1 ng lc hc ca dt nt chng ca ti trng phc v cho vit cu Dynamic analysis of a cracked double beam subjected to moving vehicle and its application for crack detection NXB H. : , 2014 59 tr. + n Anh i h Lu thut; : 60520101 ng dn: TS. Nguyn Vit Khoa o v: 2014 Keywords: c k thut; ng lc hc; D; t cu Content Kt cu dt quan trng trong k thuc bi ng. Kt cu dc u t cu d v kt cu dm t nhiu hn chu c v h t [4], d [1] [8, 9]u v ng bc ca hai tm m nht [4] kt vi nhau bi, chu ti tr b c nghim giu kin ti tr u v h d [1], mu dao ng t do ca h n ti tri ti tr cu v ng ca h t vi nhau bi [8, 9], chu ti trng ng cng ca dm M. [10] ng dc trc ca h thng hai dm const vi nhau b gii h ng, thit hai d cng gi ng nghip [3] ng bc ca h d i gi thit hai d cng gi gii h vy, u ch do s ging . , . . , , , . , u h d . hai d. b . 2 c n ng ca vt n ng ca h d dng bi i liu dang ca h dm nhn v t nt References [1] Z. Oniszczuk, Free transverse vibrations of elastically connected simply supported double-beams complex system, Journal of Sound and Vibration (232) (2000) 387403. [2] Y.H. Chen, J.T. Sheu, Beam on visco elastic foundation and layered beam, Journal of Engineering Mechanics 121(1995), 340344. [3] H.V. Vu, A.M. Ordonez, B.H. Karnopp, Vibration of a double-beam system, Journal of Sound and Vibration (229) (2000) 807822. [4] Z. Oniszczuk, Forced transverse vibrations of an elastically connected complex rectangular simply supported double-plate system, Journal of Sound and Vibration (270) (2004) 9971011. [5] Seelig JM, Hoppmann II WH. Impact on an elastically connected double-beam system. ASME, Journal of Applied Mechanics 1964; 31: 6216. [6] Rao SS. Natural vibrations of systems of elastically connected Timoshenko beams. Journal of the Acoustical Society of America 1974; 55:12327. [7] M. Shamalta, A.V. Metrikine, Analytical study of the dynamic response of an embedded railway track to a moving load, Archive of Applied Mechanics (73) (2003) 131146. [8] Z. Oniszczuk, Transverse vibrations of elastically connected double-string complex system—part I: free vibrations, Journal of Sound and Vibration (232) (2000) 355366. [9] Z. Oniszczuk, Transverse vibrations of elastically connected double-string complex system—part II: forced vibrations, Journal of Sound and Vibration (232) (2000) 367386. Longitudenal vibrations of a double-rod system coupled by springs and dampers, Journal of Sound and Vibration (276) (2004) 419430. [11] G. R. Liu and S. S. Quek, The Finite Element Method: A Practical Course. Linacre House, Jordan Hill, Oxford OX2 8DP, 2003, Elsevier Science Ltd. [12] Nguyen V.K., Assessment and online mornitoring of the integrity of structures using vibration data processing, Lui hc Birmingham, Anh. [13] Daubechies I., Ten lectures on wavelets. CBMS-NSF Conference series, 61. Philadelphia, PA: SISAM, 1992. [14] Khoa Viet Nguyen, Hai Thanh Tran, Mai Van Cao, Dynamic analysis of a cracked double beam subjected to a moving load using finite element analysis. Hi ngh quc gia v hc vt rn bin dng ln th [15] Qian G. L., Gu S. N. and Jiang J. S., The Dynamic Behaviour and Crack Detection of a Beam with a Crack. Journal of Sound and Vibration 1990,Vol.138 (2), 233243. [16] Verboven P., Parloo E., Guillaume P. and Overmeire M. V., Autonomous Structural Health Monitoring – Part I: Modal Parameter Estimation and Tracking. Mechanical Systems and Signal Processing 2002, Vol. 16(4), 637-657. [17] Verboven P., Parloo E., Guillaume P. and Overmeire M. V., Autonomous Structural Health Monitoring – Part II: Vibration-based In-operation Damage Assessement. Mechanical Systems and Signal Processing 2002, Vol. 16(4), 659-675. [18] Newmark, N.M. "A Method of Computation for Structural Dynamics" ASCE Journal of Engineering Mechanics Division, Vol 85. No EM3, pp. 67-94, 1959. . ng lc hc ca dt nt chng ca ti trng phc v cho vit cu Dynamic analysis of a cracked double beam subjected to moving vehicle. "A Method of Computation for Structural Dynamics" ASCE Journal of Engineering Mechanics Division, Vol 85. No EM3, pp. 67-94, 1959.