DO DISOVED _ OXYGEN1.1 Định nghĩa DO: DO của một nguồn nước là thông số biểu diễn hàm lượng oxygen hòa tan trong nguồn nước đó và thường được đo bằng lượng oxygen có trong một đơn vị th
Trang 1Mục lục
1 DO (DISOVED _ OXYGEN) 2
1.1 Định nghĩa DO: 2
1.2 Vai trò của DO: 2
1.3 Nguồn gốc của DO 2
1.4 Các yếu tố ảnh hưởng đến DO: 3
1.5 Cách xác định DO: 5
2 BOD (BIOCHEMICAL _ OXYGEN DEMAND) 9
2.1 Định nghĩa: 9
2.2 Nguồn gốc của các chất hữu có chủ yếu 9
2.2 Ý nghĩa của chỉ số BOD 9
2.3 Diễn biến của BOD theo thời gian: 10
2.4 Cách xác định BOD 5 12
TÀI LIỆU THAM KHẢO 15
Trang 21 DO (DISOVED _ OXYGEN)
1.1 Định nghĩa DO:
DO của một nguồn nước là thông số biểu diễn hàm lượng oxygen hòa tan trong nguồn nước đó và thường được đo bằng lượng oxygen có trong một đơn vị thể tích(mg/l)
1.2 Vai trò của DO:
Vì oxygen là nguyên tố không thể thiếu đôí với các loài sinh vật nên lượng oxygen hòa tan trong nước là một thông số quan trọng để đánh giá “sưc khỏe” của nguồn nước, oxygen cần cho quá trình hô hấp của các loài thực vật ,động vật sống
ở dưới nước Vi sinh vật cần oxygen để oxy hóa chất hữu cơ tổng hợp nên sinh khối cho cơ thể quá trinh phân hủy chất hữu cơ trong nước có vai trò rất lớn của oxygen, oxygen giúp quá trình phân hủy các chất hữu cơ trong nước một cách nhanh chóng mà không gây ra sự ô nhiễm, ngược lại quá trình phân hủy các chất hữu cơ không có sự tham gia của oxigen còn gọi là quá trình phân hủy yếm khí sẽ gây ra các khí như hidrosulfua, ammoniac, metan…gây ô nhiễm cho không khí ,
do vậy người ta thường sử dụng thông số DO để đánh giá tình trạng “sức khỏe” của nguồn nước
Nguồn nước có hàm lượng oxygen hòa tan cao thì ít khả năng gây ô nhiễm bằng nguồn nước có DO thấp Ở nhiệt độ thường độ hòa tan tới hạn của oxygen vào nước là vào khoảng 8mg/l DO giảm xuống khoảng 4-5mg/l thì số lượng sinh vật trong nước giảm mạnh Nên lượng DO trong nước giảm xuống đến 0 thì trong nước chỉ còn quá trình phân hủy yếm khí nước sẽ trở nên đen và có mùi khó chịu
1.3 Nguồn gốc của DO
Nguồn gốc chủ yếu của DO là sự hòa tan của oxygen từ mặt thoáng, các phản ứng hóa học từ các sản phẩm phân hủy và thải bỏ
Trang 3Hình 1: Nguồn gốc chủ yếu của DO
1.4 Các yếu tố ảnh hưởng đến DO:
Oxygen là chất ít hòa tan trong nước không tác dụng với nước về măt hóa học Độ hòa tan của nó tuân theo định luật henry tức phụ thuộc vào áp suất riêng phần của oxygen khí quyển, nghĩa là lượng oxygen trong không khí càng cao thì khả năng hòa tan của nó vào trong nước càng lớn, và DO của nguồn nước càng cao
Hinh2:DO: phụ thuộc vào áp suât riêng phần của nó
Trang 4 Lượng oxygen hòa tan phụ thuộc vào nhiệt độ của nguồn nước, nhiệt độ của nguồn nước càng lớn thi khả năng hòa tan oxygen càng kém và DO của nguồn nước càng nhỏ ngược lại nhiệt độ của nguồn nước càng thấp thì khả năng hòa tan của oxygen càng tốt DO của nguồn nước càng cao
Hình 3: DO giảm theo nhiệt độ
Lượng oxygen hòa tan trong nước phụ thuộc vào đặc tính hóa học của nguồn nước như thành phần hóa học, các yếu tố thủy sinh vi sinh vật trong nước Nguồn nước chúa nhiêu chất hữu cơ và nhiều muối hòa tan thì DO nhỏ, nguồn nước có nhiều thực vật sinh sống thì lượng oxygen hòa tan cao và DO lớn
Hàm lượng DO bão hòa
Nhiệt độ
DO bão hòa Nước ngọt Nước biển
10 10,9 9,0
20 8,8 7,4
30 7,5 6,1
40 6,6 5,0
Hình 4: DO phụ thuộc vào nguồn nước và nhiệt độ
Trang 5 Ngoài ra lượng oxygen hòa tan còn phụ thuộc vào diện tích bề mặt thoáng của nguồn nước , nguồn nước có bề mặt thoáng càng lớn thì khả năng hòa tan oxygen của nguồn nước đó càng tốt Thường nguồn nước mặt có DO cao hơn nguồn nước ngầm
Trong một nguồn nước lượng oxygen hòa tan còn thayđổi theo độ sâu, khối nước trên mặt thoáng có DO cao hơn khối nước dưới đáy
Hình 5: DO phụ thuộc vào độ sâu
1.5 Cách xác định DO:
Để xác định hàm lượng oxygen hòa tan trong nước người ta thương sử dụng phương pháp Winkler (hay còn gọi là phương pháp iot)
Cơ sở phương pháp này là dựa vào khả năng oxy hóa Mn2+ thành Mn4+ của oxygen hòa tan trong môi trường baz co thêm dung dịch Iôtdua , Mn4+ lại có khả năng oxy hóa I- thành I2 trong môi trường acid, dùng dung dịch natri thiosulfat (dung dich chuẩn gốc) chuẩn độ lượng iot sinh ra, từ đó tính được lượng oxy hòa tan trong mẫu nước
Tiến trình thực hiện như sau:
Trang 6 Lấy mẫu: Mẫu lấy phải phân tích ngay tại chỗ hoặc phải cố định oxygen ngay lúc lấy bằng cách cứ 300ml dung dịch thêm 0,7 ml dung dich H2SO4 đâm đăc, 1ml dung dịch 2g NaN3 hòa tan trong 100ml nước cất bảo quản mẫu trong điều kiện lạnh khoảng 0 - 5oC
Lấy mẫu tràn chai BOD không để bọt khí bám trên thành chai
Dùng pipette thêm lần lượt vào chai BOD 1ml Mn2+ và 1ml dung dịch kiềm iotdua, khi thêm cho đầu pipette gần đáy chai rồi rút lên từ từ cho dung dịch chảy vào Đậy nút chai sao cho không có bọt khí,đảo chai vài lân rồi để yên cho kết tủa lắng xuống bảo quản chai trong tối và mát cho đến khi phân tích (khoảng 10 phút)
Mở nút chai thêm 2ml dung dịch H2SO4 đậm đặc cho đầu pipette cắm sâu vào lớp kết tủa rồi rút dần pipette lên ,đảo chai cho kết tủa tan hết
Chuyển toàn bộ dung dịch vào erlen 500ml, tráng chai bằng một ít nước cất, chuẩn độ bằng dung dịch thiosulfat 0,2N cho đến khi dung dich chuyển sang màu vàng nhạt Thêm vài giot hồ tinh bột tiếp tục chuẩn độ cho đến mất màu
Các phản ứng hóa học xảy ra như sau:
Khi không có oxy trong mẫu nước
Mn2+ + 2 OH- →
Mn(OH)
Khi có oxy trong mẫu nước:
Mn2+ + 2OH- + ½ OH-
→ MnO2 + H2O (nâu)
Trong môi trường acid:
Trang 7 MnO2 + 2I
+4 H+ → Mn2+ + I2 + 2 H2O
Chuẩn độ I2 bằng Na2S2O3 , (chỉ thị hồ tinh bột ):
I2 + S2O3
2─
→ S4O3
2─
+ 2 I
-Công thức tính DO:
DO (mg/l) =
) 2 (
1000 8
4 2 2 3
2 2
BOD
BOD O
S Na O
S Na
V V
V V
N
Trong đó:
3 2
2S O
Na
N : nồng độ đương lượng gam của dung dịch Na2S2O3(N)
3 2
2S O
Na
V : thể tích dung dịch thiosulfulfat đã chuẩn(ml)
BOD
V : dung tích chai BOD (ml)
2 : tổng thể tích dung dịch Mn2+ và dung dịch iotdua
V : thể tích mẫu đem đi chuẩn độ (ml)
Trang 8 Các yếu tố ảnh hưởng đến quá trình xác định DO:
Các tác nhân oxy hóa có trong nước như Fe3+, NO3
- có thể dẫn đến sai số dương tức lượng DO xác định được lớn hơn lượng có trong nguồn nước
Tác nhân khử như Fe2+, H2S … sẽ khử I2 thành I
-gây sai số âm
Trong hai tác nhân trên tác nhân gây ảnh hưởng đáng kể nhất
là NO3
-
:
NO2
+ 2I
+ 4H+ →
2
1
I2 + NO + 2H2O Cách loại trừ là thêm azide NaN3 trước giai đọan acid hóa
NO2
+ N3
+ 2H+ → N2O + N2 + H
Giữa BOD và DO có mối quan hệ chặt chẽ với nhau (khi chất hữu cơ tăng thì khả năng hòa tan của DO bị giảm và đồng thời nhu cầu oxy sinh hóa cũng tăng theo để phân hủy hoàn toàn lượng hữu cơ này) nên khi các nhân tố tác động đến DO cũng ảnh hưởng gián tiếp tới BOD
Trang 92 BOD (BIOCHEMICAL _ OXYGEN DEMAND)
2.1 Định nghĩa:
BOD (Biochemical oxygen Demand - nhu cầu oxy sinh hoá) là lượng
oxygen vi sinh vật đã sử dụng để oxy hóa các chất hữu cơ Phương trình tổng quát của phản ứng này như sau :
Chất hữu cơ + O2 Vi khuẩn CO2 + H2O + tế bào mới + sản phẩm trung gian
2.2 Nguồn gốc của các chất hữu có chủ yếu
Nguồn gốc của các chất hữu cơ chủ yếu là các loại thực động vật chết, các nguồn xả thải vào môi trường như các nhà máy, đặc biệt là các nhà máy chế được phân thành 3 nhóm :
Các chất hữu cơ được xem như là nguồn gốc cacbon của vi sinh vật hiếu khí
Các hợp chất nitrit, amoni va các hơp chất hữu cơ có nitơ được xem như
là hợp chất có nguồn gốc dinh dưỡng của một số loài vi sinh vât đặc biệt (Nitrosomonat,Nitrobacte)
Các chất mang tinh khử như sắt hóa trị 2(Fe2+), sunfit (SO3
2
-), sunfua (S2-) bị oxy hóa bởi oxy hòa tan trong nước
2.2 Ý nghĩa của chỉ số BOD
Trong tự nhiên BOD là thông số đánh giá lượng chất hữu cơ có trong nước
có thể phân hủy được bằng con đường sinh học.Nó là một thông số nói lên chất lương của một nguồn nước tự nhiên Nguồn nước có BOD lớn điều đó chứng tỏ nước chứa nhiều chất hữu cơ vi sinh vật có thể phân hủy được bằng con đường hiếu khí Khi phân hủy các chất hữu cơ vi sinh vật chủ yếu sử dụng oxy hòa tan nên nó làm cho hàm lượng oxy hòa tan trong nước giảm mạnh, thậm chí xuống mức 0 gây ảnh hưởng và gây chết đối với các loài
Trang 10sinh vật sống trong nước, tạo điều kiên cho quá trình yếm khí xảy ra làm ô nhiếm nguồn nước
Trong kĩ thuật chỉ số BOD được dùng để:
Xác định gần đúng lượng oxy cần thiết để ổn đinh sinh học các chất hữu cơ có trong nước thải
Xác định kích thước bể xử lý
Xác định hiệu suất xử lý của một số quý trình
Xác định sự chấp thuận tuân theo những quy định cho phép xả thải
2.3 Diễn biến của BOD theo thời gian:
BOD là một tiêu chuẩn dùng để xác định mức độ nhiễm bẩn của môt nguồn nước, hay nói cách khác nó là một thông số biểu thị cho lương chất hữu cơ
có thể phân hủy sinh học trong một thời gian ngắn nào đó, tốc độ phân hủy của chúng theo thơi gian là không đều nhau
Quá trình oxid hóa các chất hữu cơ trong nước xảy theo hai giai đoạn:
Hình 6: Diễn biến của BOD theo thời gian
Giai đoạn một : Chủ yếu là oxid hóa các hợp chất hidrocacbon, quá
trình này xảy ra ở nhiệt độ 20oC và kéo dài khoảng 20 ngày:
Trang 11
CnHm + (n +
4
m
) O2 vi khuaån nCO2 +
2
m
H2O
Hình 7: Diễn biến của BOD theo thời gian
Giai đoạn 2: Oxid hóa hợp chất chứa nitrogen, thường bắt đầu từ
ngày thứ mười (có trường hợp bắt đầu từ ngày thứ năm):
2NH3 + 3O2 vi khuaån 2NO2
+ 2H+ + 2H2O
Trong 5 ngày đầu của giai đoạn này, có khoảng 60 – 70% chất hữu cơ cacbon bị phân huỷ, đến ngày thứ 20 có khoảng 95 – 99% chất hữu cơ
bị phân hủy
Trang 12Hình 8: Các mức tiêu thụ của nồng độ BOD
2.4 Cách xác định BOD 5
BOD5:Là thông số biểu thị cho lượng chất hữu cơ của nguồn bị phân hủy trong 5 ngày ủ mẫu thông qua lượng oxygen của mẫu suy giảm sau năm ngày ủ
Vì trong khoảng thời gian 5 ngày đầu có khoảng 60 – 70% chất hữu cơ bị phân hủy nên trong thưc tế người ta thường xác định BOD5 tức BOD được xác định trong năm ngày, tiêu chuẩn này đã được chuẩn hóa quốc tế và được nhiều nước sử dụng
Cách tính BOD 5 được tính như sau:
Cho một lượng nhất định mẫu nước thải vào chai phân tích BOD
Pha loãng mẫu tới thể tích trên bằng dung dịch pha loãng (có bổ sung thêm một số nguyên tố dinh dưỡng như N, P, Fe, K… và bão hòa oxygen)
Đóng chai và ủ trong tủ hoặc trong tối ở nhiệt độ 20oC trong khoảng 5 ngày
Xác định DO ban đầu và DO sau năm ngày, hiệu số của hai chỉ số này gọi là BOD5 (vì BOD5 của các mẫu chất thải điển hình thường bằng vài trăm mg/l do đó cần pha loãng mẫu để cho nồng độ oxygen cuối cùng ngày thứ năm là không âm thì kết quả thí nghiêm mới có nghĩa)
Trang 13 Biểu thức tính :
BOD5 =
P
DO
-DOo 5
mg O2/ L
Trong đó:
DOo: nồng độ oxygen hòa tan ban đầu của mẫu nước trước khi ủ
DO5: nồng độ mẫu sau năm ngày ủ
P: là hệ số pha loãng
P =
R Q
Q: thể tích nước đem phân tích
R: thể tích nước mẫu đã pha loang loãng trước khi ủ
Trong một vài trường hợp cần bổ sung thêm vi sinh vật vào nước pha loãng
để dảm bảo chắc chắn có đủ lượng vi sinh vật cần thiết cho quá trình phân hủy Trongtrường hợp đó, BOD5 được tính theo công thức:
P
F B B D
D
/ , ) (
) ( 1 2 1 2 .
Trong đó:
D : nồng độ oxygen hòa tan của mẫu nước pha loãng có cấy vikhuẩn ngay sau khi chuẩn bị mẫu xong để ủ
D2: Nồng độ oxygen hòa tan của mẫu nước thải pha loãng có cấy vi khuẩn sau năm ngày ủ ở 20oC
Trang 14B1: nồng độ oxy hịa tan của nước pha lỗng cĩ cấy vi khuẩn trước khi đem
ủ
B2: nồng độ oxygen hịa tan của nước pha lỗng cĩ cấy vi khuẩn sau khi ủ,
mg/l
F: tỉ số giữa chất lỏng bổ sung vi khuẩn trong mẫu và trong đối chứng
F = tổng thể tích mẫu nước đem phân tích và nước pha loãngthể tích mẫu nước đem phân tích
Ngồi chỉ số BOD5 cịn cĩ chỉ số BOD3 cách tính tương tự như BOD5
nhưng chỉ ủ trong 3 ngày trong điều kiện nhiệt độ 30oC.Và BOD20 là chỉ số
BOD xác định trong 20 ngày
Trang 15TÀI LIỆU THAM KHẢO
Trần Văn Nhân và Ngô Thị Nga: Giáo Trình Công Nghệ Xử Lý Nước Thải, 1999
TS Tô Thị Hiền: Hướng Dẫn Thực Tập Hóa Phân Tích 1, 2007
PGS.TS Trịnh Lê Hùng: Kĩ Thuật Xử Lí Nước Thải,2007