1. Trang chủ
  2. » Khoa Học Tự Nhiên

Các phương pháp tối ưu không dựa trên đạo hàm

30 496 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 30
Dung lượng 307,24 KB

Nội dung

Các phương pháp tối ưu không dựa trên đạo hàm

Trang 1

CÁC PHƯƠNG PHÁP TỐI ƯU KHÔNG DỰA TRÊN ĐẠO HÀM

GVHD: THẦY LÊ HOÀI BẮC

Trang 2

NỘI DUNG CHÍNH

 ĐỊNH NGHĨA TỐI ƯU KHÔNG ĐẠO HÀM

 Tối ưu không đạo hàm (Derivative-free Optimization) là gì?

 Ứng dụng của tối ưu không đạo hàm

 Bốn phương pháp tối ưu không đạo hàm phổ biến

 Các đặc điểm chung của 4 phương pháp này

 CÁC PHƯƠNG PHÁP TỐI ƯU KHÔNG ĐẠO HÀM

 Giải thuật di truyền (GA)

 Phương pháp luyện thép (Simulated Annealing – SA)

 Tìm kiếm ngẫu nhiên

 Tìm kiếm xuống đồi đơn hình (Downhill simplex search)

Trang 3

1 ĐỊNH NGHĨA TỐI ƯU KHÔNG ĐẠO HÀM

Nội dung chính:

 Tối ưu không đạo hàm (Derivative-free

Optimization) là gì?

 Ứng dụng của tối ưu không đạo hàm

 Bốn phương pháp tối ưu không đạo hàm phổ biến

 Các đặc điểm chung của 4 phương pháp này

Trang 4

Tối ưu không đạo hàm (Derivative-free Optimization) là gì?

Không có thông tin về đạo hàm của hàm mục tiêu:

 Không thể tính đạo hàm của hàm mục tiêu.

 Thời gian tính toán quá dài.

Trang 5

Ứng dụng của tối ưu không đạo hàm

Trang 6

Bốn phương pháp tối ưu không đạo hàm phổ biến

 Giải thuật di truyền (Genetic Algorithm)

 Phương pháp luyện thép (Simulated Annealing – SA)

 Tìm kiếm ngẫu nhiên

 Tìm kiếm xuống đồi đơn hình (Downhill

simplex search)

Trang 7

Các đặc điểm chung của 4 phương pháp này

Không có đạo hàm (derivative freeness)

Tùy theo trực giác (intuitive guideline)

Trang 8

2 CÁC PHƯƠNG PHÁP TỐI ƯU KHÔNG ĐẠO HÀM

Nội dung chính:

 Giải thuật di truyền (GA)

 Phương pháp luyện thép (Simulated Annealing – SA)

 Tìm kiếm ngẫu nhiên

 Tìm kiếm xuống đồi đơn hình (Downhill

simplex search)

Trang 9

Giải thuật di truyền (GA)

Được đề xuất bởi John Holland trường đại học Michigan vào năm 1975

Dựa trên học thuyết tiến hóa của Darwin

GA nhanh chóng vượt ra khỏi môi trường học thuật và có nhiều ứng dụng to lớn trong thực tế

Trang 11

Thuật giải

Trang 12

Phương pháp luyện thép (Simulated Annealing – SA)

Đề xuất bởi Scott Kirkpatrick, C Daniel

Gelatt and Mario P Vecchi in 1983

Dựa trên mô phỏng quá trình luyện kim

Trang 13

Annealing schedule

Nhiệt độ giảm nhanh Nhiệt độ giảm chậm

Trang 14

Hàm sinh-generating function

Hàm sinh g(.,.) là một hàm mật độ xác suất

về sự sai khác giữa điểm hiện tại và điềm kế tiếp Đặc biệt là, Δx(=xx(=xnew -x) là giá trị ngẫu nhiên với giá trị hàm xác suất g(Δx(=xx,T), trong

đó T là nhiệt độ g(.,.) thường là một hàm độc lập nhiệt độ T

Trang 16

schedule là giảm nhiệt độ T bởi một lượng

phần trăm chắc chắn cho mỗi vòng lặp

Trang 17

Thuật toán

Bước 1: Chọn 1 điểm bắt đầu và gắn nhiệt độ cao ban

đầu T Gắn biến đếm bằng k:=1

Bước 2: Ước lượng hàm mục tiêu: E:=f(x)

Bước 3: Chọn Δx(=xx với xác suất được quyết định bới

hàm sinh g(Δx(=xx,T)

x new :=x+ΔxΔx(=xx

Bước 4: Tính Enew: =f(xnew)

Bước 5: Gắn x:=xnew và E:=Enew với xác suất quyết

định bởi hàm chấp nhận h(Δx(=xE,T), trong đó Δx(=xE:=Enew-E

Bước 6: Giảm nhiệt độ T theo annealing schadule (để

đơn giản gắn T:=ηT, η la hằng thuộc khoảng (0,1))T, ηT, η la hằng thuộc khoảng (0,1)) la hằng thuộc khoảng (0,1))

Bước 7: Tăng biến đếm k lên 1, nếu k đạt được max,

dừng vòng lặp Ngược lại quay lại bước 3.

Trang 18

Ví dụ

Tìm min của f(x)=x2

+Δx 2

Trang 19

Tìm kiếm ngẫu nhiên (Ramdom search)

Tìm kiếm trên không gian đối số của hàm mục tiêu một cách ngẫu nhiên để tìm điểm tối ưu

Được Rastrigin giới thiệu năm 1963

Có nhiều biến thể

Trang 20

Tìm kiếm ngẫu nhiên theo Matyas

Bước 1: Chọn điểm x là điểm hiện tại.

Bước 2: Cộng x với một vector ngẫu nhiên dx

và ước lượng hàm mục tiêu tai vị trí mới x+Δxdx

Bước 3: Nếu f(x+Δxdx)<f(x), gắn điểm hiện tai x

bằng x+Δxdx

Bước 4: Dừng nếu sự ước lượng đạt được nếu

chưa đạt quay lại bước 2 để tìm điểm mới

Trang 21

Quan sát

Quan sát 1: Nếu một hướng tìm kiếm có kết

quả tốt thì hướng ngược lại thường dẫn đến kết quả xấu

Quan sát 2: Nếu có một hướng tin cậy thì lần

tìm kiếm kế tiếp nên theo hướng này Mặt

khác, những thất bại theo hướng này thi những lần search sau nên giảm theo hướng này nữa

Trang 22

Tìm kiếm ngẫu nhiên cải tiến

Bước 1: Chọn điểm x là điểm hiện tại khởi tạo bias b

Bước 6: Dừng nếu sự ước lượng đạt được nếu chưa đạt

quay lại bước 2 để tìm điểm mới.

Trang 23

Tìm kiếm ngẫu nhiên cải tiến

Trang 24

Ví dụ

Tìm min của f(x)=x2

+Δx 2

Trang 25

Tìm kiếm xuống đồi đơn hình (Downhill simplex search)

Được đề xuất bởi John Nelder & Roger Mead năm 1965

Áp dụng cho các hàm mục tiêu nhiều biến

Tư tưởng dựa trên hình học:

 Kéo dài xuống mặt phẳng nghiêng.

 Thay đổi hướng khi gặp thung lũng tại góc nào

đó

 Rút lại ở những cực tiểu lận cận.

Trang 26

Các phép toán

(a) reflection;

(b) reflection và expand;

(c) contraction;

(d) shrinkage

Trang 27

Các phép toán

Trang 28

Thuật toán

Trang 29

Ví dụ

Tìm min của hàm f(x,y)= x2 +Δx y2 -2

Demo bằng C#

Trang 30

CÁM ƠN

Ngày đăng: 15/08/2015, 15:17

TỪ KHÓA LIÊN QUAN

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN

w