SỞ GIÁO DỤC VÀ ĐÀO TẠO THÀNH PHỐ CẦN THƠ KỲ THI TUYỂN SINH LỚP 10 THPT NĂM HỌC 2012-2013 Khóa ngày:21/6/2012 MÔN: TOÁN Thời gian làm bài: 120 phút (không kể thời gian phát đề) Câu 1: (2,0 điểm) Giải hệ phương trình , các phương trình sau đây: 1. 43 3 2 19 x y x y + = − = 2. 5 2 18x x+ = − 3. 2 12 36 0x x− + = 4. 2011 4 8044 3x x− + − = Câu 2: (1,5 điểm) Cho biểu thức: 2 1 1 1 2 : 1 a K a a a a + = − ÷ ÷ − − (với 0, 1a a> ≠ ) 1. Rút gọn biểu thức K. 2. Tìm a để 2012K = . Câu 3: (1,5 điểm) Cho phương trình (ẩn số x): ( ) 2 2 4 3 0 *x x m− − + = . 1. Chứng minh phương trình (*) luôn có hai nghiệm phân biệt với mọi m. 2. Tìm giá trị của m để phương trình (*) có hai nghiệm 1 2 ,x x thỏa 2 1 5x x= − . Câu 4: (1,5 điểm) Một ô tô dự định đi từ A đến B cách nhau 120 km trong một thời gian quy định. Sau khi đi được 1 giờ thì ô tô bị chặn bởi xe cứu hỏa 10 phút. Do đó để đến B đúng hạn xe phải tăng vận tốc thêm 6 km/h. Tính vận tốc lúc đầu của ô tô. Câu 5: (3,5 điểm) Cho đường tròn ( ) O , từ điểm A ở ngoài đường tròn vẽ hai tiếp tuyến AB và AC ( ,B C là các tiếp điểm). OA cắt BC tại E. 1. Chứng minh tứ giác ABOC nội tiếp. 2. Chứng minh BC vuông góc với OA và . .BA BE AE BO= . 3. Gọi I là trung điểm của BE , đường thẳng qua I và vuông góc OI cắt các tia ,AB AC theo thứ tự tại D và F . Chứng minh · · IDO BCO= và DOF∆ cân tại O . 4. Chứng minh F là trung điểm của AC . CHÍNH TH CĐỀ Ứ . SỞ GIÁO DỤC VÀ ĐÀO TẠO THÀNH PHỐ CẦN THƠ KỲ THI TUYỂN SINH LỚP 10 THPT NĂM HỌC 2012-2013 Khóa ngày:21/6/2012 MÔN: TOÁN Thời gian làm bài: 120 phút (không kể thời gian. nhau 120 km trong một thời gian quy định. Sau khi đi được 1 giờ thì ô tô bị chặn bởi xe cứu hỏa 10 phút. Do đó để đến B đúng hạn xe phải tăng vận tốc thêm 6 km/h. Tính vận tốc lúc đầu của ô tô. Câu