Câu 1: Cho a + b = 1. Tính giá trị biểu thức: M = 2(a 3 + b 3 ) – 3(a 2 + b 2 ) Câu 2: Chứng minh rằng: a b c 1, 1 ab+a+1 bc+a+1 ac+c+1 + + = biết abc = 1. 2 * 4 2 n n 1 2, (n N ) n n 1 + + ∈ + + không là phân số tối giản. Câu 3: Cho biểu thức: 2 2 2 2 2 1 1 1 1 1 P a a a 3a 2 a 5a 6 a 7a 12 a 9a 20 = + + + + − − + − + − + − + a. Tìm điều kiện để P xác định. b. Rút gọn P. c. Tính giá trị của P biết a 3 - a 2 + 2 = 0 Câu 4 * : Tìm số tự nhiên n để đa thức: A(x) = x 2n + x n +1 chia hết cho đa thức x 2 + x + 1 Câu 5: Cho hình bình hành ABCD có AD = 2AB. Kẻ đường thẳng qua C và vuông góc với AB tại E. Gọi M là trung điểm của AD. a. Chứng minh: tam giác EMC cân. b. Chứng minh: Góc BAD = 2 góc AEM. c. Gọi P là một điểm thuộc đoạn thẳng EC. Chứng minh tổng khoảng cách từ P đến Me và đến MC không phụ thuộc vào vị trí của P trên EC. . EMC cân. b. Chứng minh: Góc BAD = 2 góc AEM. c. Gọi P là một điểm thuộc đoạn thẳng EC. Chứng minh tổng khoảng cách từ P đến Me và đến MC không phụ thuộc vào vị trí của P trên EC.