1. Trang chủ
  2. » Luận Văn - Báo Cáo

Luận văn trình bày một phương pháp điều khiển đối tượng phi tuyến

153 228 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 153
Dung lượng 6,62 MB

Nội dung

- 1 - - 2 - MỞ ĐẦU Những kỹ thuật điều khiển truyền thống như điều khiển Tích phân tỉ lệ(PI) hay điều khiển Vi tích phân tỉ lệ(PID) được ứng dụng thành công trong điều khiển những quá trình tuyến tính. Gần đây, điều khiển tiên đoán mô hình (MPC) cũng thực hiện thành công trong điều khiển những hệ thống tuyến tính. Tuy nhiên, khoảng 90% những quá trình sinh học và hoá học là phi tuyến cao và hầu hết chúng là những hệ MIMO.Khi hệ thống là phi tuyến và/hoặc MIMO, những kỹ thuật truyền thống trên thường mắc phải sai sót khi điều khiển những hệ thống như thế. Ngày nay, những hệ thống được dùng trong công nghiệp đòi hỏi độ tự quản cao và những kỹ thuật trên không có khả năng để đạt được điều này. Cần phải đạt được những đòi hỏi điều khiển tăng nhanh trong những hệ thống điều khiển động phức tạp dưới những thay đổi quan trọng đã làm cho việc dùng những kỹ thuật thông minh như mạng nơron, lôgic mờ và thuật giải di truyền trong những hệ thống điều khiển trở nên hấp dẫn. Những lý do chính đằng sau điều này là khả năng của chúng có thể “học” để xấp xỉ hàm và phân loại mẫu và tiềm năng của chúng trong thực thi phần cứng song song đồ sộ, phương pháp điều khiển thông minh phỏng theo quá trình xử lý thông tin không rõ ràng và ra quyết định điều khiển của con người cũng như bắt chước quá trình tiến hoá sinh học để tạo ra giải pháp tối ưu. Nói cách khác, chúng có khả năng thực thi (cả phần mềm và phần cứng) nhiều chức năng cần thiết để điều khiển hệ thống với độ tự quản cao. Sơ đồ hệ thống điều khiển được mô tả như sau: Hình i. Sơ đồ điều khiển đối tượng phi tuyến Như vậy, ở đây có hai bộ điều khiển: • Điều khiển Feedforward : là bộ điều khiển neuro-mờ cung cấp những tín hiệu điều khiển chính để lái đối tượng phi tuyến theo đúng quỹ đạo setpoint. Bộ điều khiển này là bộ điều khiển mờ ứng dụng khả năng học của mạng nơron để tinh chỉnh những thông số của nó. - 3 - • Điều khiển Feedback: bù tín hiệu, nó cung cấp những tín hiệu điều khiển hiệu chỉnh cần thiết để điều chỉnh và loại nhiễu trong những lân cận nhỏ xung quanh quỹ đạo điều khiển. Bộ điều khiển này cũng là bộ điều khiển mờ nhưng ứng dụng thuật giải di truyền để tinh chỉnh thông số của nó. Kết quả mô phỏng cho thấy sơ đồ điều khiển trên đã lái đối tượng phi tuyến đi xuyên suốt khoảng công tác của nó với độ chính xác cao. Phần sau đây sẽ đề cập đến đối tượng phi tuyến và những kỹ thuật điều khiển được thiết lập trong luận văn. Trong bối cảnh hiện thời, việc sản xuất năng lượng đối mặt với rất nhiều vấn đề khó khăn. Trong số đó, điều quan trọng nhất là: tuổi thọ của thiết bị chính tại những tổ hợp năng lượng, đầu tư tài chính không chắc chắn cho những tổ hợp mới, việc cạnh tranh giữa những nhà sản xuất năng lượng độc lập để thoả mãn đòi hỏi năng lượng của người dùng và những áp lực để đạt được những yêu cầu quản lý nghiêm ngặt để sử dụng tối đa nguồn tài nguyên thiên nhiên và tối thiểu ảnh hưởng đến môi trường. Việc vận hành của tổ hợp năng lượng nhiên liệu than (NLNLT), loại tổ hợp được dùng rộng rãi nhất cho việc sản xuất năng lượng, đã bị tác động mạnh. Đầu tiên, một NLNLT phải hổ trợ mục tiêu chính của hệ thống năng lượng là đáp ứng yêu cầu tải cho năng lượng điện ở mọi thời điểm, ở điện áp không đổi và tần số không đổi. Sau đó là việc cạnh tranh giữa tính thiết thực và yêu cầu thị trường khác đã tăng cường việc dùng NLNLT [Armor 1985]. Cuối cùng, những yêu cầu nghiêm ngặt trong việc bảo trì và kéo dài tuổi thọ của thiết bị chính và những luật giảm ảnh hưởng đến môi trường cần phải được tuân thủ. Trong đó: • Những yêu cầu vận hành chu kỳ của NLNLT trong khoảng tải rộng mặc dù chúng được thiết kế cho vận hành ở tải không đổi. Những yêu cầu biến đổi tải có thể đến từ những chiến lược kinh tế được tính toán tại những trung tâm năng lượng hay từ những dao động tải hệ thống. Vận hành theo tải tin cậy và hiệu quả sẽ đảm bảo việc thoả mãn hàng ngày, hàng tuần và theo mùa của yêu cầu năng lượng điện và những thay đổi tải ngẫu nhiên không đoán trước cho đến những giới hạn vật lý của tổ hợp. • Việc kéo dài tuổi thọ thiết bị là quan trọng vì nó tối đa việc dùng tài sản, giới hạn thời gian chết và tối thiểu những chi phí vận hành và bảo trì. Nguyên nhân chính của vòng đời ngắn của bất kỳ hệ thống nào là vận hành ứng suất cao. Trong NLNLT, những ứng suất nhiệt phụ thuộc vào những dao động áp suất và nhiệt độ hơi là đặc biệt quan trọng. Hầu hết ứng suất nghiêm trọng xảy ra trong suốt quá trình khởi động và những biến đổi tải lớn đột ngột. • Một NLNLT có hiệu suất trong khoảng 30 đến 35%, nghĩa là tốc độ nhiệt trong khoảng 11400-9800 Btu/KWh. Tốc độ nhiệt chịu ảnh hưởng bởi nhiều hệ số, chẳng hạn những điều kiện hơi, áp suất bộ ngưng tụ, nhiệt độ nước làm mát, nhiệt độ môi trường, khí áp,…Tốc độ nhiệt tăng khi làm việc tại những tải khác với tải cơ sở. Việc tiêu tốn nhiên liệu và giá cả làm cho việc cải tiến tốc độ nhiệt như là một tiêu chuẩn về mặc kinh tế. - 4 - • Việc trộn không hoàn hảo giữa không khí và nhiên liệu sẽ làm vượt quá lượng không khí để tránh việc nhiên liệu không được đốt hết, mà sẽ dẫn đến việc tạo khói đen và khí CO độc cũng như những lượng nhiên liệu dư khá nguy hiểm. Bên cạnh đó lượng không khí dư sẽ dễ hình thành những chất không mong muốn khác như sunfua dioxit, nitrogen oxit và làm giãm hiệu suất boiler do nhiệt bị tiêu phí trong khí nhiên liệu. Tấ cả những yêu cầu được đề cập ở trên đã dẫn đến việc phát triển những phương pháp điều khiển linh hoạt và toàn diện hơn. Chúng cũng cung cấp những chức năng cần thiết cho việc vận hành theo tải diện rộng chất lượng cao và đồng thời cũng thoả mãn những ràng buộc trong việc bảo quản và kéo dài tuổi thọ của thiết bị chính, giải phóng chất ô nhiễm và tiêu tốn nhiên liệu dưới những thay đổi vật lý và những điều kiện kinh tế. Do đó, ngay cả khi theo tải cũng cần xem xét việc ổn định tần số và điện áp, những hệ thống điều khiển hiệu quả hơn cũng cần được thiết kế để thoả mãn tối ưu những mục tiêu vận hành, những xung đột tổng quát để mà NLNLT có thể vận hành thành công dưới bất kỳ tình huống hoạt động nào. Bên cạnh đó, dưới những đòi hỏi của thị trường hiện thời, một phương pháp toàn bộ cho vận hành và điều khiển những tổ hợp năng lượng là rất quan trọng cho sự tồn tại của bất kỳ hệ thống điện nào. Khi được ứng dụng hoàn hảo, những hệ thống điều khiển và những thiết bị có thể tăng cường hiệu suất vận hành máy, tính ổn định và tin cậy cũng như sự sẵn sàng, vì thế làm giảm việc tiêu tốn nhiên liệu, chi phí vận hành và bảo trì mà hầu như rất tốn kém trong một tổ hợp năng lượng. Vì vậy, thật cần thiết để phát triển những hệ thống tự động hiệu quả và liên quan mật thiết đến toàn bộ chiến lược và hệ thống điều khiển của tổ hợp để giữ chúng vận hành hiệu quả và có lợi. Cũng cần lưu ý rằng việc sử dụng rất nhiều hệ thống điều khiển và thiết bị dựa trên máy tính với những dụng cụ kỹ thuật số xử lý thông tin mạnh mẽ và tin cậy hơn cho phép những nhà thiết kế tập trung nhiều hơn trên việc thực thi những ứng dụng phần mềm đáp ứng những thử thách được đề cập ở phần trên. Vì tính linh hoạt của phần mềm, và những chi phí cho việc phát triển và bảo trì có thể dễ dàng cài đặt vào những phần cứng mà nó chạy trong đó, những nổ lực lớn trong việc thiết kế và phát triển những hệ thống phần mềm toàn diện và tổng quát để dễ dàng kết hợp những ứng dụng vận hành tiện lợi( ví dụ, bảo vệ, điều khiển và tự động hoá) để tăng cường hiệu suất của những tổ hợp năng lượng [Garduno and Sanchez 1995, Garcia and Garduno 1998]. Trong luận văn này tác giả sẽ thiết kế một hệ thống điều khiển toàn bộ. Hệ thống này sẽ kết hợp giữa các lĩnh vực kỹ thuật điều khiển, kỹ thuật phần mềm và kỹ thuật quá trình. Trong đó kỹ thuật phần mềm được xem là rất quan trọng để thiết kế hệ thống điều khiển cho NLNLT - 5 - CHƯƠNG I. TỔNG QUAN 1.1 Giới thiệu về mạng nơron và logic mờ Vào cuối thập kỷ 80 công ty Addison Wesley Publishing Company đã gây xôn xao dư luận khi tung ra thị trường Neural Network (Mạng trí tuệ thần kinh) được ví như là một kỹ xảo kỹ thuật gia công các thông tin mới, nhanh và chính xác. Chúng là các máy tính bắt chước cách sống giống hệ thống thần kinh, các máy tính này làm việc khá khác biệt so với các máy tính thông thường. Nơron Network xử lý nhiều dữ liệu song song tại cùng một thời điểm, không phải là xử lý từng dữ liệu một. Chúng xử lý rất nhiều dữ liệu đầu vào cùng một lúc, củng cố tăng cường một vài cái này, thu nhỏ giảm bớt những cái khác. Đa số chúng đều phải làm theo một khuôn mẫu cho trước. Chúng tìm kiếm mẫu trong hàng loạt các thí dụ, nhận dạng mẫu, tìm kiếm các mẫu đầy đủ từ nguồn dữ liệu trong hệ thống, hoặc xây dựng lại mẫu đúng từ cái bị bóp méo. Rất nhiều các ví dụ phải làm với sự am hiểu sáng sưốt và các dữ liệu khách quan như thị giác, thính giác và các tín hiệu khác. Nhìn chung, các ví dụ chứng tỏ cách chạy này có nhiều đặc tính của con người hơn là các máy tính được lập trình sẵn. Ngày nay, trí tuệ nhân tạo đang phát triển mạnh mẽ nhằm tạo ra cơ sở xây dựng các hệ chuyên gia, hệ trợ giúp quyết định. Trí tuệ nhân tạo được xây dựng trên cơ sở mạng nơron nhân tạo và ứng dụng trong thiết kế hệ thống điều khiển thông minh mà trong đó bộ điều khiển có khả năng tư duy như bộ não của con người đang là xu hướng mới trong điều khiển tự động. Mạng nơron là sự tái tạo bằng kỹ thuật những chức năng của hệ thần kinh con người với vô số các nơron được liên kết truyền thông với nhau trong mạng. Điều khiển mờ là một phương pháp điều khiển thông minh phỏng theo quá trình xử lý thông tin không rõ ràng và ra quyết định điều khiển của con người. Phương pháp này rất thích hợp để điều khiển các đối tượng phức tạp, không xác định được mô hình toán và các đối tượng phi tuyến. Tuy nhiên, bộ điều khiển mờ thường được thiết kế bởi quan điểm, cách nhìn riêng của người thiết kế. Người thiết kế biến sự hiểu biết, kinh nghiệm của mình về quá trình cần điều khiển thành các biến ngôn ngữ và các qui tắc mờ mô tả mối quan hệ giữa chúng. Do đó công việc thiết kế thường mang nặng tính “thử sai”, khi gặp các đối tượng phức tạp người thiết kế sẽ mất rất nhiều thời gian mà kết quả có được có thể sẽ không tối ưu. Vấn đề tự chỉnh bộ điều khiển mờ là một trong những vấn đề đã được quan tâm nghiên cứu rất nhiều từ khi điều khiển mờ khẳng định được là một phương pháp hiệu quả để điều khiển các đối tượng phức tạp. Do đó để giảm đi việc tính toán thủ công và rút ngắn thời gian thiết kế,người ta kết hợp logic mờ và mạng nơron tạo ra khả năng tự chỉnh cho các tập mờ. Và hệ thống này được gọi là hệ neuro-mờ. - 6 - Hầu hết những quá trình công nghiệp là phi tuyến và biến đổi theo thời gian. Nhận dạng hệ thống phi tuyến đang trở thành một công cụ quan trọng mà có thể được dùng để cải tiến quá trình điều khiển và đạt được độ bền vững cao. Có nhiều kỹ thuật nhận dạng phi tuyến khác nhau,trong đó có nhận dạng bằng mạng nơron ,nhận dạng bằng mô hình mờ và những phương pháp dựa trên mô hình neuro-mờ đang dần được thiết lập không những trong giáo trình mà cả trong những ứng dụng công nghiệp. Mô hình neuro-mờ được xem như là một kỹ thuật hộp xám nằm giữa mạng nơron và mô hình mờ định tính. Những công cụ để xây dựng những mô hình neuro-mờ dựa trên sự kết hợp những thuật toán từ lĩnh vực mạng nơron,xác nhận đặc tính và phân tích hồi quy. Phương pháp neuro-mờ cho nhận dạng hệ thống phi tuyến có ưu điểm là cân bằng giữa sự chính xác của mạng nơron và tính diễn giải được. 1.2.Tình hình nghiên cứu mạng nơron và logic mờ trên toàn cầu: Nghiên cứu về mạng Nơron đã được quan tâm từ những năm 40 của thế kỷ 20. Khoảng những năm 90 Nơron được đặc biệt chú ý bởi khả năng ứng dụng rộng lớn của nó. Chương trình nghiên cứu về Nơron tập chung nghiên cứu ở Mỹ (50 tổ chức trong các viện nghiên cứu và trường đại học,riêng California đã có 15 tổ chức nghiên cứu). Ở Anh có 20 tổ chức,Đức (7),Nhật (7), Pháp (6), Thụy sỹ(4),Thụy điển (4),Hà lan (4),Australia (3), Ytalia (3),Canađa (3), Nga(1),Czech (1),Balan(1),Hungary(1), Hàn quốc (1),Singapor (1),Hong kong (1)v.v…Ơ Mỹ, tại bang California,Trường Đại học California San diego có Chương trình tính toán và Hệ thống Nơron của Caltech, Viện tính toán Nơron, Nhóm nghiên cứu khoa học Máy tính Nhận thức,Trung tâm nghiên cứu Ngôn ngữ,Phòng thí nghiệm Kỹ thuật Nơron,Trung tâm Sloan Sinh học Nơron Lý thuyết. Đại học California Santa Cruz có Nhóm Máy Dạy học, Nhóm Sinh học tính toán. Đại học Nam California có Phòng thí nghiệm Tính toán Nơron. Đại học Stanford có nhóm Lập trình Gen. Ở Carlsbad có Động lực học Nơron ứng dụng. Ở Moffett Field có Nhóm Kỹ thuật Nơron NASA. Bang Massachusetts, có Trung tâm Dạy học Tính toán và Sinh học tại Viện Công nghệ Massachusetts -MIT,Nhóm tính toán ở khoa Não và khoa học Nhận thức thuộc MIT,NeuoDyne Ins, Cambridge. Bang Washington có Phòng Thí nghiệm ứng dụng,Trí tuệ Tính toán thuộc Đại học Washington,Nhóm Nghiên cứu Nơron tại Phòng thí nghiệm Xử lý Thông tin. Nhóm nghiên cứu Nơron thuộc Phòng thí nghiệm Pacific Northwest tại Washington. Bang Texas có Phòng thí nghiệm Kỹ thuật Nơron R&D thuộc Đại học Texas ở Austin.Phòng thí nghiệm Tính toán Ứng dụng tại đại học Kỹ thuật Texas. Bang Pensylvania có Trung tâm Cơ sở Nơron của Nhận thức tại Carnegie Melon. - 7 - Bang Ohio có Phòng Thí nghiệm Hệ thống Nơron Nhân tạo thuộc Đại học Cincinnati. Bang New Mexico có Nhóm Tính toán Thích nghi thuộc Đại học New Mexico. Nhóm Tính toán Thích nghi Phi tuyến thuộc Phòng thí nghiệm Quốc gia Los Alamos. Bang New Jersey có Nhóm Nghiên cứu Nơron Nhân tạo ở Viện nghiên cứu NEC,Princeton. Nhóm Nhận thức,Trí tuệ và Tính toán dựa trên DNA,ở Viện nghiên cứu NEC,Princeton v.v… Anh: có Trung tâm Mạng Nơron tại trường Hoàng gia London. Trung tâm Hệ thống Nơron tại Đại học Edinburgh. Nhóm Nghe,Nhìn và Robot Đại học Cambridge. Nhóm Nghe,Nhìn và Hệ thống Thông minh Đại học Southhampton.Nhóm Nghiên cứu Trí tuệ Nhân tạo thuộc Đại học Nottingham. Nhóm nghiên cứu Hệ thống Thông minh, khoa Khoa Học Máy tính thuộc Đại học London v.v… Nhật: có Phòng Thí nghiệm Robot và Cơ -Điện tử thuộc Đại học Nagoya. Phòng thí nghiệm Okabe và Hirose thuộc Đại học Tokyo. Phòng thí nghiệm Sinh-Điện tử thuộc Đại học Nagoya.Phòng thí nghiệm Nghiên cứu Xử lý Thông tin Người ở Kyoto v.v… Đức: có Viện Tin học Nơron ở Đại học Ruhr,Bochum. Nhóm nghiên cứu Mờ và Tính toán Mềm tại Đại học Braunschweig. Nhóm Nhiên cứu Mờ và Nơron tại Đại học Công nghệ Damstardt. Nhóm Nhìn- Máy tính và Nhận dạng thuộc Đại học Bon. Trung tâm nghiên cứu Trí tuệ Nhân tạo Đức DFKI thuộc Kaiserlautern. Nhóm Nghiên cứu Nơron của GMD FIRST tại Berlin.Viện Logic, Tổ hợp và Hệ thống Suy diễn tại Đại học Karlsruhe. Pháp: có Nhóm nghiên cứu Tin-Sinh học Trường Cao cấp,Pari. Nhóm tính toán Nơron thuộc Phòng Tin học Pari Nord. Nhóm nghiên cứu Nơron ở LEIBNIZ, Grenoble. Nhóm nghiên cứu Laplace,Mô hình gần đúng trong Robot và Trí tuệ Nhân tạo ở LEIBNIZ, Grenoble. Hungary: có Nhóm Xử lý thông tin Nơron thuộc Đại học Eotvos Lorand, Budapest. 1.3.Một số công trình nghiên cứu mạng Nơron đã công bố ở nước ngoài: Đa số các nhà nghiên cứu các Hệ thống Thông minh chấp nhận rằng : Trí tuệ Tính toán (Computational Intelligence) do Hội đồng Mạng Nơron Thế giới đưa ra vào năm 1991 và Tính toán mềm (Soft computing) do Lofti A Zadeh, giáo sư đại học California Berkeley đua ra năm 1990 là đồng nghĩa và được sử dụng thay thế lẫn nhau. Trí tuệ Tính toán được chấp nhận là một thuật ngữ để biểu diễn các kỹ thuật cho việc ra quyết định dựa trên việc xử lý thông tin không chắc chắn. Về cơ bản, Trí tuệ Tính toán bao gồm Logic Mờ, Mạng Nơron , Thuật giải Di truyền, Lập luận Xác xuất,các Phương pháp Học, Lý thuyết Hỗn độn, các Hệ chuyên gia. Một điều quan trọng cần nhấn mạnh là Trí tuệ Nhân tạo không chỉ là một tập hợp các phương pháp luận cho lập luận dựa trên thông tin không chắc chắn mà là sự liên kết các phương pháp trong đó mỗi phương pháp đều có lợi thế riêng để tiến tới đạt mục tiêu chung. Bởi vậy, các thành phần của Trí tuệ Tính toán phải được xem như - 8 - các phần bổ xung cho nhau chứ không phải tương đương. Tất cả các kỹ thuật đó nhằm mục đích đưa ra một dạng “ Máy Thông minh “nào đó mà nó có thể bắt chước sự sưy nghĩ của con người trong việc ra quyết định. Động cơ chủ yếu cho việc sử dụng Trí tuệ Tính toán là khai thác khả năng xử lý thông tin không chính xác, không chắc chắn, chỉ đúng một phần và kết quả đạt được là tính dễ áp dụng,sự năng động và các giải pháp chi phí thấp cho các vấn đề phức tạp. Đây cũng là mục tiêu do giáo sư Lofti A Zadeh , Đại học California Berkeley (người sáng tạo Lý thuyết Tập Mờ 1965) đưa ra vào đầu những năm 1990 đối với sự phát triển của các Hệ Thông minh. Hai dạng của Mạng Nơron thường được sử dụng trong Kỹ thuật Robot là Mạng Hopfield và Mạng Perceptron nhiều lớp do Hopfied đa ra 1982, Kohonen 1984, Rumelhart 1986. Những mạng khác bao gồm Mạng Cạnh tranh & Hợp tác do Amari &Arbib nghiên cứu năm 1977 và Mạng Thưởng phạt do A.G.Barto&C.W.Anderson 1983. Hệ thống Robot bao gồm 3 hệ thống phụ là : Hệ thống truyền động, Hệ thống Nhận dạng và Hệ thống Điều khiển. Những vấn đề chính của Điều khiển Robot bao gồm Động học, Động lực học, Lập kế hoạch đường đi (Thiết lập quĩ đạo ), Điều khiển, Cảm biến, Lập trình và Trí tuệ (Thông minh). Mạng Nơron có thể giảm tổ hợp tính toán và giải những bài toán robot được đưa ra “yếu”. Lời giải giải tích của động học ngược làm chính xác kết quả số, trong khi lời giải Mạng Nơron nói chung không làm chính xác.Công việc phát triển Động học ngược Nơron được T.Iberall phát triển năm 1987, A.Guez năm1988. Trong Động lực học Robot Nơron , M.Kawato,Furukawa,Sưzuki phát triển năm 1987. Y.Uno &M.Isobe 1988. S.G.Tzafestas1986, M.Kawato,Y.Maeda,Y.Uno &Sưzuki 1990. Mạng Nơron sử dụng nhằm thiết lập quĩ đạo được K.Tsưtsưmi 1988, H.liu1988, R.Ecmiller 1987. Bài toán lập quĩ đạo tránh vật cản sử dụng Mạng Hopfield được H.matsưmoto& K.Tsưtsưmi phát triển. Trường hợp Robot Di động, Thiết lập quĩ đạo với Mạng Nơron được nghiên cứu bởi V.Seshadri1988.Ở đây Mạng Nơron cố gắng cực tiểu hoá độ dài đường đi. Nick Vallidis đã nghiên cứu điều khiển Hexapod di động bằng mạng Nơron , 2000. L.M.Reyneri, M.Chiaberge Khoa điện tử, Đại học Bách khoa Torino- Italy nghiên cứu phần cứng-Mạng Mờ-Nơron điều khiển Hexapod Di động, 1993-2000. Điều khiển Robot bằng Mạng Nơron được gọi là Điều khiển khớp bằng mô hình tiểu não CMAC do Albus 1975 –1979. Giáo s F.L.Lewis,Viện nghiên cứu Robot và Tự động hoá, Đại học Texas –Arlington USA đã ứng dụng CMAC để điều khiển hệ động lực phi tuyến, 1997. Nhận dạng hệ động lực phi tuyến sử dụng mạng Nơron được S.J.Jagannathan, Liên hợp Phân tích Tự động hoá, USA nghiên cứu năm 1996. Y.Pao&D.Sobasic 1987 thực hiện hệ thống điều khiển vị trí robot hai bậc tự do sử dụng Mạng Nơron Perceptron. - 9 - A.Guez sử dụng mô hình thích nghi (MRAC). W.T. Miler sử dụng kỹ thuật CMAC trong liên kết với phương pháp điều khiển mô men. R.Elsley thực hiện điều khiển Jacobi ngược,sử dụng Mạng Perceptron nhiều lớp. Mạng Nơron Được sử dụng trong cảm biến và điều khiển Robot nhiều lớp, liên tục bởi R.Esley, &Y.Pati 1988. Điều khiển thích nghi hệ động lực học phi tuyến sử dụng mạng Nơron được giáo sư A.M.Annaswamy, Phòng thí nghiệm Điều khiển thích nghi - Khoa Chế tạo Máy – Viện Công nghệ Massachusetts –MIT nghiên cứu, 1997. Ứng dụng Mạng Nơron điều khiển ngược theo vết được giáo sư K. S. Narendra, Trung tâm Khoa học Hệ thống, Đại học Yale,USA nghiên cứu, 1999. Giáo sư Vukobratovic, Trung tâm Robot, Viện Mikhailo Pupin, Nam tư (cũ ), phó chủ tịch Viện Hàn lâm Khoa học, đã nghiên cứu phân loại mô hình động lực học môi trường trên cơ sở Nơron để điều khiển robot,1998. Bộ điều khiển Mờ-Nơron để dẫn huớng Robot Di động và hộ tống đội robot được giáo sư M.M.Trivedi Khoa Kỹ thuật Điện và Máy tính, Đại học California San Diego,USA nghiên cứu,1998. Giáo sư, Viện sĩ, Vámos Tibor, nguyên Viện trưởng Viện Tin học và Tự động hoá- Hungary, - nguyên chủ tịch Hội Máy tính Neyman János (Von Neyman), nguyên chủ tịch Hội Điều khiển Tự động Quốc tế IFAC đã nghiên cứu kỹ thuật Nhận dạng –Trí tuệ Nhân tạo cho robot. Giáo sư,Viện sĩ Hyungsưck Cho, Khoa Chế tạo máy,Viện Khoa học &Công nghệ Cao cấp Hàn quốc- KAIST, Hãng Thép và Kim loại Pohang-POSCO, Viện trưởng Viện Điều khiển,Tự động hoá và Kỹ thuật Hệ thống, đã nghiên cứu điều khiển và cảm biến nano cho robot,2001. Giáo sư T.Fukuda, Khoa Kỹ thuật Vi Hệ thống,Trung tâm Hợp tác Khoa học &Công nghệ Cấp cao, Đại học Nagoya- Nhật bản, nguyên Chủ tịch Hội Robot và Tự động hóa Quốc tế, Chủ tịch Hội đồng Công nghệ Nano Quốc tế, đã nghiên cứu Mạng Mờ-Nơron -Thuật giải AND để điều khiển robot, 2000. Công nghệ Nano đang mở ra những triển vọng to lớn. Việc chế tạo ra những robot nhỏ cỡ Nano 10- 9mm đòi hỏi những nghiên cứu mới về cơ sở lý thuyết cũng như công nghệ. Giáo sư Toshio Fukuda, đặc biệt nhấn mạnh tầm quan trọng của Robot Micro-Nano trong Kỹ thuật Robot và Tự động hoá tương lai. Giáo sư,Viện sĩ G.M.Edelman,giải thưởng Nobel, Viện trưởng Viện Khoa học Nơron - USA,Chủ tịch Hội nghiên cứu Khoa học Nơron Quốc tế, đã mô phỏng Nơron hệ thống Nghe-Nhìn của loài chim để điều khiển robot,1999. Giáo sư đã khẳng định, việc nghiên cứu này đặc biệt quan trọng dưới ánh sáng của lý thuyết Não Hiện đại, nhấn mạnh tầm quan trọng của môi trường và thực nghiệm Motor- Cảm biến Nơron. Sự hiểu biết những nguyên tắc cơ bản của não sẽ có ảnh hưởng mạnh mẽ đến thiết kế Hệ thống Nhân tạo hoạt động trong thế giới thực.Chúng ta tin tưởng rằng những nghiên cứu mô hình Nơron tổng hợp sẽ tham gia một cách có ý nghĩa bởi sự thiết lập mối liên hệ trực tiếp giữa khoa học Tự nhiên và Khoa học Kỹ thuật, đưa ra tư tưởng mới trong lĩnh vực Robot và Trí tuệ Nhân tạo. - 10 - 1.4.Một số công trình nghiên cứu mạng Nơron đã công bố ở trong nước: Ở Việt nam bắt đầu nghiên cứu Nơron từ năm 1992 tại Viện Cơ học và Viện Tin học trong khuôn khổ đề tài cấp Nhà nuớc KC-02 Điều khiển thời gian thực. Hiện nay một số cơ sở đang nghiên cứu như Trung tâm Tự động hoá-Viện tin học, Khoa Công nghệ Thông tin - ĐHBK.HN, Bộ môn Điều khiển Tự động ĐHBK.HN, Học viện Bưu chính Viễn thông, Khoa Công nghệ Thông tin ĐHBK.HCM,Đại học Giao thông Vận tải, Viện Vật lý, Viện toán học, VietcomBank, Viện Năng lượng Nguyên tử, Học viện Kỹ thuật Quân sự, Đại học Quốc gia - HCM. Công tác đào tạo được triển khai, đã có những luận án Tiến sĩ (2), Thạc sĩ và buớc đầu được giảng dạy cho sinh viên. Tuy nhiên những nghiên cứu thường rải rác,chưa tập trung thành những nhóm nghiên cứu mạnh để có thể bước đầu đưa vào ứng dụng và có thể hợp tác với các tổ chức quốc tế. 1.5 Tổng quan về tình hình nghiên cứu tổ hợp năng lượng nhiên liệu than Một NLNLT cung cấp năng lượng điện là kết quả của những quá trình chuyển đổi năng lượng. Cụ thể, những chuyển đổi chính là sự đốt cháy nhiên liệu đầu vào, tạo hơi, phát triển chuyển động quay, sản xuất năng lượng điện và ngưng tụ hơi. Tất cả những chuyển đổi này tạo thành một chu trình nhiệt động lực học lớn và phụ thuộc lẫn nhau cao độ. Những chiến lược điều khiển hiện thời cho phép tạo ra năng lượng cần thiết để thoả mãn yêu cầu tải trong khi duy trì sự cân bằng giữa những quá trình chuyển đổi trong tổ hợp. Chủ yếu, chúng gắn kết ngõ ra năng lượng lưu lượng hơi của boiler với năng lượng được yêu cầu bởi tuabin-máy phát để đạt được tải điện ở mọi thời điểm. Sơ đồ điều khiển tổ hợp cấu thành lớp cao nhất của hệ thống điều khiển và nó chịu trách nhiệm cho việc điều khiển boiler-tuabin-máy phát như một đối tượng đơn. Đặc tính nổi bật của tổ hợp được quản lý thông qua những vòng điều khiển năng lượng và áp suất. Việc phát triển từ những cấu hình vòng điều khiển SISO dựa trên thuật toán điều khiển PID, những chiến lược này có thể phân loại thành ba lớp: điều khiển theo boiler, điều khiển theo tuabin và điều khiển boiler-tuabin. Sơ đồ theo boiler được dùng đầu tiên . Trong sơ đồ này, boiler sẽ chờ đợi hành động của tuabin để sản xuất năng lượng. Những van điều khiển tuabin điều chỉnh lưu lượng hơi vào trong tuabin với đối số là công suất yêu cầu. Sau đó, điều khiển boiler tương ứng với những thay đổi trong lưu lượng hơi và áp suất. Sai lệch áp suất tiết lưu so với setpoint được dùng bởi điều khiển quá trình đốt nhiên liệu để điều chỉnh lượng nhiên liệu và không khí vào trong buồng đốt, và việc tạo hơi được hiệu chỉnh theo yêu cầu của tuabin. Thuận lợi của phương pháp này là đáp ứng nhanh với thay đổi tải: tuabin là một dụng cụ hoạt động nhanh có thể đáp ứng rất nhanh với những yêu cầu tải sử dụng năng lượng nhiệt được lưu trữ trong boiler. [...]... trong điều khiển quá trình Người ta nhận thấy rằng những phương pháp lai dùng mạng nơron dang hứa hẹn nhiều triển vọng cho điều khiển những hệ thống phi tuyến và/hoặc MIMO mà không thể điều khiển thành công bằng những kỹ thuật truyền thống 2.1.Giới thiệu Những kỹ thuật điều khiển truyền thống như điều khiển Tích phân tỉ lệ(PI) hay điều khiển Vi tích phân tỉ lệ(PID) được ứng dụng thành công trong điều khiển. .. quả về hiệu suất hệ thống điều khiển Những phuơng pháp điều khiển bền vững cũng được đề nghị cho điều khiển tổ hợp Trong [Weng and Ray 1997] một chiến lược điều khiển truyền thẳnghồi tiếp được đề xuất cho điều khiển theo tải bền vững diện rộng Điều khiển truyền thẳng tối ưu những ngõ vào điều khiển, nhận những ràng buộc của chúng, dọc theo khoảng vận hành diện rộng và điều khiển hồi tiếp được dùng để... thuật điều khiển • Kiến trúc hệ thống có cấu trúc, điều này sẽ dẫn đến việc phát triển phần mềm điều khiển và tự động hoá tương ứng Từ những kết quả đạt được, có thể thấy rằng những chiến lược điều khiển phù hợp cấu thành mức điều khiển cao nhất trong NLNLT hiện thời và chúng cũng chịu trách nhiệm cho việc điều khiển boiler-tuabin-máy phát như một đối tượng đơn - 17 Kế đến, NLNLT là một quá trình. .. được kết hợp để nhận dạng và điều khiển thiết bị, vì thế hình thành cấu trúc điều khiển thích nghi Chúng ta sẽ giới thiệu vài cách cơ bản trong đó dữ liệu huấn luyện mạng nơron có thể thu được trong những công việc liên quan đến điều khiển : • Sao chép từ một bộ điều khiển hiện có: Nếu có một bộ điều khiển có thể điều khiển một thiết bị,thì thông tin yêu cầu để huấn luyện một mạng nơron có thể thu được... tình huống vận hành theo nhiều đối tượng vận hành Sơ đồ điều khiển truyền thẳnghồi tiếp hai bậc tự do được đề xuất là một mở rộng của sơ đồ điều khiển hồi tiếp SISO tuyến tính với cả hai điều khiển truyền thẳng tham chiếu và nhiễu, cho trường hợp nhiều biến phi tuyến để đạt được vận hành diện rộng Bộ xử lý điều khiển truyền thẳng được thực thi dùng những hệ thống suy luận mờ MISO, được thiết kế từ... dùng kỹ thuật học mạng nơron Đường điều khiển hồi tiếp được thực thi như một sơ đồ điều khiển nhiều vòng phân tán dựa trên bộ điều khiển PID mờ và bù tương tác Những bộ điều khiển PID mờ kết hợp những kỹ thuật điều khiển gainscheduling và multimode dùng hệ thống suy luận mờ loại Sugeno - 20 - CHƯƠNG 2 MẠNG NƠRON, LÔGIC MỜ VÀ NHỮNG ỨNG DỤNG CỦA CHÚNG TRONG ĐIỀU KHIỂN QUÁ TRÌNH Chương này sẽ thể hiện những... 1980] một cơ cấu thích nghi tham khảo mô hình được đề nghị để cung cấp những tín hiệu điều khiển tăng cường cộng vào những tín hiệu điều khiển của điều khiển vòng mở Giả sử vận hành xung quanh một điểm vận hành cố định, lý thuyết điều khiển tuyến tính được dùng để thiết kế bộ điều khiển, những thông số luật điều khiển được điều chỉnh dùng sơ đồ dựa trên Lyapunov để bảo đảm sự ổn định của vòng kín Không... khái niệm trạng thái cân bằng và tốc độ của quá trình Điều khiển quá trình là sự điều chỉnh các quá trình sinh học, vật lý và hoá học để loại bỏ những ảnh hưởng của nhiễu bên ngoài,để đảm bảo sự ổn định của quá trình và để tối ưu hiệu suất của quá trình Một vài đặc tính quan trọng của điều khiển quá trình được lập danh sách ở đây: • Xem xét điều khiển quá trình đầu tiên đòi hỏi xem xét những thay đổi... thế, phương pháp tổng quát xem xét toàn bộ hệ thống và môi trường của nó như một thực thể là quan trọng • Hầu hết hệ thống điều khiển quá trình là những hệ thống hồi tiếp trong đó thông tin được tạo bởi hệ thống được xử lý lần nữa để điều chỉnh đáp ứng của hệ thống • Cuối cùng, tính kinh tế luôn liên kết với những đối tượng hiệu suất của hệ thống điều khiển quá trình Những hệ thống điều khiển quá trình. .. những bộ điều khiển trong đó luật điều khiển dựa trên mô hình quá trình MPC là một hệ thống điều khiển trong đó bộ điều khiển xác định tiểu sử biến được thao tác mà tối ưu đối tượng hiệu suất vòng lặp mở trong khoảng thời gian kéo dài từ thời điểm hiện tại đến thời điểm hiện tại cộng với khoảng thời gian tiên đoán MPC phù hợp cho những vấn đề có một lượng lớn những biến được thao tác hay được điều khiển, . đồ điều khiển đối tượng phi tuyến Như vậy, ở đây có hai bộ điều khiển: • Điều khiển Feedforward : là bộ điều khiển neuro-mờ cung cấp những tín hiệu điều khiển chính để lái đối tượng phi tuyến. Điều khiển mờ là một phương pháp điều khiển thông minh phỏng theo quá trình xử lý thông tin không rõ ràng và ra quyết định điều khiển của con người. Phương pháp này rất thích hợp để điều khiển. thấy sơ đồ điều khiển trên đã lái đối tượng phi tuyến đi xuyên suốt khoảng công tác của nó với độ chính xác cao. Phần sau đây sẽ đề cập đến đối tượng phi tuyến và những kỹ thuật điều khiển được

Ngày đăng: 14/08/2015, 14:32

TỪ KHÓA LIÊN QUAN

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN

w