1. Trang chủ
  2. » Đề thi

đề thi vào lớp 10 môn toán THPT tỉnh nghệ an năm 2014-2015

3 2,2K 22

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 3
Dung lượng 135,5 KB

Nội dung

Tính vận tốc của mỗi xe.. b Chứng minh rằng phương trình luôn có hai nghiệm phân biệt với mọi m.. 3,0 điểm Cho điểm A nằm bên ngoài đường tròn O.. Từ A kẻ hai tiếp tuyến AB, AC với đường

Trang 1

SỞ GIÁO DỤC VÀ ĐÀO TẠO

NGHỆ AN

KỲ THI TUYỂN SINH VÀO LỚP 10 THPT

NĂM HỌC 2014 – 2015

Môn thi: TOÁN

Thời gian làm bài : 120 phút(không kể thời gian giao đề)

Câu 1 (2,5 điểm)

1

x A

x

= − ÷÷

a) Tìm điều kiện xác định và rút biểu thức A

b) Tìm tất cả các giá trị của x để A< 0

Câu 2 (1,5 điểm)

Một ô tô và một xe máy ở hai địa điểm A và B cách nhau 180 km, khởi hành cùng một lúc đi ngược chiều nhau và gặp nhau sau 2 giờ Biết vận tốc của ô tô lớn hơn vận tốc của xe máy 10 km/h Tính vận tốc của mỗi xe

Câu 3 (2,0 điểm)

Cho phương trình x2 + 2(m+ 1)x− 2m4 +m2 = 0 (m là tham số)

a) Giải phương trình khi m = 1

b) Chứng minh rằng phương trình luôn có hai nghiệm phân biệt với mọi m

Câu 4 (3,0 điểm)

Cho điểm A nằm bên ngoài đường tròn (O) Từ A kẻ hai tiếp tuyến AB, AC với đường tròn đó (B, C là các tiếp điểm) Gọi M là trung điểm của AB Đường thẳng

MC cắt đường tròn (O) tại N (N khác C)

a) Chứng minh ABOC là tứ giác nội tiếp

b) Chứng minh MB2 =MN MC.

c) Tia AN cắt đường tròn (O) tại D ( D khác N) Chứng minh: ·MAN= ·ADC

Câu 5 (1,0 điểm)

Cho ba số thực dương x y, , z thỏa mãn x y z+ ≤ Chứng minh rằng:

( 2 2 2)

2 2 2

1 1 1 27

2

x y z

x y z

- Hết

-Họ và tên thí sinh Số báo danh

ĐỀ CHÍNH THỨC

Trang 2

HƯỚNG DẪN GIẢI Câu 1 a) Điều kiện 0

1

x x

 ≠

( 1)(1 1) : 1 1 ( 1)(1 1). 1 1 1 1

A

b) A <0 thì: <=> 1

1

x− < 0

=> x- 1 < 0 => x < 1 => x < 1

Kết hợp ĐK: để A < 0 thì 0 ≤ x < 1

Câu 2:

Gọi vận tốc của ô tô là x (km/h)

vân tốc của xe máy là y (km/h) ( Đk: x > y> 0, x > 10)

Ta có phương trình : x – y = 10 (1)

Sau 2 giờ ô tô đi được quãng đường là 2x (km)

Sau 2 giờ xe máy đi được quãng đường là: 2y (km)

thì chúng gặp nhau, ta có phương trình: 2x + 2y = 180 hay x + y = 90 (2)

Từ (1), (2) ta có hệ phương trình : x y x y− =+ =1090⇔x y==5040

Vậy vận tốc của ô tô là 50 km/h và vận tốc của xe máy là: 40 km/h

Câu 3 a) Khi m = 1 phương trình trở thành: x2 + 4x – 1 = 0

∆’ = 22 +1 = 5 >0

=> Phương trình có 2 nghiệm phân biệt: x1 = − − 2 5; x2 = − + 2 5

b) Ta có:

Nếu:

2 1

0 2 ' 0

1 0 2

m m

 − =



∆ = ⇔ 

 + =



vô nghiệm

Do đó ∆ > ∀' 0, m Vậy phương trình luôn có hai nghiệm phân biệt với mọi m.

Câu 4

D N

M

C

B

O A

a) Xét tứ giác ABOC có :

Trang 3

·ABO ACO+ · =90o +90o =180o nên tứ giác ABOC nội tiếp

b) Xét ∆MBN và ∆MCB có :

¶M chung

MBN· =MCB· (cùng chắn cung BN)

=> ∆MBN ∼∆MCB (g-g) nên 2

.

c) Xét ∆MAN và ∆MCA có góc ¶M chung

Vì M là trung điểm của AB nên MA MB=

Theo câu b ta có: MA2 =MN MC. MA MC

Do đó : ∆MAN ∼∆MCA (c-g-c)

=> ·MAN =MCA NCA· =· (1)

mà: ·NCA NDC= · ( cùng chắn cung NC) (2)

Từ (1) và (2) suy ra: MAN· =·NDC hay MAN· =·ADC

Áp dụng bất đẳng thức Cô si cho hai số dương ta có: x22 y22 2 x22.y22 2

y + xy x =

15 1 1 5

VT

Lại áp dụng bất đẳng thức Cô si ta có: 22 22 2 22. 22 1

z + xz x =

1

2

z + yz y =

( ) 2

x + yxyx y = x y

+ +

nên

2

.

(vì x y z+ ≤ )

Suy ra : 5 1 1 15 27

VT ≥ + + + = Đẳng thức xảy ra khi

2

z

x= =y Vậy ( 2 2 2)

2 2 2

1 1 1 27

2

x y z

x y z

Ngày đăng: 29/07/2015, 13:36

TỪ KHÓA LIÊN QUAN

w