Dự án nâng cao năng lực cạnh tranh và an toàn thực phẩm ngành chăn nuôi
Trang 1I.Giới thiệu chung về quá trình kị khí:
1.1.Định nghĩa: khả năng phân hủy chất hữu cơ của vi sinh vật trong điều kiện
không có oxy.
1.2.Phân biệt giữa kị khí và hiếu khí:
-Quá trình kị khí sử dụng CO2 làm chất nhận điện tử không cần oxy -Quá trình kị khí sử dụng lượng bùn ít hơn 3-20 lần so với hiếu khí
-Sản sinh khí có ích la Metan giúp giảm thiểu BOD trong bùn đã phân hủy -Nhu cầu năng lượng cho quá trình được giảm thiểu
-Quá trình xử lí kị khí thích hợp cho các loại nước thải ô nhiễm nặng -Bể phản ứng kị khí có thể hoạt động ở chế độ tải trọng cao
-Hệ thống kị khí có thể phân hủy sinh học các hợp chất tổng hợp và một số hợp chất thiên nhiên khó phân hủy như ligin
*Một số nhược điểm của quá trình kị khí so với hiếu khí -Diễn ra chậm hơn hiếu khí
-Nhạy cảm hơn trong việc phân hủy các chất độc -Khởi động cần nhiều thời gian
-Đòi nồng độ cơ chất ban đầu tương đối cao
II.Mô tả quá trình:
2.1.Chu trình kị khí
2.1.1.Qúa trình:
Quá trình phân hủy yếm khí chất hữu cơ rất phức tạp liên hệ đến hàng trăm phản ứng và sản phẩm trung gian Tuy nhiên người ta thường đơn giản hóa chúng bằng phương trình sau đây:
Chất hữu cơ lên men ->
yếm khí CH4 + CO2 + H2 + NH3 + H2S
Hỗn hợp khí sinh ra thường được gọi là khí sinh học hay biogas Thành phần của Biogas như sau:
Carbon dioxide (CO2) 35 ¸ 45%
Trang 2Hydrogen (H2) 0 ¸ 1% Hydrogen Sulphide (H2S) 0 ¸ 1%
2.1.2.Chu trình trong tự nhiên:
- Phân hủy kỵ khí có thể chia làm 6 quá trình:
1 Thủy phân polymer: thủy phân các protein, polysaccaride, chất béo 2 Lên men các amino acid và đường.
3 Phân hủy kỵ khí các acid béo mạch dài và rượu (alcohols) 4 Phân hủy kỵ khí các acid béo dễ bay hơi (ngoại trừ acid acetic) 5 Hình thành khí methane từ acid acetic.
6 Hình thành khí methane từ hydrogen và CO2.
Các quá trình này có thể họp thành 4 giai đoạn, xảy ra đồng thời trong quá trình phân hủy kỵ khí chất hữu cơ:
- Thủy phân: trong giai đoạn này, dưới tác dụng của enzyme do vi khuẩn tiết ra, các phức chất và các chất không tan (polysaccharides, protein, lipid) chuyển hóa
thành các phức đơn giản hơn hoặc chất hòa tan (đường, các amino acid, acid béo) Quá trình này xảy ra chậm Tốc độ thủy phân phụ thuộc vào pH, kích thước hạt và đặc tính dễ phân hủy của cơ chất Chất béo thủy phân rất chậm.
- Acid hóa: Trong giai đoạn này, vi khuẩn lên men chuyển hóa các chất hòa tan thành chất đơn giản như acid béo dễ bay hơi, alcohols, acid lactic, methanol, CO2, H2, NH3, H2S và sinh khối mới Sự hình thành các acid có thể làm pH giảm xuống 4.0.
- Acetic hoá (Acetogenesis): Vi khuẩn acetic chuyển hóa các sản phẩm của giai đoạn acid hóa thành acetate, H2, CO2 và sinh khối mới.
- Methane hóa (methanogenesis):
Đây là giai đoạn cuối của quá trình phân huỷ kỵ khí Acetic, H2, CO2, acid fomic và methanol chuyển hóa thành methane, CO2 và sinh khối mới.
Trong 3 giai đoạn thuỷ phân, acid hóa và acetic hóa, COD hầu như không giảm, COD chỉ giảm trong giai đoạn methane.
Trang 32.2.Một số vi sinh vật tham gia vào quá trình kị khí
Nhóm vi sinh vật thủy phân chát hữu cơ, nhóm vi sinh vật tạo acid
Clostridium spp Peptococcus anaerobus Bifidobacterium spp
Desulphovibrio spp Corynebacterium spp
Trang 4Lactobacillus Actonomyces Escherichia coli
Trang 5Dạng hình cầu
Methanococcus Methanosarcina
III.Các yếu tố kiểm soát quá trình kị khí:
Quá trình lên men yếm khí có thể được khởi động một cách nhanh chóng nếu như chất thải của một hầm ủ đang hoạt động được dùng để làm chất mồi (đưa vi khuẩn đang hoạt động vào mẻ ủ) Hàm lượng chất rắn trong nguyên liệu nạp cho hầm ủ nên được điều chỉnh ở mức 5 ¸ 10%, 90 ¸ 95% còn lại là nước.
Ảnh hưởng của nhiệt độ Nhiệt độ và sự biến đổi của nhiệt độ trong ngày và các mùa ảnh hưởng đến tốc độ phân hủy chất hữu cơ Thông thường biên độ nhiệt sau đây được chú ý đến trong quá
Nói chung khi nhiệt độ tăng tốc độ sinh khí tăng nhưng ở nhiệt độ trong khoảng 40 ¸ 45oC thì tốc độ sinh khí giảm vì khoảng nhiệt độ này không thích hợp cho cả hai
Trang 6loại vi khuẩn, nhiệt độ trên 60oC tốc độ sinh khí giảm đột ngột và quá trình sinh khí bị kềm hãm hoàn toàn ở 65oC trở lên
Ảnh hưởng của nhiệt độ lên khả năng sinh khí của hầm ủ
(Price and Cheremisinoff, 1981, trích dẫn bởi Chongrak, 1989)
Ở các nước vùng ôn đới nhiệt độ môi trường thấp; do đó tốc độ sinh khí chậm và ở nhiệt độ dưới 10oC thể tích khí sản xuất được giảm mạnh Để cải thiện tốc độ sinh khí người ta có thể dùng Biogas đun nóng nguyên liệu nạp, hoặc đun nước nóng để trao đổi nhiệt qua các ống hình xoắn ốc lắp đặt sẵn trong lòng hầm ủ Ngoài ra người ta còn dùng các tấm nhựa trong để bao hầm ủ lại, nhiệt độ bên trong tấm nhựa trong sẽ cao hơn nhiệt độ môi trường từ 5 ¸ 10oC, hoặc thiết kế cho phần trên hầm ủ chứa nước và lượng nước này được đun nóng lên bằng bức xạ mặt trời, hoặc tạo lớp cách nhiệt với môi trường bằng cách phủ phân compost hoặc lá cây lên hầm ủ.
Ảnh hưởng của pH và độ kiềm (alkalinity)
pH trong hầm ủ nên được điều chỉnh ở mức 6,6 ¸ 7,6 tối ưu trong khoảng 7 ¸ 7,2 vì tuy rằng vi khuẩn tạo acid có thể chịu được pH thấp khoảng 5,5 nhưng vi khuẩn tạo methane bị ức chế ở pH đó pH của hầm ủ có khi hạ xuống thấp hơn 6,6 do sự tích tụ quá độ các acid béo do hầm ủ bị nạp quá tải hoặc do các độc tố trong nguyên liệu nạp ức chế hoạt động của vi khuẩn methane Trong trường hợp này người ta lập tức ngưng nạp cho hầm ủ để vi khuẩn sinh methane sử dụng hết các acid thừa, khi hầm ủ đạt được tốc độ sinh khí bình thường trở lại người ta mới nạp lại nguyên liệu cho hầm ủ theo đúng lượng quy định Ngoài ra người ta có thể dùng vôi để trung hòa pH của hầm ủ.
Alkalinity của hầm ủ nên được giữ ở khoảng 1.000 ¸ 5.000 mg/L để tạo khả năng đệm tốt cho nguyên liệu nạp.
Ảnh hưởng của độ mặn
Thường trên 90% trọng lượng nguyên liệu là nước TTNLM đã tìm hiểu khả năng sinh Biogas của hầm ủ tùy thuộc nồng độ muối trong nước Kết quả cho thấy vi khuẩn tham gia trong quá trình sinh khí methane có khả năng dần dần thích nghi với nồng độ của muối ăn NaCl trong nước Với nồng độ < 0,3% khả năng sinh khí không bị giảm đáng kể Như vậy việc vận hành các hệ thống xử lý yếm khí tại các vùng nước lợ trong mùa khô không gặp trở ngại nhiều (Lê Hoàng Việt, 1988) Các chất dinh dưỡng
Trang 7Để bảo đảm năng suất sinh khí của hầm ủ, nguyên liệu nạp nên phối trộn để đạt được tỉ số C/N từ 25/1 ¸ 30/1 bởi vì các vi khuẩn sử dụng carbon nhanh hơn sử dụng đạm từ 25 ¸ 30 lần Các nguyên tố khác như P, Na, K và Ca cũng quan trọng đối với quá trình sinh khí tuy nhiên C/N được coi là nhân tố quyết định.
Ảnh hưởng lượng nguyên liệu nạp
Ảnh hưởng của lượng nguyên liệu nạp có thể biểu thị bằng 2 nhân tố sau:
Hàm lượng chất hữu cơ biểu thị bằng kg COD/m3/ngày hay VS/m3/ngày Thời gian lưu trữ hỗn hợp nạp trong hầm ủ HRT
Lượng chất hữu cơ nạp cao sẽ làm tích tụ các acid béo do các vi khuẩn ở giai đoạn 3 không sử dụng kịp làm giảm pH của hầm ủ gây bất lợi cho các vi khuẩn
methane
Ảnh hưởng của các chất khóang trong nguyên liệu nạp
Các chất khóang trong nguyên liệu nạp có tác động tích cực hoặc tiêu cực đến quá trình sinh khí methane Ví dụ ở nồng độ thấp Nikel làm tăng quá trình sinh khí Các chất khóang này còn gây hiện tượng cộng hưởng hoặc đối kháng Hiện tượng cộng hưởng là hiện tượng tăng độc tính của một nguyên tố do sự có mặt một nguyên tố khác Hiện tượng đối kháng là hiện tượng giảm độc tính của một nguyên tố do sự có mặt của một nguyên tố khác.
Hiện tượng cộng hưởng và đối kháng của các cation đối với quá trình lên menyếm khí
(EPA, 1979, trích dẫn bởi Chongrak, 1989)
Trang 8Khuấy trộn
Khuấy trộn tạo điều kiện cho vi khuẩn tiếp xúc với chất thải làm tăng nhanh quá trình sinh khí Nó còn làm giảm thiểu sự lắng đọng của các chất rắn xuống đáy
Trang 94.2.1.Nguyên tắc:
4.2.2.Môt số bể UASB cải tiến:
4.2.2.1 Nội dung nghiên cứu
- Khảo sát sự thích nghi và đặc tính của bùn hoạt tính trong quá trình nghiên cứu với môhình động tại phòng thí nghiệm
- Nghiên cứu quá trình khử carbon (COD, BOD), quá trình trình loại bỏ nito và photpho
.4.2.2.1 Phương pháp nghiên cứu
4.2.2.1.1.Mô hình nghiên cứu:
Trang 10Chú thích:
Các chữ số chỉ kích thước (cm)
(A) : Mương thu nước đầu vào; (B) :Ngăn thiếu khí; (C) : Ngăn hiếu khí;(D) : Ngăn USBF; (E) : Các thanh sụckhí; (G) : Ống thu bùn; I, II, III: Cácđiểm lấy mẫu ngăn thiếu khí, hiếukhí và sau quá trình xử lý; IV : vị trí
tuần hoàn bùn
Hình 1 Sơ đồ cấu tạo của mô hình
Cấu tạo của mô hình (hình 1): Mô hình gồm 3 module chính: ngăn thiếu khí
bùn, bộ phận sục khí… Các thiết bị cần thiết bao gồm: 1 máy bơm định lượng bơm nước thải
đầu vào, 1 máy bơm bùn và 1 máy thổi khí.
Trang 11Nguyên tắc hoạt động của mô hình (Hình 2): Mô hình được thiết kế nhằm kết hợp
trình loại bỏ C, khử nitrat và loại bỏ P diễn ra trong ngăn này Sau đó, nước thải chảy qua ngăn
hiếu khí nhờ khe hở dưỡi đáy ngăn USBF Ở đây ô xy được cung cấp nhờ các ống
Trang 12hiện ưu điểm của hệ thống do kết hợp cả lọc và xử lý sinh học của chính khối bùn
Hình 2 Sơ đồ nguyên lý hoạt động của mô hình
2.2.2 Theo dõi mô hình: Quá trình nghiên cứu trải qua 2 giai đoạn: Giai đoạn
thích nghi
và giai đoạn khảo sát chính Giai đoạn khảo sát chính bao gồm: 1) Khảo sát hiệu quả xử lý (H) theo nồng độ bùn (X);
2) Khảo sát H theo nồng độ COD;
3) Khảo sát H theo thời gian lưu nước (HRT) và tải trọng (L); 4) Khảo sát H theo tuổi bùn (SRT).
Giới thiệu
Qui trình USBF (Upflow Sludge Blanket Filtration) được cải tiến từ qui trình bùn hoạt tính cổ điển kết hợp với quá trình anoxic và vùng lắng bùn lơ lững trong một công trình xử lý sinh học
Mô tả công nghệ
Là một hệ thống kết hợp nên chiếm ít không gian và các thiết bị đi kèm Qui trình USBF được thiết kế để:
Khử BOD, nitrate hóa và khử nitrtate
Khử BOD, nitrate hóa/ khử nitrtate và khử phốt pho
Trang 13Để khử carbonate, vùng anoxic được xem như vùng lựa chọn mà ở đó sự pha trộn dòng thải sẽ làm tăng khả năng lắng và khống chế quá trình tăng trưởng vi sinh vật
Để nitrate hóa, khử nitrate và khử phospho, vùng anoxic có thể đảm đương được vai trò này Trong qui trình này, NH3-N bị oxy hóa thành nitrite và sau đó thành nitrate bởi vi khuẩn Nitrosomonas và Nitrobacter trong từng vùng sục khí riêng biệt Nitrate được tuần hoàn trở lại vùng anoxic và được khử liên tục tối đa Trong phản ứng này BOD đầu vào được xem như nguồn carbon hay nguồn năng lượng để khử nitrate thành những phân tử nitơ
Sự khử phospho cơ học trong qui trình này tương tự trong chu trình phospho và cải tiến từ qui trình Bardenpho Trong qui trình USBF, sự lên men của BOD hòa tan xảy ra trong vùng kỵ khí hay vùng anoxic Sản phẩm của quá trình lên men cấu thành thành phần đặc biệt của vi sinh vật có khả năng lưu giữ phospho Trong giai đoạn xử lý hiếu khí, phospho hòa tan được hấp thu bởi phospho lưu trữ trong vi sinh khuẩn (Acinetabacter) mà chúng đã sinh trưởng trong vùng anoxic Phospho sau đồng hóa sẽ được loại bỏ khỏi hệ thống như xác vi sinh hay bùn dư Khối lượng và hàm lượng phospho loại bỏ phụ thuộc chủ yếu vào tỉ lệ BOD/P trong nước thải đầu vào.
Qui trình USBF có khả năng khử BOD5 đến dưới 5 mg/l, TSS dưới 10 mg/l mà không qua công đoạn lọc, Nitơ tổng cộng dưới 1.0 mg/l và phospho tổng cộng dưới 0.5 đến 2.0 mg/l Quá trình đặc biệt khử phospho đến 0.2 - 0.5 mg/l có thể thực hiện được bằng cách thêm muối kim loại trong vùng hiếu khí ngay thời điểm dòng thải bắt đầu vào vùng lắng Các loại muối có thể sử dụng như muối nhôm (Al2(SO4)3.14H2O), Aluminate natri (Na2O.Al2O3), Chlorua sắt (FeCl3), (FeCl2), Sulfate sắt (FeSO4.&H2O) hay Sulfate sắt 3 (Fe2(SO4)3) Khi phần lớn phospho trong qui trình USBF (> 80%) bị hấp thu bằng phương pháp sinh học, một hàm lượng muối kim loại keo tụ không đáng kể đưa vào hệ thống sẽ không phát sinh nhiều bùn thải Ví dụ khử phospho bằng FeSO4 xảy ra theo hai phản ứng sau: Kết tủa phospho
3FeSO4 + 2PO4-3 -> Fe3 (PO4)2 + 3SO4-2
Khử kiềm và kết tủa Hydroxide
Fe+++ + 3HCO-3 -> Fe(OH)3
Theo hai phản ứng trên, để loại bỏ 2 mg/l PO4-3, theo lý thuyết sẽ sinh ra 6 mg/l bùn Tong thực tế 5 mg/l bùn được sinh ra khi khử 1 mg/l PO4-3 Đối với nước thải đầu vào có 240 mg/l BOD và tốc độ sinh trưởng bùn là 0.6 lbs TSS/lb BOD khử, và sử dụng FeSO4 để khử 2 mg/l PO4-3, Tổng lượng bùn sinh ra sẽ chiếm khoảng 7%.
Qui trình USBF được thiết lập trên nguyên lý bể lắng dòng chảy lên có lớp bùn lơ lững (upflow sludge blanket clarifier) ngăn này có dạng hình thang, nước thải sau
Trang 14khi được xáo trộn đi từ dưới đáy bể lắng qua hệ thống vách ngăn thiết kế đặc biệt mà ở đó xảy ra quá trình tạo bông thủy lực Bể lắng hình thang tạo ra tốc độ dâng dòng chảy ổn định trên toàn bề mặt từ đáy đến mặt trên bể lắng, điều này cho phép sự giảm gradient vận tốc dần dần trong suốt bể lắng.
Trong cách vận hành này, hầm ủ được nạp đầy nguyên liệu trong một lần, cho thêm chất mồi và đậy kín lại và quá trình sinh khí sẽ diễn ra trong một thời gian dài cho tới khi nào lượng khí sinh ra giảm thấp tới một mức độ nào đó Sau đó toàn bộ các chất thải của hầm ủ được lấy ra chỉ chừa lại 10 ¸ 20 % để làm chất mồi, nguyên liệu mới lại được nạp đầy cho hầm ủ và quá trình cứ tiếp tục Theo kiểu vận hành này thì lượng khí sinh ra hàng ngày không ổn định, nó thường cao vào lúc mới nạp và giảm dần đến cuối chu kỳ.
Vận hành bán liên tục
Nguyên liệu được nạp vào cho hầm ủ 1 hoặc 2 lần/ngày và cùng một lượng chất thải của hầm ủ sẽ được lấy ra ngay các thời điểm đó Kiểu vận hành này thích hợp khi ta có một lượng chất thải thường xuyên Thể tích của hầm ủ phải đủ lớn để làm 2 nhiệm vụ: ủ phân và chứa gas Theo kiểu vận hành nầy thì tổng thể tích gas sản xuất được trên một đơn vị trọng lượng chất hữu cơ thường cao.
Vận hành liên tục
Ở cách vận hành này việc nạp nguyên liệu và lấy chất thải của hầm ủ ra được tiến hành liên tục Lượng nguyên liệu nạp được giữ ổn định bằng cách cho chảy tràn vào hầm ủ hoặc dùng bơm định lượng Phương pháp này thường dùng để xử lý các loại nước thải có hàm lượng chất rắn thấp.
Cũng nên nói thêm rằng nếu không có chất thải hầm ủ để làm chất mồi, thì phân gia súc cũng có thể sử dụng làm chất mồi (trong trường hợp nguyên liệu nạp không phải là phân người hay phân gia súc) Trong trường hợp này, hầm ủ sẽ hoạt động ổn định sau 20 ¸ 30 ngày kể từ lúc bắt đầu vận hành (phụ thuộc vào nhiệt độ, thể tích hầm ủ, nguyên liệu và lượng chất mồi).
4.3.2.Các mẫu hầm ủ
Hầm ủ nắp vòm cố định (Trung Quốc)
Loại hầm này có phần chứa khí được xây dựng ngay trên phần ủ phân Do đó, thể tích của hầm ủ bằng tổng thể tích của 2 phần này Hầm ủ có dạng bán cầu được chôn hoàn toàn dưới đất để tiết kiệm diện tích và ổn định nhiệt độ Phần chứa khí
Trang 15được tô bằng nhiều lớp vữa để bảo đảm yêu cầu kín khí Ở phần trên có một nắp đậy được hàn kín bằng đất sét, phần nắp nầy giúp cho thao tác làm sạch hầm ủ khi
các chất rắn lắng đầy hầm.
Loại hầm ủ nầy rất phổ biến ở Trung Quốc, nhưng có nhược điểm là phần chứa khí rất khó xây dựng và bảo đảm độ kín khí do đó hiệu suất của hầm ủ thấp Gần đây các nhà khoa học của Đức và Thái Lan hợp tác trong việc phát triển hầm ủ Biogas ở Thái Lan đã dùng kỹ thuật CAD (Computer Aid Design) để tính toán lại kết cấu của hầm ủ nầy và cho ra đời mẫu hầm TG - BP (Thai German - Biogas Program) Loại hầm ủ nầy đã được Trung Tâm Năng Lượng Mới, Đại Học Cần Thơ thử nghiệm và phát triển có hiệu quả ở miền Nam Việt Nam trong việc xử lý phân người và gia súc.
Hầm ủ nắp trôi nổi (Ấn Độ)