TÀI LIỆU RẤT CẦN THIẾT CHO CÁC HS LỚP 11 VÀ 12 TRONG QUÁ TRÌNH ÔN TẬP, CŨNG NHƯ LUYỆN THI ĐH. SÁCH CHO TH LƯU HUY TƯỞNG BIÊN SOẠN RẤT HAY VÀ PHONG PHÚ
TUYỂN TẬP LƯỢNG GIÁC (ĐÁP ÁN CHI TIẾT) BIÊN SOẠN: LƯU HUY THƯỞNG Toàn bộ tài liệu của thầy ở trang: http://www.Luuhuythuong.blogspot.com HÀ N ỘI, 4/2014 HỌ VÀ TÊN: ………………………………………………………………… LỚP :…………………………………………………………………. TRƯỜNG :………………………………………………………………… GV. Lưu Huy Thưởng 0968.393.899 BỂ HỌC VÔ BỜ - CHUYÊN CẦN SẼ ĐẾN BẾN Page 1 TUYỂN TẬP LƯỢNG GIÁC Toàn bộ tài liệu luyện thi đại học môn toán của thầy Lưu Huy Thưởng: http://www.Luuhuythuong.blogspot.com HT 1.Giải các phương trình: 1) 2 2 cos 3 cos 0 x x + = 2) 2 2 sin sin 2 2 cos 2 x x x + + = 3) 2 2 3 sin sin 2 cos 3 x x x + + = 4) 2 2 sin sin 1 0 x x − − = 5) cos2 3sin 2 0 x x + − = 6) 2 cos2 3 cos 1 0 x x − + = Bài giải 1) 2 2 cos 3 cos 0 x x + = cos 0 2 , 3 5 cos 2 2 6 x x k k x x k π π π π = = + ⇔ ⇔ ∈ = − = ± + » 2) 2 2 sin sin 2 2 cos 2 x x x + + = ⇔ sin (2 cos sin ) 0 x x x − = sin 0 tan 2 arctan2 x x k x x k π π = = ⇔ ⇔ = = + 3) 2 2 3 sin sin2 cos 3 x x x + + = 2 2 sin cos 2 cos 0 2cos (sin cos ) 0 x x x x x x ⇔ − = ⇔ − = 2 cos 0 2 tan 1 4 x k x x x k π π π π = + = ⇔ ⇔ = = + 4) 2 2 sin sin 1 0 x x − − = 2 2 sin 1 2 , 1 6 sin 2 7 2 6 x k x x k k x x k π π π π π π = + = ⇔ ⇔ = − + ∈ = − = + » 5) cos2 3sin 2 0 x x + − = 2 2 1 2sin 3 sin 2 0 2sin 3sin 1 0 x x x x ⇔ − + − = ⇔ − + = 2 2 sin 1 2 , 1 6 sin 2 5 2 6 x k x x k k x x k π π π π π π = + = ⇔ ⇔ = + ∈ = = + » GV. Lưu Huy Thưởng 0968.393.899 BỂ HỌC VÔ BỜ - CHUYÊN CẦN SẼ ĐẾN BẾN Page 2 6) 2 cos2 3cos 1 0 x x − + = 2 4 cos 3cos 1 0 x x ⇔ − − = cos 1 2 , 1 1 cos arccos( ) 2 4 4 x x k k x x k π π = = ⇔ ⇔ ∈ = − = ± − + » HT 2.Giải các phương trình sau: 1) 3 sin 3 cos 3 2 x x − = 2) sin 5 cos 5 2 x x + = − 3) 3 sin cos 2 x x + = 4) 3 sin cos 2 x x − = Bài giải 1) 3 sin 3 cos 3 2 x x − = 3 1 sin 3 cos 3 1 2 2 x x ⇔ − = ⇔ sin (3 ) 6 x π − = 1 ⇔ 3 2 6 2 x k π π π − = + ⇔ 2 2 9 3 k x π π = + 2) sin 5 cos 5 2 x x + = − 1 1 sin 5 cos 5 1 2 2 x x ⇔ + = − ⇔ sin (5 ) 4 x π + = - 1 ⇔ 5 2 4 2 x k π π π + = − + ⇔ 3 2 20 5 k x π π = − + 3) 3 sin cos 2 x x + = 3 1 2 sin cos 2 2 2 x x⇔ + = 2 sin cos cos sin 6 6 2 x x π π ⇔ + = sin( ) sin 6 4 x π π ⇔ + = ⇔ 2 2 6 4 12 , 3 7 2 2 6 4 12 x k x k k x k x k π π π π π π π π π π + = + = + ⇔ ∈ + = + = + » 4) 3 sin cos 2 x x − = 3 1 2 sin cos 2 2 2 x x⇔ − = 2 sin cos cos sin 6 6 2 x x π π ⇔ − = sin( ) sin 6 4 x π π ⇔ − = 5 2 2 6 4 12 , 3 11 2 2 6 4 12 x k x k k x k x k π π π π π π π π π − = + = + ⇔ ⇔ ∈ − = + = + » HT 3.Giải phương trình: 1) 3 3 sin 3 3 cos 9 1 4 sin 3 x x x − = + 2) 1 tan sin 2 cos 2 2(2cos ) 0 cos x x x x x − − + − = GV. Lưu Huy Thưởng 0968.393.899 BỂ HỌC VÔ BỜ - CHUYÊN CẦN SẼ ĐẾN BẾN Page 3 3) 3 1 8 sin cos sin x x x = + 4) 9 sin 6 cos 3 sin2 cos2 8 x x x x + − + = 5) sin2 2 cos2 1 sin 4 cos x x x x + = + − 6) 2 sin2 cos2 7 sin 2cos 4 x x x x − = + − 7) sin2 cos2 3 sin cos 2 x x x x − = + − 8) 2 (sin 2 3 cos 2 ) 5 cos(2 ) 6 x x x π + − = − 9) 3 2 cos cos2 sin 0 x x x + + = 10) 2 1 cos 2 1 cot2 sin 2 x x x − + = 11) 4 4 4(sin cos ) 3 sin 4 2 x x x + + = 12) 3 3 1 1 sin 2 cos 2 sin 4 2 x x x + + = 13) tan 3 cot 4(sin 3 cos ) x x x x − = + 14) 3 3 sin cos sin cos x x x x + = − 15) 4 4 1 cos sin ( ) 4 4 x x π + + = 16) 3 3 4 sin cos 3 4 cos sin 3 3 3 cos 4 3 x x x x x + + = http://www.Luuhuythuong.blogspot.com Bài giải 1) 3 3 sin 3 3 cos 9 1 4 sin 3 x x x − = + 3 (3 sin 3 4 sin 3 ) 3 cos 9 1 x x x ⇔ − − = sin 9 3 cos 9 1 x x ⇔ − = sin(9 ) sin 3 6 x π π ⇔ − = 2 18 9 7 2 54 9 x k x k π π π π = + ⇔ = + 2) 1 tan sin 2 cos 2 2(2cos ) 0 cos x x x x x − − + − = (1) Điều kiện: cos 0 2 x x k π π ≠ ⇔ ≠ + sin 2 (1) sin2 cos2 4 cos 0 cos cos x x x x x x ⇔ − − + − = 2 2 sin 2 sin cos cos 2 cos 2(2 cos 1) 0 x x x x x x ⇔ − − + − = 2 sin (1 2 cos ) cos 2 cos 2 cos 2 0 x x x x x ⇔ − − + = sin cos2 cos2 cos 2 cos2 0 x x x x x ⇔ − − + = cos 2 (sin cos 2) 0 x x x ⇔ + − = cos2 0 sin cos 2( ) 4 2 x x k x x vn π π = ⇔ ⇔ = + + = 3) 3 1 8 sin cos sin x x x = + (*) GV. Lưu Huy Thưởng 0968.393.899 BỂ HỌC VÔ BỜ - CHUYÊN CẦN SẼ ĐẾN BẾN Page 4 Điều kiện: sin 2 0 2 x x k π ≠ ⇔ ≠ 2 (*) 8 sin cos 3 sin cos x x x x ⇔ = + 4(1 cos 2 ) cos 3 sin cos x x x x ⇔ − = + 4 cos 2 cos 3 sin 3 cos x x x x ⇔ − = − 2(cos 3 cos ) 3 sin 3 cos x x x x ⇔ − + = − 1 3 cos 3 cos sin 2 2 x x x ⇔ = − cos 3 cos( ) 3 x x π ⇔ = + 6 12 2 x k x k π π π π = + ⇔ = − + C2 2 (*) 8 sin cos 3 sin cos x x x x ⇔ = + 2 8(1 cos )cos 3 sin cos x x x x ⇔ − = + 3 8 cos 8 cos 3 sin 3 cos x x x x ⇔ − = − 3 6 cos 8 cos 3 sin cos x x x x ⇔ − = − 3 1 3 4 cos 3 cos cos sin 2 2 x x x x ⇔ − = − cos 3 cos( ) 3 x x π ⇔ = + 6 12 2 x k x k π π π π = + ⇔ = − + 4) 9 sin 6 cos 3 sin2 cos2 8 x x x x + − + = 2 6 sin cos 6 cos 2 sin 9 sin 7 0 x x x x x ⇔ − + − + = 6 cos (sin 1) (sin 1)(2sin 7) 0 x x x x ⇔ − + − − = (sin 1)(6 cos 2 sin 7) 0 x x x ⇔ − + − = sin 1 6 cos 2 sin 7 x x x = ⇔ + = 2 2 x k π π ⇔ = + 5) sin2 2 cos2 1 sin 4 cos x x x x + = + − 2 2 sin cos 2(2cos 1) 1 sin 4 cos 0 x x x x x ⇔ + − − − + = 2 sin (2 cos 1) 4 cos 4 cos 3 0 x x x x ⇔ − + + − = sin (2 cos 1) (2 cos 1)(2 cos 3) 0 x x x x ⇔ − + − + = (2 cos 1)(2 sin 2 cos 3) 0 x x x ⇔ − + + = 1 cos 2 2 sin 2 cos 3,( ) x x x vn = ⇔ + = − 2 3 x k π π ⇔ = ± + 6) 2 sin2 cos2 7 sin 2cos 4 x x x x − = + − GV. Lưu Huy Thưởng 0968.393.899 BỂ HỌC VÔ BỜ - CHUYÊN CẦN SẼ ĐẾN BẾN Page 5 2 4 sin cos (1 2sin ) 7 sin 2 cos 4 0 x x x x x ⇔ − − − − + = 2 2 cos (2 sin 1) (2 sin 7 sin 3) 0 x x x x ⇔ − + − + = 2 cos (2 sin 1) (2sin 1)(sin 3) 0 x x x x ⇔ − + − − = (2 sin 1)(2 cos sin 3) 0 x x x ⇔ − + − = 2 sin 1 0 2 cos sin 3,( ) x x x vn − = ⇔ + = 2 6 5 2 6 x k x k π π π π = + ⇔ = + 7) sin2 cos2 3 sin cos 2 x x x x − = + − 2 2 sin cos (1 2 sin ) 3 sin cos 2 0 x x x x x ⇔ − − − − + = 2 (2 sin cos cos ) (2 sin 3 sin 1) 0 x x x x x ⇔ − + − + = cos (2sin 1) (2 sin 1)(sin 1) 0 x x x x ⇔ − + − − = (2 sin 1)(cos sin 1) 0 x x x ⇔ − + − = 2 sin 1 cos sin 1 x x x = ⇔ + = 2 6 2 sin 1 5 2 6 x k x x k π π π π = + + = ⇔ = + 2 2 cos sin 1 cos( ) 4 2 2 2 x k x x x x k π π π π = + + = ⇔ − = ⇔ = + 8) 2 (sin 2 3 cos 2 ) 5 cos(2 ) 6 x x x π + − = − Ta có: 1 3 sin 2 3 cos2 2( sin 2 cos2 ) 2 cos(2 ) 2 2 6 x x x x x π + = + = − Đặt: sin2 3 cos 2 , 2 2 t x x t = + − ≤ ≤ Phương trình trở thành: 2 5 2 t t − = 2 2 10 0 t t ⇔ − − = 2 5 2 t t = − ⇔ = 5 : 2 t+ = loại 7 2 : 2 cos(2 ) 2 6 12 t x x k π π π + = − − = − ⇔ = + GV. Lưu Huy Thưởng 0968.393.899 BỂ HỌC VÔ BỜ - CHUYÊN CẦN SẼ ĐẾN BẾN Page 6 9) 3 2 cos cos2 sin 0 x x x + + = 3 2 2 cos 2 cos 1 sin 0 x x x ⇔ + − + = 2 2 cos (cos 1) (1 sin ) 0 x x x ⇔ + − − = 2 2(1 sin )(cos 1) (1 sin ) 0 x x x ⇔ − + − − = 2(1 sin )(1 sin )(cos 1) (1 sin ) 0 x x x x ⇔ − + + − − = (1 sin )[2(1 sin )(cos 1) 1] 0 x x x ⇔ − + + − = (1 sin )[1 2 sin cos 2(sin cos )] 0 x x x x x ⇔ − + + + = sin 1 1 2 sin cos 2(sin cos ) 0 x x x x x = ⇔ + + + = sin 1 2 2 x x k π π + = ⇔ = + 1 2 sin cos 2(sin cos ) 0 x x x x + + + + = 2 (sin cos ) 2(sin cos ) 0 x x x x ⇔ + + + = (sin cos )(sin cos 2) 0 x x x x ⇔ + + + = sin cos 0 x x ⇔ + = tan 1 4 x x k π π ⇔ = − ⇔ = − + 10) 2 1 cos 2 1 cot2 sin 2 x x x − + = (*) Điều kiện: sin 2 0 2 x x k π ≠ ⇔ ≠ 2 1 cos2 (*) 1 cot2 1 cos 2 x x x − ⇔ + = − 1 1 cot2 1 cos2 x x ⇔ + = + cos2 1 1 sin 2 1 cos 2 x x x ⇔ + = + sin 2 (1 cos2 ) cos 2 (1 cos2 ) sin 2 x x x x x ⇔ + + + = sin 2 cos2 cos2 (1 cos2 ) 0 x x x x ⇔ + + = cos2 (sin 2 cos2 1) 0 x x x ⇔ + + = cos2 0 sin 2 cos2 1 x x x = ⇔ + = − cos2 0 4 2 x x k π π + = ⇔ = + sin2 cos2 1 x x + + = − sin(2 ) sin( ) 4 4 x π π ⇔ + = − 4 2 x k x k π π π π = − + ⇔ = + Vậy,phương trình có nghiệm: 4 2 x k π π = + 11) 4 4 4(sin cos ) 3 sin 4 2 x x x + + = 2 2 2 2 2 4[(sin cos ) 2 sin cos ] 3 sin 4 2 x x x x x ⇔ + − + = GV. Lưu Huy Thưởng 0968.393.899 BỂ HỌC VÔ BỜ - CHUYÊN CẦN SẼ ĐẾN BẾN Page 7 2 1 4(1 sin 2 ) 3 sin 4 2 2 x x ⇔ − + = cos 4 3 sin 4 2 x x ⇔ + = − 4 2 12 2 x k x k π π π π = + ⇔ = − + 12) 3 3 1 1 sin 2 cos 2 sin 4 2 x x x + + = 2 sin 4 2(sin 2 cos 2 )(1 sin 2 cos 2 ) 0 x x x x x ⇔ − + + − = (2 sin 4 ) (sin 2 cos2 )(2 sin 4 ) 0 x x x x ⇔ − + + − = (2 sin 4 )(sin2 cos2 1) 0 x x x ⇔ − + + = sin2 cos2 1 x x ⇔ + = − 2 sin(2 ) 4 2 x π ⇔ + = − 4 2 x k x k π π π π = − + ⇔ = + 13) tan 3 cot 4(sin 3 cos ) x x x x − = + (*) Điều kiện: sin 2 0 2 x x k π ≠ ⇔ ≠ sin cos (*) 3 4(sin 3 cos ) cos sin x x x x x x ⇔ − = + 2 2 sin 3 cos 4 sin cos (sin 3 cos ) 0 x x x x x x ⇔ − − + = (sin 3 cos )(sin 3 cos ) 4 sin cos (sin 3 cos ) 0 x x x x x x x x ⇔ − + − + = (sin 3 cos )(sin 3 cos 4 sin cos ) 0 x x x x x x ⇔ + − − = sin 3 cos 0 sin 3 cos 4 sin cos 0 x x x x x x + = ⇔ − − = sin 3 cos 0 tan 3 3 x x x x k π π + + = ⇔ = − ⇔ = − + sin 3 cos 4 sin cos 0 x x x x + − − = 2 sin 2 sin 3 cos x x x ⇔ = − 1 3 sin 2 sin cos 2 2 x x x ⇔ = − sin 2 sin( ) 3 x x π ⇔ = − 2 3 4 2 9 3 x k x k π π π π = − + ⇔ = + Vậy,phương trình có nghiệm là: ; 3 x k π π = − + 4 2 9 3 x k π π = + 14) 3 3 sin cos sin cos x x x x + = − 2 3 sin (sin 1) cos cos 0 x x x x ⇔ − + + = GV. Lưu Huy Thưởng 0968.393.899 BỂ HỌC VÔ BỜ - CHUYÊN CẦN SẼ ĐẾN BẾN Page 8 2 3 sin cos cos cos 0 x x x x ⇔ − + + = 2 cos ( sin cos cos 1) 0 x x x x ⇔ − + + = 2 cos 0 sin cos cos 1 x x x x = ⇔ − + = − cos 0 2 x x k π π + = ⇔ = + 2 sin cos cos 1 x x x + − + = − 1 1 cos2 sin 2 1 2 2 x x + ⇔ − + = − sin 2 cos2 3,( ) x x vn ⇔ − = Vậy,phương trình có nghiệm là: , 2 x k k π π = + ∈ » 15) 4 4 1 cos sin ( ) 4 4 x x π + + = 2 2 1 1 1 (1 cos 2 ) [1 cos(2 )] 4 4 2 4 x x π ⇔ + + − + = 2 2 (1 cos 2 ) (1 sin 2 ) 1 x x ⇔ + + + = sin2 cos2 1 x x ⇔ + = − 3 cos(2 ) cos 4 4 x π π ⇔ − = 2 2 4 x k x k π π π π = + ⇔ = − + 16) 3 3 4 sin cos 3 4 cos sin 3 3 3 cos 4 3 x x x x x + + = 3 3 3 3 4 sin (4 cos 3 cos ) 4cos (3 sin 4 sin ) 3 3 cos 4 3 x x x x x x x ⇔ − + − + = 3 3 12 sin cos 12 cos sin 3 3 cos 4 3 x x x x x ⇔ − + + = 2 2 4 sin cos (cos sin ) 3 cos 4 1 x x x x x ⇔ − + = 2 sin2 cos 2 3 cos 4 1 x x x ⇔ + = sin 4 3 cos 4 1 x x ⇔ + = 1 3 1 sin 4 cos 4 2 2 2 x x ⇔ + = sin(4 ) sin 3 6 x π π ⇔ + = 24 2 , 8 2 x k k x k π π π π = − + ⇔ ∈ = + » HT 4.Giải phương trình: 1) 4 4 3 cos sin cos( )sin(3 ) 0 4 4 2 x x x x π π + + − − − = 2) 2 5 sin 2 3(1 sin )tan x x x − = − 3) 1 1 2 sin 3 2cos 3 sin cos x x x x − = + 4) 2 cos (2 sin 3 2) 2 cos 1 1 1 sin 2 x x x x + − − = + 5) 3 3 1 cos cos cos sin sin sin 2 2 2 2 2 x x x x x x − = 6) 3 4 cos 3 2 sin 2 8 cos x x x + = GV. Lưu Huy Thưởng 0968.393.899 BỂ HỌC VÔ BỜ - CHUYÊN CẦN SẼ ĐẾN BẾN Page 9 7) cos(2 ) cos(2 ) 4 sin 2 2(1 sin ) 4 4 x x x x π π + + − + = + − 8) 2 2 3 cot 2 2 sin (2 3 2)cos x x x + = + 9) 2 2 4 sin 2 6 sin 9 3 cos 2 0 cos x x x x + − − = 10) cos cos 3 2cos 5 0 x x x + + = 11) 8 8 2 17 sin cos cos 2 16 x x x + = 12) 3 5 sin 5 cos sin 2 2 x x x= 13) 2 sin 2 (cot tan 2 ) 4 cos x x x x + = 14) 3 tan ( ) tan 1 4 x x π − = − 15) 4 4 4 sin 2 cos 2 cos 4 tan( )tan( ) 4 4 x x x x x π π + = − + 16) 4 2 1 2 48 (1 cot2 cot ) 0 cos sin x x x x − − + = 17) 8 8 10 10 5 sin cos 2(sin cos ) cos 2 4 x x x x x + = + + http://www.Luuhuythuong.blogspot.com Bài giải 1) 4 4 3 cos sin cos( )sin(3 ) 0 4 4 2 x x x x π π + + − − − = 2 2 2 2 2 1 3 (sin cos ) 2 sin cos [sin(4 ) sin 2 ] 0 2 2 2 x x x x x x π ⇔ + − + − + − = 2 1 1 3 1 sin 2 ( cos 4 sin 2 ) 0 2 2 2 x x x ⇔ − + − + − = 2 2 1 1 1 1 sin 2 (1 2 sin 2 ) sin 2 0 2 2 2 2 x x x ⇔ − − − + − = 2 sin 2 sin 2 2 0 x x ⇔ + − = sin2 1 x ⇔ = 4 x k π π ⇔ = + 2) 2 5 sin 2 3(1 sin )tan x x x − = − (1) Điều kiện: cos 0 2 x x k π π ≠ ⇔ ≠ + 2 2 sin (1) 5 sin 2 3(1 sin ) cos x x x x ⇔ − = − 2 2 sin 5 sin 2 3(1 sin ) 1 sin x x x x ⇔ − = − − 2 3 sin 5 sin 2 1 sin x x x ⇔ − = + 2 2 sin 3 sin 2 0 x x ⇔ + − = 1 sin 2 x ⇔ = [...]... x + 3 2) − 2 cos2 x − 1 =1 1 + sin 2x Điều kiện: sin 2x ≠ −1 ⇔ x ≠ − (*) π + kπ 4 (*) ⇔ 2 sin x cos x + 3 2 cos x − 2 cos2 x − 1 = 1 + sin 2x ⇔ 2 cos2 x − 3 2 cos x + 2 = 0 ⇔ cos x = Đối chi u điều kiện phương trình có nghiệm: x = B H C VƠ B 2 π ⇔ x = ± + kπ 2 4 π + k π, k ∈ » 4 - CHUN C N S NB N Page 10 GV Lưu Huy Thư ng 5) cos x cos ⇔ 0968.393.899 x 3x x 3x 1 cos − sin x sin sin = 2 2 2 2 2 1 1 1... x ⇔ cos x = Vậy,phương trình có nghiệm: x = ± 9) 2 π ⇔ x = ± + k 2π 2 4 π π + k 2π, x = ± + k 2π 3 4 4 sin2 2x + 6 sin2 x − 9 − 3 cos 2x =0 cos x Điều kiện: cos x ≠ 0 ⇔ x ≠ (*) π + kπ 2 (*) ⇔ 4(1 − cos2 2x ) + 3(1 − cos 2x ) − 9 − 3 cos x = 0 ⇔ 4 cos2 2x + 6 cos x + 2 = 0 cos 2x = −1 x = π + kπ 2 ⇔ ⇔ cos 2x = − 1 π x = ± + k π 2 3 Vậy,phương trình có nghiệm: x = ± π + kπ 3 10)... 10 10 −1 − 21 −1 − 21 cos x = x = ± arccos + k 2π 10 10 Vậy,phương trình có nghiệm: x = k 2π , x = ± arccos −1 + 21 + k 2π 10 x = ± arccos 13) sin 2x (cot x + tan 2x ) = 4 cos2 x −1 − 21 + k 2π 10 (1) x ≠ kπ sin x ≠ 0 Điều kiện: ⇔ cos 2x ≠ 0 x ≠ π + k π 4 2 Ta có: cot x + tan 2x = cos x sin 2x cos 2x cos x + sin 2x sin x cos x + = = sin x cos 2x... 4 cos2 x sin x cos 2x cos2 x = 2 cos2 x ⇔ cos2 x (1 − 2 cos 2x ) = 0 cos 2x x = π + kπ cos x = 0 2 ⇔ ⇔ cos 2x = 1 / 2 π x = ± + k π 6 Vậy,phương trình có nghiệm: x = π π + kπ , x = ± + kπ 2 6 Vậy,phương trình có nghiệm: x = k π 14) tan3 (x − ) = tan x − 1 4 5 1 − 21 5π 5π , x = ± arccos +k 2 4 4 2 (1) cos x ≠ 0 x ≠ π + kπ 2 Điều kiện: ⇔ cos(x − π ) ≠ 0 3π... 4x = cos4 4x ⇔ 1 − (1 − cos2 4x ) = cos4 4x 2 2 ⇔ 2 cos4 4x − cos2 4x − 1 = 0 ⇔ cos2 4x = 1 ⇔ 1 − cos2 4x = 0 ⇔ sin 4x = 0 ⇔ x = k Vậy,phương trình có nghiệm: x = k 16) 48 − 1 cos4 x − 2 sin2 x π 2 (1 + cot2x cot x ) = 0 Điều kiện: sin 2x ≠ 0 ⇔ x ≠ k Ta có: 1 + cot 2x cot x = 1 + cos 2x cos x cos 2x sin x + sin 2x sin x = sin 2x sin x sin 2x cos x cos x 2 2 sin x cos x 1 4 − cos x (*) π 2 = (*) ⇔ 48... CHUN C N S NB N Page 18 GV Lưu Huy Thư ng 0968.393.899 2x = x + π + m 2π x = π + m 2 π π 4 4 +) sin 2x = sin(x + ) ⇔ ⇔ π π n 2π 4 2x = π − x − + n 2π x = + 4 4 3 Đối chi u điều kiện ta có nghiệm của pt là : x = 7) cos2x + sin x sin 4x − sin2 4x = m, n ∈ Z ⇔ x = π t 2π + , t ∈ Z 4 3 π π t 2π + kπ ; x = + , k, t ∈ Z 2 4 3 1 4 pt đã cho tương đương với pt: 1 1 1 1 (1 + cos 2x... sin x ) cos x = 0 ⇔ (sin x − cos x )(sin2 x − 3 cos2 x ) = 0 ⇔ (sin x − cos x )(2 cos 2x + 1) = 0 sin x = cos x x = π + k π 4 ⇔ ⇔ cos 2x = − 1 π x = ± + k π, k ∈ 2 3 Đối chi u điều kiện ta có nghiệm x = 8) π π + k π, x = ± + k π, k ∈ Z 4 3 π 2 sin 2x + = 3 sin x + cos x + 2 4 ⇔ sin 2x + cos 2x = 3 sin x + cos x + 2 B H C VƠ B - CHUN C N S NB N Page 23 GV Lưu... π 6 2 x + π + 1 = 0 ⇔ ⇔ 2 cos x + − 3 cos ⇔ x = + k 2π , k ∈ Z 6 6 6 cos x + π = 1 2 6 x = − π + k 2π 2 π Đối chi u điều kiện ta có các nghiệm x = ± + k 2π, k ∈ Z 6 10) tan 2x − tan x = 1 (sin 4x + sin 2x )(1) 6 x ≠ π + m π cos 2x ≠ 0 4 2 m ∈Z Điều kiện: ⇔ cos x ≠ 0 x ≠ π + m π 2 (1) ⇔... (k ∈ ») , thỏa (*) π π 6 2 6 x − = − + k 2 π 6 3 Vậy, phương trình có nghiệm: x = ± 3) π + k 2π (k ∈ ») 6 3 − 4 cos 2x − 8 sin4 x 1 = sin 2x + cos 2x sin 2x x ≠ − π + l π sin 2x + cos 2x ≠ 0 8 2 (l ∈ Z) Điều kiện: ⇔ sin 2x ≠ 0 π x ≠ l 2 1 − cos 2x 2 = Ta có: 8 sin 4 x = 8 2 Phương trình ⇔ ⇔ = 3 − 4 cos 2x + cos 4x 3 − 4 cos... sin x (2) π π π (1) ⇔ 2 sin x + = 0 ⇔ x + = k π ⇔ x = − + k π 4 4 4 cos x = 0 (2) ⇔ 2 cos x (cos x − sin x − 1) = 0 ⇔ ⇔ π 2 cos x + 4 = 1 Vậy pt có nghiệm là x = − x = π + k π 2 π π x + = ± + k 2 π 4 4 π π + k π , x = + k π , x = k 2π 4 2 B H C VƠ B - CHUN C N S NB N Page 21 GV Lưu Huy Thư ng 4) 0968.393.899 2(sin x − cos x ) 1 = tan . − = 8 8 4 cos2 (cos sin ) 5 cos 2 0 x x x x ⇔ − + = 4 4 4 4 4 cos 2 (cos sin )(cos sin ) 5 cos 2 0 x x x x x x ⇔ − + + = 2 2 2 2 4 4 4 cos 2 (cos sin )(cos sin )(cos sin ) 5 cos 2. 2 2 cos (cos 1) (1 sin ) 0 x x x ⇔ + − − = 2 2(1 sin )(cos 1) (1 sin ) 0 x x x ⇔ − + − − = 2(1 sin )(1 sin )(cos 1) (1 sin ) 0 x x x x ⇔ − + + − − = (1 sin )[2(1 sin )(cos 1) 1]. + Vậy,phương trình có nghiệm: 3 x k π π = ± + 10) cos cos 3 2cos 5 0 x x x + + = (cos 5 cos ) (cos 5 cos 3 ) 0 x x x x ⇔ + + + = 2 cos 3 cos2 2 cos 4 cos 0 x x x x ⇔ + = 3 2 (4