Similar results are attained from zebrafish and chick, indicating that Lmx1b is indispensable for the initiation and maintenance of the induction activity of the isthmic organizer during MHB development

Ngày đăng: 14/09/2015, 12:42

TÀI LIỆU CÙNG NGƯỜI DÙNG

  • Đang cập nhật ...

TÀI LIỆU LIÊN QUAN

w