1. Trang chủ
  2. » Khoa Học Tự Nhiên

TỔNG HỢP ĐỀ THI THỬ MÔN TOÁN THPT QUỐC GIA CÓ ĐÁP ÁN CHI TIẾT

286 757 1

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 286
Dung lượng 17,67 MB

Nội dung

Nội dung sách được viết trên tinh thần đổi mới ,cách giải trình bày chi tiết, rõ ràng phù hợp theo quan điểm ra đề và chấm thi của Bộ Giáo dục và Đào tạo rất phù hợp để các em tự ôn luyện. Toán là môn khoa học trừu tượng với phạm vi ứng dụng rộng rãi trong mọi hoạt động của con người. Để học toán tốt trước hết rất cần sự tỉ mỉ, cần cù, nỗ lực phấn đấu. Bên cạnh đó phương pháp học cũng rất quan trọng, nên đi từ cái dễ và cơ bản tới cái khó hơn với một tư duy logic. Tiếp xúc một bài toán không chỉ dừng lại ở cách giải thông thường mà nên suy nghĩ, áp dụng nhiều hướng và cách giải khác nhau. Sau mỗi bài toán nên rút ra cho mình những điểm chú ý quan trọng.

BỘ GIÁO DỤC VÀ ĐÀO TẠO ĐỀ THI MINH HỌA - KỲ THI THPT QUỐC GIA NĂM 2015 Môn: TOÁN Thời gian làm bài: 180 phút. Câu 1.(2,0 điểm) Cho hàm số 2 1 . 1 x y x − = + a) Kh ả o sát s ự bi ế n thiên và v ẽ đồ th ị ( C ) c ủ a hàm s ố đ ã cho. b) Vi ế t ph ươ ng trình ti ế p tuy ế n c ủ a đồ th ị ( C ), bi ế t ti ế p đ i ể m có hoành độ 1. x = Câu 2.(1,0 điểm) a) Cho góc α thỏa mãn: π α π 2 < < và 3 sin α . 5 = Tính 2 tan α . 1 tan α A = + b) Cho s ố ph ứ c z th ỏ a mãn h ệ th ứ c: (1 ) (3 ) 2 6 . i z i z i + + − = − Tính mô đ un c ủ a z . Câu 3. ( 0,5 điểm ) Gi ả i ph ươ ng trình: 3 3 log ( 2) 1 log . x x + = − Câu 4. ( 1,0 điểm ) Gi ả i b ấ t ph ươ ng trình: 2 2 2 3( 2 2). x x x x x+ + − ≥ − − Câu 5. (1,0 đ i ể m) Tính tích phân: 2 3 1 (2 ln ) d . I x x x = + ∫ Câu 6.(1,0 điểm) Cho hình chóp S.ABC có đ áy ABC là tam giác vuông t ạ i B, AC = 2a,  o 30 , ACB = Hình chi ế u vuông góc H c ủ a đỉ nh S trên m ặ t đ áy là trung đ i ể m c ủ a c ạ nh AC và 2 . SH a = Tính theo a th ể tích kh ố i chóp S.ABC và kho ả ng cách t ừ đ i ể m C đế n m ặ t ph ẳ ng (SAB). Câu 7. (1,0 đ i ể m) Trong m ặ t ph ẳ ng v ớ i h ệ t ọ a độ Oxy , cho tam giác OAB có các đỉ nh A và B thu ộ c đườ ng th ẳ ng : 4 3 12 0 x y ∆ + − = và đ i ể m (6; 6) K là tâm đườ ng tròn bàng ti ế p góc O. G ọ i C là đ i ể m n ằ m trên ∆ sao cho AC AO = và các đ i ể m C, B n ằ m khác phía nhau so v ớ i đ i ể m A. Bi ế t đ i ể m C có hoành độ b ằ ng 24 , 5 tìm t ọ a độ c ủ a các đỉ nh A, B. Câu 8. (1,0 đ i ể m) Trong không gian v ớ i h ệ t ọ a độ Oxyz, cho hai đ i ể m (2; 0; 0) A và (1; 1; 1). B − Vi ế t ph ươ ng trình m ặ t ph ẳ ng trung tr ự c (P) c ủ a đ o ạ n th ẳ ng AB và ph ươ ng trình m ặ t c ầ u tâm O, ti ế p xúc v ớ i (P). Câu 9. (0,5 đ i ể m) Hai thí sinh A và B tham gia m ộ t bu ổ i thi v ấ n đ áp. Cán b ộ h ỏ i thi đư a cho m ỗ i thí sinh m ộ t b ộ câu h ỏ i thi g ồ m 10 câu h ỏ i khác nhau, đượ c đự ng trong 10 phong bì dán kín, có hình th ứ c gi ố ng h ệ t nhau, m ỗ i phong bì đự ng 1 câu h ỏ i; thí sinh ch ọ n 3 phong bì trong s ố đ ó để xác đị nh câu h ỏ i thi c ủ a mình. Bi ế t r ằ ng b ộ 10 câu h ỏ i thi dành cho các thí sinh là nh ư nhau, tính xác su ấ t để 3 câu h ỏ i A ch ọ n và 3 câu h ỏ i B ch ọ n là gi ố ng nhau. Câu 10. (1,0 đ i ể m) Xét s ố th ự c x. Tìm giá tr ị nh ỏ nh ấ t c ủ a bi ể u th ứ c sau: 2 2 2 3 2 2 1 1 1 3 2 3 3 3 2 3 3 3 + + = + + + − + + + + ( ) . ( ) ( ) x x P x x x x HẾT BỘ GIÁO DỤC VÀ ĐÀO TẠO ĐÁP ÁN - THANG ĐIỂM ĐỀ THI MINH HỌA - KỲ THI THPT QUỐC GIA NĂM 2015 Môn: TOÁN CÂU ĐÁP ÁN ĐIỂM Câu 1 (2,0 điểm) a) (1,0 điểm) ● Tập xác định: { } \ 1 . D = − » ● Giới hạn và tiệm cận: ( 1) lim x y + → − = − ∞ , ( 1) lim x y − → − = + ∞ ; lim lim 2. x x y y → −∞ → +∞ = = Suy ra, đồ thị hàm số có một tiệm cận đứng là đường thẳng 1 x = − và một tiệm cận ngang là đường thẳng 2. y = 0,25 ● Sự biến thiên: - Chiều biến thiên: y' = 2 3 ( 1) x + > 0 ∀ x ∈ D. Suy ra, hàm s ố đồ ng bi ế n trên m ỗ i kho ả ng ( ) ; 1 − ∞ − và ( ) 1; − + ∞ . - C ự c tr ị : Hàm s ố đ ã cho không có c ự c tr ị . 0,25 Lưu ý: Cho phép thí sinh không nêu k ết luận về cực trị của hàm số. - Bảng biến thiên: x – ∞ – 1 + ∞ y' + + y + ∞ 2 2 – ∞ 0,25 ● Đồ thị (C): 0,25 O x y −1 − 1 2 ½ b) (1,0 điểm) Tung độ 0 y của tiếp điểm là: 0 1 (1) . 2 y y = = 0,25 Suy ra h ệ s ố góc k c ủ a ti ế p tuy ế n là: 3 '(1) . 4 k y = = 0,25 Do đ ó, ph ươ ng trình c ủ a ti ế p tuy ế n là: 3 1 ( 1) ; 4 2 y x = − + 0,25 hay 3 1 . 4 4 y x = − 0,25 Câu 2 ( 1,0 điểm) a) (0,5 điểm) Ta có: 2 2 tan α 3 tan α.cos α sin α.cos α cos α. 1 tan α 5 A = = = = + (1) 0,25 2 2 2 3 16 cos α 1 sin α 1 . 5 25   = − = − =     (2) Vì α ; 2 π π   ∈     nên cos α 0. < Do đó, từ (2) suy ra 4 cos α . 5 = − (3) Thế (3) vào (1), ta được 12 . 25 A = − 0,25 b) ( 0,5 điểm ) Đặt z = a + bi , ( ,a b ∈ » ); khi đó z a bi = − . Do đó, kí hiệu ( ∗ ) là hệ thức cho trong đề bài, ta có: ( ∗ ) ⇔ (1 )( ) (3 )( ) 2 6 i a bi i a bi i + + + − − = − ⇔ (4 2 2) (6 2 ) 0 a b b i − − + − = 0,25 ⇔ { 4 2 2 0 6 2 0 a b b − − = − = ⇔ { 2 3. a b = = Do đó 2 2 | | 2 3 13. z = + = 0,25 Câu 3 ( 0,5 điểm) ● Điều kiện xác định: 0. x > (1) ● Với điều kiện đó, ký hiệu (2) là phương trình đã cho, ta có: (2) ⇔ 3 3 log ( 2) log 1 x x + + = ⇔ 3 3 log ( ( 2)) log 3 x x + = 0,25 ⇔ 2 2 3 0 x x + − = ⇔ 1 x = (do (1)). 0,25 Câu 4 (1,0 điểm) ● Điều kiện xác định: 1 3. x ≥ + (1) ● Với điều kiện đó, ký hiệu (2) là bất phương trình đã cho, ta có: (2) ⇔ 2 2 2 2 2 ( 1)( 2) 3( 2 2) x x x x x x x + − + + − ≥ − − 0,25 ⇔ ( 2)( 1) ( 2) 2( 1) x x x x x x − + ≥ − − + ⇔ ( ) ( ) ( 2) 2 ( 1) ( 2) ( 1) 0. x x x x x x − − + − + + ≤ (3) Do với mọi x thỏa mãn (1), ta có ( 2) ( 1) 0 x x x − + + > nên (3) ⇔ ( 2) 2 ( 1) x x x − ≤ + 0,50 ⇔ 2 6 4 0 x x − − ≤ ⇔ 3 13 3 13. x− ≤ ≤ + (4) K ế t h ợ p (1) và (4), ta đượ c t ậ p nghi ệ m c ủ a b ấ t ph ươ ng trình đ ã cho là: 1 3 ; 3 13 .   + +   0,25 Câu 5 (1,0 đ i ể m) Ta có: 2 2 3 1 1 2 d ln d . I x x x x = + ∫ ∫ (1) 0,25 Đặ t 2 3 1 1 2 d I x x = ∫ và 2 2 1 ln d . I x x = ∫ Ta có: 2 4 1 1 1 15 . 2 2 I x= = 0,25 2 2 2 2 2 1 1 1 1 .ln d(ln ) 2ln 2 d 2ln 2 2ln 2 1. I x x x x x x = − = − = − = − ∫ ∫ V ậ y 1 2 13 2 ln 2. 2 I I I= + = + 0,50 Câu 6 (1,0 đ i ể m) Theo gi ả thi ế t, 1 2 HA HC AC a = = = và SH ⊥ mp(ABC). Xét ∆ v. ABC, ta có:  o .cos 2 .cos 30 3 . BC AC ACB a a = = = 0,25 Do đ ó  o 2 1 1 3 . .sin .2 . 3 .sin 30 . 2 2 2 ABC S AC BC ACB a a a = = = V ậ y 3 2 . 1 1 3 6 . . 2 . . 3 3 2 6 S ABC ABC a V SH S a a= = = 0,25 Vì CA = 2HA nên d(C, (SAB)) = 2d(H, (SAB)). (1) G ọ i N là trung đ i ể m c ủ a AB, ta có HN là đườ ng trung bình c ủ a ∆ ABC. Do đ ó HN // BC. Suy ra AB ⊥ HN. L ạ i có AB ⊥ SH nên AB ⊥ mp(SHN). Do đ ó mp(SAB) ⊥ mp(SHN). Mà SN là giao tuy ế n c ủ a hai m ặ t ph ẳ ng v ừ a nêu, nên trong mp(SHN), h ạ HK ⊥ SN, ta có HK ⊥ mp(SAB). Vì v ậ y d(H, (SAB)) = HK. K ế t h ợ p v ớ i (1), suy ra d(C, (SAB)) = 2HK. (2) 0,25 Vì SH ⊥ mp(ABC) nên SH ⊥ HN. Xét ∆ v. SHN, ta có: 2 2 2 2 2 1 1 1 1 1 . 2 HK SH HN a HN = + = + Vì HN là đườ ng trung bình c ủ a ∆ ABC nên 1 3 . 2 2 a HN BC= = Do đ ó 2 2 2 2 1 1 4 11 . 2 3 6 HK a a a = + = Suy ra 66 . 11 a HK = (3) Th ế (3) vào (2), ta đượ c ( ) 2 66 , ( ) . 11 a d C SAB = 0,25 Câu 7 (1,0 đ i ể m) Trên ∆ , l ấ y đ i ể m D sao cho BD = BO và D, A n ằ m khác phía nhau so v ớ i B. G ọ i E là giao đ i ể m c ủ a các đườ ng th ẳ ng KA và OC; g ọ i F là giao đ i ể m c ủ a các đườ ng th ẳ ng KB và OD. Vì K là tâm đườ ng tròn bàng ti ế p góc O c ủ a ∆ OAB nên KE là phân giác c ủ a góc  . OAC Mà OAC là tam giác cân t ạ i A (do AO = AC, theo gt) nên suy ra KE c ũ ng là đườ ng trung tr ự c c ủ a OC. Do đ ó E là trung đ i ể m c ủ a OC và KC = KO. Xét t ươ ng t ự đố i v ớ i KF, ta c ũ ng có F là trung đ i ể m c ủ a OD và KD = KO. Suy ra ∆ CKD cân t ạ i K. Do đ ó, h ạ KH ⊥ ∆ , ta có H là trung đ i ể m c ủ a CD. Nh ư v ậ y: + A là giao c ủ a ∆ và đườ ng trung tr ự c 1 d c ủ a đ o ạ n th ẳ ng OC; (1) + B là giao c ủ a ∆ và đườ ng trung tr ự c 2 d c ủ a đ o ạ n th ẳ ng OD, v ớ i D là đ i ể m đố i x ứ ng c ủ a C qua H và H là hình chi ế u vuông góc c ủ a K trên ∆ . (2) 0,50 Vì C ∈ ∆ và có hoành độ 0 24 5 x = (gt) nên g ọ i 0 y là tung độ c ủ a C, ta có: 0 24 4. 3 12 0. 5 y + − = Suy ra 0 12 . 5 y = − T ừ đ ó, trung đ i ể m E c ủ a OC có t ọ a độ là 12 6 ; 5 5   −     và đườ ng th ẳ ng OC có ph ươ ng trình: 2 0. x y + = Suy ra ph ươ ng trình c ủ a 1 d là: 2 6 0. x y − − = Do đ ó, theo (1), t ọ a độ c ủ a A là nghi ệ m c ủ a h ệ ph ươ ng trình: { 4 3 12 0 2 6 0. x y x y + − = − − = Gi ả i h ệ trên, ta đượ c A = (3; 0). 0,25 G ọ i d là đườ ng th ẳ ng đ i qua K(6; 6) và vuông góc v ớ i ∆ , ta có ph ươ ng trình c ủ a d là: 3 4 6 0. x y − + = T ừ đ ây, do H là giao đ i ể m c ủ a ∆ và d nên t ọ a độ c ủ a H là nghi ệ m c ủ a h ệ ph ươ ng trình: { 4 3 12 0 3 4 6 0. x y x y + − = − + = Gi ả i h ệ trên, ta đượ c 6 12 ; . 5 5 H   =     Suy ra 12 36 ; . 5 5 D   = −     Do đ ó, trung đ i ể m F c ủ a OD có t ọ a độ là 6 18 ; 5 5   −     và đườ ng th ẳ ng OD có ph ươ ng trình: 3 0. x y + = Suy ra ph ươ ng trình c ủ a 2 d là: 3 12 0. x y − + = Do đ ó, theo (2), t ọ a độ c ủ a B là nghi ệ m c ủ a h ệ ph ươ ng trình: { 4 3 12 0 3 12 0. x y x y + − = − + = Gi ả i h ệ trên, ta đượ c B = (0; 4). 0,25 Câu 8 (1,0 đ i ể m) G ọ i M là trung đ i ể m c ủ a AB, ta có 3 1 1 ; ; . 2 2 2 M   = −     Vì (P) là m ặ t ph ẳ ng trung tr ự c c ủ a AB nên (P) đ i qua M và ( 1; 1; 1) AB = − −  là m ộ t vect ơ pháp tuy ế n c ủ a (P). 0,25 Suy ra, ph ươ ng trình c ủ a (P) là: 3 1 1 ( 1) ( 1) 0 2 2 2 x y z       − − + − + − + =             hay: 2 2 2 1 0. x y z − + − = 0,25 Ta có 2 2 2 | 1| 1 ( , ( )) . 2 3 2 ( 2) 2 d O P − = = + − + 0,25 Do đ ó, ph ươ ng trình m ặ t c ầ u tâm O, ti ế p xúc v ớ i (P) là: 2 2 2 1 12 x y z+ + = hay 2 2 2 12 12 12 1 0. x y z + + − = 0,25 Câu 9 (0,5 đ i ể m) Không gian m ẫ u Ω là t ậ p h ợ p g ồ m t ấ t c ả các c ặ p hai b ộ 3 câu h ỏ i, mà ở v ị trí th ứ nh ấ t c ủ a c ặ p là b ộ 3 câu h ỏ i thí sinh A ch ọ n và ở v ị trí th ứ hai c ủ a c ặ p là b ộ 3 câu h ỏ i thí sinh B ch ọ n. Vì A c ũ ng nh ư B đề u có 3 10 C cách ch ọ n 3 câu h ỏ i t ừ 10 câu h ỏ i thi nên theo quy t ắ c nhân, ta có ( ) 2 3 10 ( ) C . n Ω = 0,25 Kí hi ệ u X là bi ế n c ố “b ộ 3 câu h ỏ i A ch ọ n và b ộ 3 câu h ỏ i B ch ọ n là gi ố ng nhau”. Vì v ớ i m ỗ i cách ch ọ n 3 câu h ỏ i c ủ a A, B ch ỉ có duy nh ấ t cách ch ọ n 3 câu h ỏ i gi ố ng nh ư A nên ( ) 3 3 10 10 C .1 C . X n Ω = = Vì v ậ y ( ) ( ) 3 10 2 3 3 10 10 C 1 1 ( ) . ( ) C 120 C X n P X n Ω = = = = Ω 0,25 Câu 10 (1,0 đ i ể m) Trong m ặ t ph ẳ ng v ớ i h ệ t ọ a độ Oxy, v ớ i m ỗ i s ố th ự c x, xét các đ i ể m ( ; 1) A x x + , 3 1 ; 2 2 B   −       và 3 1 ; . 2 2 C   − −       Khi đ ó, ta có , OA OB OC P a b c = + + trong đ ó a = BC, b = CA và c = AB. 0,25 G ọ i G là tr ọ ng tâm ∆ ABC, ta có: . . . 3 . . . . . . 2 . . . a b c OA GA OB GB OC GC OA GA OB GB OC GC P a GA b GB c GC a m b m c m   = + + = + +     , trong đ ó , a b m m và c m t ươ ng ứ ng là độ dài đườ ng trung tuy ế n xu ấ t phát t ừ A, B, C c ủ a ∆ ABC. 0,25 Theo b ấ t đẳ ng th ứ c Cô si cho hai s ố th ự c không âm, ta có ( ) ( ) 2 2 2 2 2 2 2 2 2 2 2 1 . . 3 2 2 2 3 3 2 2 1 . . 2 2 3 2 3 a a m a b c a a b c a a b c = + − + + − + + ≤ = B ằ ng cách t ươ ng t ự , ta c ũ ng có: 2 2 2 . 2 3 b a b c b m + + ≤ và 2 2 2 . . 2 3 c a b c c m + + ≤ Suy ra ( ) 2 2 2 3 3 . . . . P OAGA OB GB OC GC a b c ≥ + + + + (1) 0,25 Ta có: . . . . . . . OA GA OB GB OC GC OA GA OB GB OC GC + + ≥ + +       (2) ( ) ( ) ( ) ( ) ( ) 2 2 2 2 2 2 2 2 2 . . . . . . . 4 . (3) 9 3 a b c OA GA OB GB OC GC OG GA GA OG GB GB OG GC GC OG GA GB GC GA GB GC a b c m m m + + = + + + + + = + + + + + + + = + + =                    T ừ (1), (2) và (3), suy ra 3. P ≥ H ơ n n ữ a, b ằ ng ki ể m tra tr ự c ti ế p ta th ấ y 3 P = khi x = 0. V ậ y min 3. P = 0,25 SỞ GD&ĐT HÀ NỘI ĐỀ THI THỬ TỐT NGHIỆP VÀ XÉT TUYỂN ĐẠI HỌC NĂM 2015 TRƯỜNG THPT ĐA PHÚC Môn: TOÁN Thời gian: 180 phút không kể thời gian phát đề Câu 1 (2,0điểm). Cho hàm số (1). a)Khảo sát sự biến thiên và vẽ đồ (C) của hàm số (1). b)Tìm tọa độ điểm M thuộc đồ thị (C) sao cho tiếp tuyến của (C) tại M vuông góc với đường thẳng d: x + 3y +1 = 0. Câu 2 (1,0điểm). Tìm giá trị lớn nhất và giá trị nhỏ nhất của hàm số trên đoạn . Câu 3 (1,0điểm).Giải các phương trình sau a) . b) Câu 4 (0,5điểm). Tính tích phân . Câu 5 (0,5điểm). Cho tập hợp X gồm các số tự nhiên có ba chữ số phân biệt được lập từ các chữ số 1,2,3,4,5,6. Chọn ngẫu nhiên một số tự nhiên từ tập hợp X, tính xác suất để số được chọn có tổng các chữ số bằng 8. Câu 6 (1,0điểm). Trong không gian với hệ tọa độ Oxyz cho điểm A(-1;4;6) và điểm B(-2;3;6). Viết phương trình mặt cầu (S) có tâm thuộc trục Ox và đi qua điểm A và điểm B. Tìm tọa độ các giao điểm của (S) với trục Oz. Câu 7 (1,0điểm). Cho hình chóp S.ABC có đáy ABC là tam giác đều cạnh a, mặt bên SAB là tam giác vuông cân tại đỉnh S và nằm trong mặt phẳng vuông góc với mặt phẳng đáy. Tính theo a thể tích khối chóp S.ABC và khoảng cách giữa hai đường thẳng SB và AC. Câu 8 (1,0điểm). Trong mặt phẳng với hệ tọa độ Oxy cho hình vuông ABCD. Điểm F( là trung điểm của cạnh AD. Đường thẳng EK có phương trình với điểm E là trung điểm của cạnh AB, điểm K thuộc cạnh DC và KD = 3KC. Tìm tọa độ điểm C của hình vuông ABCD biết điểm E có hoành độ nhỏ hơn 3. Câu 9 (1,0điểm). Giải hệ phương trình . Câu 10 (1,0điểm). Cho ba số thực a,b,c đôi một phân biệt và thỏa mãn các điều kiện và Tìm giá trị nhỏ nhất của biểu thức Hết SỞ GD&ĐT HÀ NỘI ĐÁP ÁN THI THỬ TỐT NGHIỆP VÀ XÉT TUYỂN ĐẠI HỌC TRƯỜNG THPT ĐA PHÚC Môn: TOÁN Thời gian: 180 phút không kể thời gian phát đề Nội dung Điểm Câu I Cho hàm số 32 1 3 yxx 2,0đ Ý a Khảo sát sự biến thiên và vẽ đồ thị hàm số 1,0đ 1.Tập xác định : D = . 2.Sự biến thiên : 2 '2yx x ; 0 '0 2 x y x       3 11 lim lim [x ( - )] = + 3 xx y x    3 11 lim lim [x ( - )] = - 3 xx y x    0,25đ Bảng biến thiên 0 2 0 0 0 4 3  Hàm số đồng biến trên các khoảng và Hàm số nghịch biến trên . Hàm số có cực đại tại 0x  và y CĐ = y(0)=0. 0,25đ 0,25đ Hàm số có cực tiểu tại 2x  và y CT = y(2)= 4 3  3.Đồ thị Giao Ox: (0;0), (3;0) Giao Oy: (0;0) '0 1yx  Đồ thị hàm số nhận I 2 (1; ) 3  làm điểm uốn và là tâm đối xứng f(x)=(1/3)x^3-x^2 -8 -6 -4 -2 2 4 6 8 -5 5 x y 0,25đ [...]... báo danh…………………… WWW.VNMATH.COM SỞ GD&ĐT BẮC NINH KÌ THI THỬ THPT QUỐC GIA TRƯỜNG THPT NGÔ GIA TỰ NĂM HỌC 2014 – 2015 Môn thi: TOÁN Thời gian làm bài: 180 phút, không kể thời gian giao đề Câu 1 (2 điểm) Cho hàm số y = x3 + (1 − 2m ) x 2 + ( 2 − m ) x + m + 2 (Cm) a Khảo sát sự biến thi n và vẽ đồ thị hàm số khi m = 2 b Tìm m để đồ thị hàm số (Cm) có cực trị đồng thời hoành độ cực tiểu nhỏ hơn 1 Câu... Q5, TP.HCM (38 322 293) Website: ttdtvh.lehongphong.edu.vn WWW.VNMATH.COM SỞ GD&ĐT HÀ TĨNH TRƯỜNG THPT ĐỒNG LỘC ĐỀ THI THỬ KÌ THI THPT QUỐC GIA LẦN I NĂM HỌC 2014 – 2015; Môn: TOÁN Thời gian làm bài: 180 phút, không kể thời gian phát đề Câu 1 (2,0 điểm) Cho hàm số y  x 3  3x  2 (1) a Khảo sát sự biến thi n và vẽ đồ thị (1) của hàm số b Tìm điểm A nằm trên trục hoành sao cho điểm A cùng với hai điểm... chữ số liền nhau trong 4 chữ số vừa lấy: có 5 cách → có 5 A74 = 5.840 = 4200 số gồm 7 chữ số khác nhau trong đó chứa bộ 123 Trong các số trên, có 4 A63 = 4.120 = 480 số có chữ số 0 đứng đầu → Có 5 A74 - 4 A63 = 3720 số phải tìm trong đó có mặt bộ 123 TH 2 : Số phải tìm có mặt bộ 321 (lập luận tương tự) Có 3720 số gồm 7 chữ số khác nhau , có mặt 321 Kết luận: có 3720.2 = 7440 số gồm 7 chữ số khác nhau... Câu 1 (4,0 điểm) Cho hàm số y  ĐỀ KSCL ÔN THI THPT QUỐC GIA LẦN 1 NĂM HỌC 2014 - 2015 MÔN: TOÁN Thời gian làm bài: 180 phút, không kể thời gian phát đề 2x 1 x 1 a) Khảo sát sự biến thi n và vẽ đồ thị  C  của hàm số đã cho b) Viết phương trình tiếp tuyến của đồ thị  C  biết tiếp tuyến vuông góc với đường thẳng có phương trình y  x  2015 Câu 2 (2,0 điểm) Giải các phương trình sau: a) 2sin 2 x... si) Ta có (a + b)(a + c) 8 8 4 b3 b+c b+a 3 + + ≥ b ( 2) Tương tự (b + c)(b + a) 8 8 4 c3 c+a c+b 3 + + ≥ c ( 3) (c + a)(c + b) 8 8 4 Cộng vế với vế các bất đẳng thức ( 1) , ( 2) , (3) suy ra điều phải chứng minh Tổng : Lưu ý: Các cách giải khác đúng cho điểm tương đương từng phần 0,25 0,25 0,25 0,25 10,00 www.VNMATH.com SỞ GD&ĐT VĨNH PHÚC Câu 1 (4,0 điểm) Cho hàm số y  ĐỀ KSCL ÔN THI THPT QUỐC GIA. .. để đồ thị hàm số (Cm) có cực trị đồng thời hoành độ cực tiểu nhỏ hơn 1 Có y ' = 3 x 2 + 2 (1 − 2m ) x + ( 2 − m ) Để hàm số có cực trị thì phương trình y’=0 có hai nghiệm phân biệt và y’ đổi dấu qua hai nghiệm đó ⇔ 3 x 2 + 2 (1 − 2m ) x + ( 2 − m ) = 0 có hai nghiệm phân biệt ⇔ ∆ ' = 4m 2 − m − 5 > 0 ⇔ m < - 1 hoặc m > 5 (1) 4 1,00 0,25 0,25 WWW.VNMATH.COM Khi đó giả sử y’=0 có hai nghiệm phân biệt... Trong gia i cầ u lông kỷ niê ̣m ngày truyề n thố ng ho ̣c sinh sinh viên có 8 người tham gia trong đó có hai ba ̣n Viê ̣t và Nam Các vâ ̣n đô ̣ng viên đươ ̣c chia làm hai bả ng A ∑ = 0.5 và B, mỗi bảng gồ m 4 người Gia sử việc chia bảng thực hiện bằng cách bốc thăm ngẫu nhiên, tính xác suất để cả hai bạn Việt và Nam nằm chung một bảng đấu 4 Gọi  là không gian... Đường thẳng AH có phương trình x  2 y  3  0 Gọi D, E lần lượt là chân đường cao kẻ từ B và C của tam giác ABC Xác định tọa độ các đỉnh của tam giác ABC, biết đường thẳng DE có phương trình x – 2 = 0 và điểm D có tung độ dương Câu 7 (2,0 điểm) Cho hình trụ có hai đáy là hai đường tròn tâm O và O / , bán kính bằng a Hai điểm A, B lần lượt nằm trên hai đường tròn tâm O và O / sao cho AB hợp với trục... v = −3 (loai) Với v = 1 ta có x = 0 ⇒ y = 1 Vậy hệ có nghiệm (x;y) = (0;1) Cho x, y, z là ba số thực thỏa mãn 5− x + 5− y + 5− z = 1 Chứng minh rằng : 25 x 25 y 25 z 5x + 5 y + 5z + + ≥ 5 x + 5 y + z 5 y + 5 z + x 5 z + 5x + y 4 0,25 1,00 WWW.VNMATH.COM Đặt 5x = a , 5y =b , 5z = c Từ giả thi t ta có : ab + bc + ca = abc a2 b2 c2 a+b+c + + ≥ Bất đẳng thức cần chứng minh có dạng : (*) a + bc b + ca... (1,0 điểm)   a Giải phương trình: cos 2 x  sin  x    0 4  b Trường THPT Đồng Lộc có 100 giáo viên, trong đó có 7 cặp vợ chồng Trường cần cử 2 giáo viên đi chuyên đề về: “Bạo lực học đường” tại Thành phố Hà Tĩnh Tính xác suất để 2 giáo viên được chọn đi tập huấn không là một cặp vợ chồng Câu 5 (1,0 điểm) Trong không gian với hệ tọa độ Oxyz,cho hình lập phương ABCD.A1 B1C1 D1 , biết A(0;0;0) . NỘI ĐỀ THI THỬ TỐT NGHIỆP VÀ XÉT TUYỂN ĐẠI HỌC NĂM 2015 TRƯỜNG THPT ĐA PHÚC Môn: TOÁN Thời gian: 180 phút không kể thời gian phát đề Câu 1 (2,0điểm). Cho hàm số (1). a)Khảo sát sự biến thi n. ĐÀO TẠO ĐỀ THI MINH HỌA - KỲ THI THPT QUỐC GIA NĂM 2015 Môn: TOÁN Thời gian làm bài: 180 phút. Câu 1.(2,0 điểm) Cho hàm số 2 1 . 1 x y x − = + a) Kh ả o sát s ự bi ế n thi n và v ẽ . ) x x P x x x x HẾT BỘ GIÁO DỤC VÀ ĐÀO TẠO ĐÁP ÁN - THANG ĐIỂM ĐỀ THI MINH HỌA - KỲ THI THPT QUỐC GIA NĂM 2015 Môn: TOÁN CÂU ĐÁP ÁN ĐIỂM Câu 1 (2,0 điểm)

Ngày đăng: 03/08/2015, 19:37

TỪ KHÓA LIÊN QUAN

w