1. Trang chủ
  2. » Kỹ Thuật - Công Nghệ

Proceedings VCM 2012 58 điều khiển song phương của hệ thống teleoperation

7 542 2

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 7
Dung lượng 627,43 KB

Nội dung

Tuyển tập công trình Hội nghị Cơ điện tử toàn quốc lần thứ 6 429 Mã bài: 102 Điều khiển song phương của hệ thống Teleoperation sử dụng phương pháp Scattering & Virtual Damping với trễ

Trang 1

Tuyển tập công trình Hội nghị Cơ điện tử toàn quốc lần thứ 6 429

Mã bài: 102

Điều khiển song phương của hệ thống Teleoperation

sử dụng phương pháp Scattering & Virtual Damping

với trễ trên kênh truyền thông Bilateral Control of Teleoperation System Based on Scattering & Virtual Damping with Varying Time Delay

Nguyễn Xuân Thuận, Đỗ Đức Nam

Trường ĐHBK Hà Nội e-Mail: nxthuan7289@gmail.com; ddnam-ddm@mail.hut.edu.vn

Tóm tắt

Bài báo này đề xuất một phương pháp điều khiển song phương mới cho hệ Teleoperation SMSS với một robot Master và một robot Slave Trong thuật giải này, chúng tôi đề xuất kết hợp điều khiển PD với bộ thông

số Scattering và Virtual Damping Việc sử dụng phương pháp Lyapunov đã chỉ ra sự ổn định toàn cục của hệ thống điều khiển đã đề xuất Kết quả nhận được của phương pháp đã cải tiến được tính đồng nhất về vị trí và lực tương tác ở cả hai phía của hệ thống Teleoeration Kết quả mô phỏng đã cho thấy tính hiệu quả của phương pháp đề xuất này

Abstract:

This paper proposes a new bilateral control method of SMSS Teleoperation system with one Master and one Slave robot In this strategy, we propose a combination control method between PD and Scattering and Virtual Damping parameters Using Lyapunov technique, we can achieve the global stability of the control law The achivement results of the proposed method are shown with the transparency improvement such as position and force between both sides of the Teleoperation system The simulation results showed the effectiveness of the poropsed control law

Ký hiệu

Ký hiệu Đơn vị Ý nghĩa

,

m s

,

m q s

q  rad/s Véc tơ vận tốc góc khớp

,

m s

q q  rad/s2 Véc tơ gia tốc góc khớp

,

m s

t t Nmm Véc tơ momen đầu vào

F op

F e

N

N

Lực người điều khiển Lực phản hồi

M m , M s Ma trận khối lượng

C m , C s Ma trận Coriolis

J m , J s Ma trận Jacobi

Chữ viết tắt

SMSS: Single Master – Singgle Slave

1.Phần mở đầu

Teleoperation là một hệ thống thiết bị có sự tương

tác ở khoảng cách khác nhau tương tự như một hệ

thống “điều khiển từ xa” thường gặp trong học

thuật và môi trường kỹ thuật Trong các thiết bị

thuộc hệ thống này, Robot điều khiển từ xa (cố

định hoặc di động) được sử dụng trong nhiều lĩnh

vực khoa học kỹ thuật và cuộc sống hàng ngày

Teleoperation bao gồm một hệ thống chủ động,

gọi là “Master” và một hệ thống phụ thuộc gọi là

“Slave” Người điều khiển sử dụng một hệ thống Teleoperation để gửi các tín hiệu thông tin và yêu cầu đến hệ “Slave” thông qua hệ “Master” Căn cứ vào kênh truyền thông tin, hệ thống Teleoperation được gọi là đơn phương hoặc song phương Trong Teleoperation đơn phương, không có phản hồi nào

từ hệ “Slave” về hệ “Master”, và hệ “Slave” được thúc đẩy làm việc nhờ những tín hiệu được gửi từ

“Master”[1] Trong Teleoperation song phương, ngoài tín hiệu được gửi từ “Master” đến “Slave” thì còn có tín hiệu phản hồi ngược từ hệ “Slave” gửi về hệ “Master”, những tín hiệu phản hồi có thể

là về vị trí, vận tốc, gia tốc của robot, lực tương tác với môi trường làm việc và thậm chí là hình ảnh,

âm thanh, nhiệt độ… tại khu vực làm việc ở cả hai phía trong hệ [2], [3]

Trong các nghiên cứu trước đây, nhìn chung, các phương pháp điều khiển đã đề xuất đều tập trung vào việc nâng cao tính tương đồng về vị trí và lực phản hồi ở hai phía của hệ thống Teleoperation, như phương pháp điều khiển PD được đưa ra trong [4], [5], phương pháp điều khiển thụ động được đề xuất trong [6], điều khiển trở kháng [7], điều khiển bám [8] hay là điều khiển trở kháng bám kết hợp phương pháp Scattering [9]

Trang 2

H.1 Hệ thống Teleoperation song phương

Các phương pháp giới thiệu ở trên đều đã đạt

được một số kết quả đáng ghi nhận, cải tiến

được một số tính năng trong hệ thống, tuy nhiên

vẫn tồn tại những hạn chế cần được tiếp tục cải

thiện Trong [4], luật điều khiển đưa ra không

quá phức tạp, và quỹ đạo chuyển động của hai

robot Master và Slave trong hệ vẫn tồn tại nhiễu,

trong đề xuất này vấn đề điều khiển lực chưa

được đề cập tới, ngoài ra trên kênh truyền thông,

thời gian trễ chỉ được giả thiết là hằng số Trên

công trình [5], với việc thay đổi và cải tiến

phương pháp PD, các kết quả nhận được là khả

quan hơn, độ nhiễu của quỹ đạo chuyển động đã

được cải thiện đặc biệt khi các robot di chuyển

tự do, thời gian trễ trên kênh truyền thông là

biến thiên, tuy nhiên trong nghiên cứu này vẫn

chưa đề cập đến vấn đề điều khiển về lực Trong

một nghiên cứu gần đây hơn [8], các tác giả đã

sử dụng phương pháp Impedance Matched kết

hợp Scattering Đề xuất này đã làm giảm được

nhiễu hơn trên quỹ đạo của các robot, đã điều

khiển được lực tương tác trên các robot, tuy

nhiên, các lực trên chưa thật sự tương đồng ở hai

phía của hệ thống và thời gian trễ trên kênh

truyền thông chỉ là hằng số Với việc phân tích

kết quả của các nghiên cứu trước đó, trong nội

dung bài báo này, các tác giả đề xuất một

phương pháp điều khiển mới với việc kết hợp

giữa phương pháp điều khiển PD và Scattering,

trong đó có sử dụng hệ số giảm chấn ảo (Virtual

Damping) Trên kênh truyền thông, thời gian trễ

được dùng là thay đổi Để phân tích sự ổn định

của phương pháp điều khiển đã đề xuất cho hệ

thống Teleoperation song phương ở trên, bài báo

này đã sử dụng phương pháp ổn định của

Lyapunov để chứng minh hệ là ổn định toàn cục

Kết quả đưa ra ở phần mô phỏng trong phần

cuối của bài báo đã thể hiện được những ưu

điểm và minh chứng được tính hiệu quả của

phương pháp mà chúng tôi đề xuất

2.Nội dung chính

2.1 Động lực học hệ SMSS

Trong bài báo này, chúng ta xét một cặp robot

được bố trí hai phía của một hệ thống

Teleoperation, với thời gian trễ trên kênh truyền

thông là biến thiên Cấu trúc của hệ thống này được biểu diễn trên H.1 Giả thiết bỏ qua ảnh hưởng của ma sát, trọng lực và một số nhiễu tác động khác, phương trình động lực học của hệ Teleoperation với một robot Master và một robot Slave được mô tả như sau :

, ,

s s s s s s s

T

m m m m m m m m

s s en T v

m op

t t



Trong đó các chỉ số dưới “m” và “s” là biểu diễn tắt lần lượt cho master và slave, , n 1

m s

q qRlà các véc tơ góc khớp, , n 1

m q s R

q    là các véc tơ vận tốc góc khớp, , n 1

m q s R

q     là các véc tơ gia tốc góc khớp , n1

m s R

t t   là các véc tơ mô men đầu vào, F opR n1 véc tơ lực của người điều khiển tác động vào robot Master

1

n e

FR là véc tơ lực phản hồi từ môi trường tới robot Slave, , n n

m s

M MR là các ma trận momen quán tính khối lượng thay thế xác định dương và đối xứng, , n 1

m m s s

C q C q  R là các véc

tơ mô men Coriolis và hướng tâm,

m s

J JR là các ma trận Jacobian

Gọi z i với im s, là tọa độ vị trí khâu tác động cuối của robot biểu diễn trong miền không gian làm việc, z i có mối quan hệ với q i trong miền không gian biến khớp và được biểu diễn như dưới đây :

  ( ) ( ),       ,

ztJ q q tim s (2)

Với một vài phép biến đổi, ta thu được hệ động lực học của hệ thống Teleoperation biểu diễn trong miền không gian làm việc như sau:

' '

, ,

t t





Với :

1

T

k J k M k k

M   J

(4)

Trang 3

Tuyển tập công trình Hội nghị Cơ điện tử toàn quốc lần thứ 6 431

Mã bài: 102

T

(5)

(6)

lực phản hồi từ môi trường F elà bị giới hạn

Giả thiết 2 [12] Người tác động và môi trường

có thể được mô hình như những hệ thống thụ

động tương ứng

Với giả thiết này năng lượng của người tác động

được mô tả như sau:

0

t

T

và môi trường từ xa được mô tả như sau:

0

t

T

(8) Trong đó 2 1

,

m s

z zR  là các vectơ đầu vào của

người tác động và môi trường tương ứng

trận quán tính đối xứng, xác định dương và tồn

tại các hằng số dươngm m thỏa mãn: i1, i2

0 m I i1 M i(q i) m I i2 , im s,

C q q q s( s, s) s bị giới hạn bởi các hằng số

dương c m,c s thỏa mãn:

C q q q i( i, i) ic q i(i), im s,

( , )

s s s

C q q xác định được ma trận

( , )

i i i

N q q  M q qi( ,ii) 2 C q q i( ,ii),im s, , thỏa

mãn :

z N q q z T i( ,ii) 0,im s,

Trong đó: zR n1là véctơ bất kì

đối xứng, các mà trận M qi( ), ( , )i C q qi  xác định i

dương và tồn tại các hằng số dương m m i1, i2,c i

thỏa mãn :

0 m I iM i(q i) m I i

i i i

C c zim s

định được ma trận :

Ni(q q i,i) Mi(q q i,i)  2C q qi( i,i)

thỏa mãn : z N q q z Ti( ,ii) 0,im s,

trong đó: zR n1là véctơ bất kì

2.2 Đối tượng điều khiển

Mục tiêu chính của hệ Teleoperation trên quan điểm về lý thuyết điều khiển là phải đảm bảo được tính ổn định, đồng nhất ở cả hai phía robot của hệ Do đó chúng ta mong muốn thiết kế một phương án điều khiển mới để đạt được các mục tiêu và đối tượng điều khiển sau đây:

Đối tượng 1: Hệ thống Teleoperation với 2 kênh

truyền thông là ổn định với vị trí, vận tốc của các robot Master/Slave bị giới hạn

Đối tượng 2: Trong miền không gian làm việc,

mục tiêu tương đồng về vị trí giữa hai robot Master/Slave sẽ đạt được khi :

e ti ( )  0 ast  ,im s, (9) với: e ti( ) z t i( ) z j(tT t( )),im s j, ; s m,

Đối tượng 3: Tính đồng nhất của hệ đạt được với

i ( ) i( ) 0, ,

z tz tim s

Fop( )tF e t( ) (10)

2.3 Thiết kế điều khiển

Đề xuất luật điều khiển kết hợp phương pháp

PD & Scattering Ta đặt :

0

0

ˆ ˆ

ˆ

D

T

K

K

dt

b K

z z

b

 

(11)

Ta đặt :

1 m

2

z

b

  (12)

1

2

s

b X u

b

 

(13)

1 m

2

z

b

(14)

1 s

2

s

b X b

(15) với:

um (tT t( )) u t s( ); vm (tT t( )) v t s( ) (16)

Ta rút ra được:

1

s K p X z s K D X z s

(17)

m b X s b z m

     (18) Luật điều khiển được đề xuất như sau:

' 1 ' 1

m s

s

m

s s

D z

D z

(19)

Luật điều khiển đã đề xuất được biểu diễn với sơ đồ khối dưới H.2

Trang 4

H.2 Sơ đồ khối điều khiển 2 kênh của hệ SMSS

2.3 Phân tích tính ổn định

Trong phần này ta đề cập đến việc xét tính ổn

định của luật điều khiển đã đề xuất Hệ thống

teleoperation đã cho sẽ ổn định tiệm cận với độ

trễ trên kênh truyền thông là thay đổi

Định lý 1: Hệ thống điều khiển vòng kín SMSS

Teleoperation (3) sẽ ổn định tiệm cận khi thỏa

mãn các điều kiện của Đối tượng điều khiển 1,2

Chứng minh: xét hàm Lyapunov được chọn dưới

đây :

2

0

1

2

t t

o

V z Mm z z Ms z Kd X z

F z F z dt t z t X dt

(20)

Ba biểu thức đầu trong (20) đều dương do

m s m m

M M C C    là các ma trận xác đinh dương

theo tính chất 4

Áp dụng giả thiết 2, ta cũng nhận được biểu thức

thứ 4 là dương Còn lại, xét biểu thức thứ năm :

0

0

1

t

m m s

t

m m m m s s s s

(21)

Thay điều kiện (16) vào ta được :

0

0

) 1

2

t

m m s

m m m m s s s s

(22)

Do đó ta có :

0

V 

Đạo hàm của hàm V theo thời gian, ta được :

2

)

2

env s op m m m s s

Áp dụng tính chất 5, ta có:

1

1

)

(

) (

)

m op m env s

s

v s op

F

D

F z

X

Thay biểu thức (11) vào ta được :

1

2 1

2 1

m m m

s s p

T

(24)

2

VK X z D z D z 

(25) Hàm V z bán xác định dương, có đạo hàm liên tục theo thời gian, nên áp dụng bổ để Barbalat ta

V z   0 khit   Vì vậy, hệ thống được coi là “ổn định tiệm cận.”

Bổ đề 1 : Xét hệ thống được mô tả theo hệ

phương trình (1) Với trạng thái ổn định hệ sẽ thỏa mãn Đối tượng điều khiển 3 với:

z t z t  z tz t const i m s

Ta nhận được lực phản hồi của môi trường tác động vào robot Slave như sau:

F opF env

Chứng minh: Ở trạng thái ổn định, ta có:

 

(

) )

( )





Với z ti z ti 0 Ta có:

t m1  t s1  0

(27) Mặt khác:

' 1 ' 1

s

D z

 (28)

Do đó : t mt s  0 (29) Suy ra:

o p en v

FF (30)

Trang 5

Tuyển tập công trình Hội nghị Cơ điện tử toàn quốc lần thứ 6 433

Mã bài: 102

2.4 Kết quả mô phỏng

Hai robot Master và Slave sử dụng trong quá

trình mô phỏng có cấu hình giống nhau, các

thông số hình học của hai robot sử dụng trong

điều khiển được biểu diễn trên H.3 Các kết quả

mô phỏng nhận được bằng việc sử dụng phần

mềm Matlab Simulink

H.3 Robot 2 bậc tự do dạng Scara

Và các thông số khác được biểu diễn trên B.1

B.1 Các thông số của robot

l1[m] l2[m] M1[kgm2] M2[kgm2] R[kgm2]

0.2 0.2 0.366 0.0291 0.0227

H.4 Cấu trúc bài toán điều khiển vị trí

Trong mô phỏng này, khâu cuối của robot Slave

sẽ được điều khiển từ vị trí z0  ( , x y0 0) tới

chạm với môi trường tại vị trí ze ( , x y1 1) theo

đường thẳng Tại thời điểm ban đầu khâu cuối

của 2 Robot tại điểm ( , x y0 0) được cho bởi

1, 2)

q q trong miền biến khớp và môi trường

được đặt tại ( , x y1 1)

Giá trị yset  0.06 ( ) m

Thời gian trễ của hệ thống truyền thông được giả

thiết trong 2 trường hợp như sau :

Trường hợp 1:

( ) 0.001sin(0.03 ) 0.0015 [s]

m

( ) 0.001sin(0.03 ) 0.0105 [s]

s

Trường hợp 2:

( ) 0.01sin(0.03 ) 0.015 [s]

m

( ) 0.01sin(0.03 ) 0.015 [s]

s

Các hệ số của bộ điều khiển được chọn như sau :

900 0

0 900

,

,

,

Góc khớp ban đầu của các khâu của robot:

qq  , vị trí cài đặt ban đầu :

z0=[0.28,0]T, vị trí của môi trường:

ze=[0.28,0.06]T, lực tác động của người điều khiển, và lực phản hồi từ môi trường :

F op  [F ,F ];op x op y F e [F ,F ]e x e y Trong đó : Fe y 1000(y sy set) y s

Nếuy sy set thìF  e [0 0]T Các kết quả mô phỏng cho 2 trường hợp được biều diễn trên các hình sau đây với 2 trường hợp chuyển động của các khâu trên robot:

TH 1 : Khâu tác động cuối chuyển động tự do

TH 2 : Khâu tác động cuối chuyển động có va chạm với môi trường

Từ các đồ thị ta có thể thấy với luật điều khiển được đưa ra, quỹ đạo, vận tốc của robot Master

và robot Slave bám tương đối sát nhau Kết quả

mô phỏng với 2 trường hợp với thời gian trễ khác nhau được biểu diễn trong H.5 – H.16 Trên các hình từ H.5–H.7 là trường hợp mô phỏng khi robot Slave chuyển động tự do theo robot Master với độ trễ kênh truyền thông là nhỏ Ta có thể thấy quỹ đạo và vận tốc của hai robot bám sát nhau với sai số tương đối bé Hình 4.6 biểu diễn lực tác động của người điều khiển lên robot Master và lực phản hồi của robot Slave, trong lúc chuyển động tự do và chưa tác động vào môi trường làm việc thì lực phản hồi của robot Slave là hoàn toàn bằng không, tuy nhiên khi robot Slave có sự tương tác với môi trường thì lực phản hồi này xuất hiện và có trị số bằng với trị số của lực điều khiển ở phía Master trong thời gian va chạm (xem H.7) Và khi va chạm thì vị trí và vận tốc của hai robot vẫn đảm bảo được sự đồng nhất (H.8 – H.9) Tuy nhiên trong khoảng thời gian va chạm, sai số vị trí của hai robot tăng lên do vấn đề giảm chấn trên robot Master

- Trường hợp 1:

+ Khi robot Slave chuyển đông tự do (H.5-7)

Trang 6

0 10 20 30 40 50

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

t (s)

zm zsmu

0 10 20 30 40 50 -0.2

-0.15 -0.1 -0.05 0 0.05 0.1 0.15 0.2

t (s)

zm zsmu

H.5 Vị trí của Master và Slave có trễ

0 10 20 30 40 50

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

t (s)

dzm dzsmu

0 10 20 30 40 50 -0.2

-0.15 -0.1 -0.05 0 0.05 0.1 0.15 0.2

t (s)

dzm dzsmu

H.6 Vận tốc của Master và Slave có trễ

-10

-5

0

5

10

15

t (s)

Fop Fenv

-10 -5 0 5 10 15

t (s)

Fop Fenv

H.7 Lực tác động của người và môi trường

+ Khi robot Slave va chạm môi trường(H.8-10)

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

t (s)

zm zsmu

-0.2 -0.15 -0.1 -0.05 0 0.05 0.1 0.15 0.2

t (s)

zm zsmu

va cham

H.8 Vị trí của Master và Slave có trễ

-0.1

-0.05

0

0.05

0.1

t (s)

dzm dzsmu

-0.15 -0.1 -0.05 0 0.05 0.1

t (s)

dzm dzsmu

H.9 Vận tốc của Master và Slave có trễ

-10

-5

0

5

10

15

t (s)

Fop Fenv

-10 -5 0 5 10 15

t (s)

Fop Fenv

H.10 Lực tác động của người và môi trường

- Trường hợp 2:

+ Khi robot Slave chuyển đông tự do

(H.11-13)

0 10 20 30 40 50 0

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

t (s)

zm zsmu

0 10 20 30 40 50 -0.2

-0.15 -0.1 -0.05 0 0.05 0.1 0.15 0.2

t (s)

zm zsmu

H.11 Vị trí của Master và Slave có trễ

0 10 20 30 40 50 -0.1

-0.05 0 0.05 0.1

t (s)

dzm dzsmu

-0.15 -0.1 -0.05 0 0.05 0.1

t (s)

dzm dzsmu

H.12 Vận tốc của Master và Slave có trễ

-10 -5 0 5 10 15

t (s)

Fop Fenv

-15 -10 -5 0 5 10

t (s)

Fop Fenv

H.13 Lực tác động của người và môi trường

+ Khi robot Slave va chạm môi trường(H.14-16)

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

t (s)

zm zsmu

-0.2 -0.15 -0.1 -0.05 0 0.05 0.1 0.15 0.2

t (s)

zm zsmu

va cham

H.14 Vị trí của Master và Slave có trễ

0 10 20 30 40 50 -0.1

-0.05 0 0.05 0.1

t (s)

dzm dzsmu

0 10 20 30 40 50 -0.1

-0.05 0 0.05 0.1

t (s)

dzm dzsmu

H.15 Vận tốc của Master và Slave có trễ

0 10 20 30 40 50 -10

-5 0 5 10 15

t (s)

Fop Fenv

0 10 20 30 40 50 -10

-5 0 5 10 15

t (s)

Fop Fenv

H.16 Lực tác động của người và môi trường

Trong trường hợp độ trễ lớn hơn ở trường hợp 2 (H.11–H.16), tuy quỹ đạo, vị trí của 2 robot Master và robot Slave vẫn tương tự nhau, nhưng

độ trễ giữa 2 robot lớn hơn so với trường hợp

Trang 7

Tuyển tập công trình Hội nghị Cơ điện tử toàn quốc lần thứ 6 435

Mã bài: 102

thời gian trễ là nhỏ trong trương hợp 1, dẫn đến

việc điều khiển vị trí, vận tốc, lực cũng khó hơn

Như vậy, với hai độ trễ khác nhau trong 2

trường hợp kể trên, từ kết quả mô phỏng có thể

thấy hệ thống phụ thuộc rất nhiều vào yếu tố

này Việc cải thiện điều khiển với kênh truyền

thôngcó trễ sẽ làm hệ thống ổn định hơn với

mong muốn đạt sai số hệ thống bé hơn

3 Kết luận

Trong nghiên cứu này, các tác giả đã đưa ra một

phương pháp điều khiển mới bằng việc kết hợp

giữa điều khiển PD với Scattering & Virtual

Damping đã đạt được các mục tiêu và đối tượng

điều khiển đưa ra ở phần trước Bên cạnh việc

điều khiển về quỹ đạo chuyển động và lực phản

hồi từ hai phía của hệ thống thì độ trễ trên kênh

truyền thông ở đây là thay đổi theo thời gian

Những kết quả mô phỏng đã chỉ ra tính hiệu quả

của phương pháp đưa ra Trong các nghiên cứu

sắp tới, một số vấn đề cần được phát triển đó là

tăng thời gian trễ trên kênh truyền thông, cấu

hình hai robot Master và Slave khác nhau với

việc tối ưu hóa điều khiển cho các robot sao cho

vẫn đảm bảo được tính đồng nhất ở hai phía của

hệ Teleoperation

Tài liệu tham khảo

[1] L Basanez, J Rosell, L Palomo, Emmanuel

Nuno and H Portilla: A Framework for

Robotized Teleoperated Tasks

[2] R.J Anderson and M.W Spong: Bilateral

control of Teleoperators with Time Delay

IEEE Trans on Automatic Control, Vol.43,

Issue 5, p.494-501,1989

[3] N Hogan: On position Tracking in Bilateral

Teleoperation Proc of the 2004 ACC, 1985

[4] Dongjun Lee, and Mark W Spong: Passive

Bilateral Teleoperation With Constant Time

Delay IEEE Transaction on Robotics, Vol.22,

No.2, p.269-281, 2006

[5] Toru Namerikawa: Bilateral Control with

Constant Feedback Gains for Teleoperation

with Time Varying Delay Shanghai, P.R

China, December 16-18, 2009

[6] Dongjun Lee and Mark W Spong: Passive

bilateral control of teleoperators under

constant time-delay Proc of the 16th IFAC

World Congress, Czech Republic, 2005

[7] H C Cho and J H Park: Impedance control

with variable damping for bilateral

teleoperation under time delay JSME Int

Journal, serial C, Vol 48, No.4, 2005

[8] J Park, R Cortesao, and O Khatib: Robust and

Adaptive Teleoperation for Compliant Motion

Tasks Stanford University, Robotics Group,

94305-9010 CA, USA

[9] T Namerikawa and H Kawada: Symmetric Impedence Matched Teleroperation with Postision Tracking Proc of 45th IEEE Conference on Decision and Control, p.4496 –

4501, 13rd-15th, Dec 2006

[10] H Khalil: Nonlinear systems Prentice Hall,

Upper Saddle River, NJ07458, 1996

[11] Nam D D and T Namerikawa: Four-channel Force-Reflecting Teleoperation with Impedance Control, Int Journal of Advanced

Mechatronic Systems, Vol.2, No.5/6,

pp.318-329, 2010

[12] Nam D D and T Namerikawa: Impedance Control for Force – Reflecting Teleoperation with Varying Damping under Communication Delays Proc of the 1st IFToMM International

Symposium on Robotics and Mechatrocnics (ISRM), Hanoi, Vietnam, September 21st-23rd,

2009

[13] Phạm Đăng Phước: Giáo trình robot công nghiệp NXB Khoa học

[14] Nguyễn Doãn Phước, Phan Xuân Minh, Hán Thành Trung: Lý thuyết điều khiển phi tuyến NXB Khoa học và Kỹ thuật, 2003

Nguyễn Xuân Thuận, sinh năm 1989, năm 2012,

tốt nghiệp kỹ sư chuyên ngành Cơ điện tử, trường Đại học Bách Khoa Hà Nội Hiện đang là học viên Cao học - hệ khoa học của trường Đại học Bách Khoa về chuyên ngành

Cơ điện tử Hướng nghiên cứu chính là tính toán động học, động lực học, thiết kế điều khiển và mô phỏng cho các hệ thống Robot, Cơ điện tử

Đỗ Đức Nam, sinh năm 1977, từ năm 2000 là

giảng viên tại bộ môn Cơ sở Thiết kế máy và Robot, Viện

Cơ khí, Trường Đại học Bách Khoa Hà Nội Anh nhận bằng Thạc sỹ thuộc chuyên ngành

Cơ học máy của trưởng Đại học Bách Khoa năm 2003, sau khi tốt nghiệp Thạc sỹ, từ năm 2004 đến 2005 anh làm nghiên cứu viên tại Phòng thí nghiệm về Động lực học và Điều khiển tại trường Đại học kỹ thuật Nagaoka, Nhật Bản Năm 2010, anh nhận bằng Tiến sỹ về Điều khiển Robot tại trường Đại học Kanazawa, Nhật Bản Hướng nghiên cứu chính là động lực học và điều khiển các hệ cơ điện tử và hệ thống robot điều khiển từ xa, hệ thống mobile robot; tự động hóa thiết kế các hệ thống truyền động cơ khí

Ngày đăng: 16/08/2015, 15:49

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN

w