Câu 1: ( 4 điểm) Cho biểu thức: 2 2 2 2 2 2 a b a b P ab ab b ab a + = + − + − a. Rút gọn P. b. Có giá trị nào của a, b để P = 0? c. Tính giá trị của P biết a, b thỏa mãn điều kiện: 3a 2 + 3b 2 = 10ab và a > b > 0 Câu 2: ( 3,5 điểm) Chứng minh rằng: a. (n 2 + n -1) 2 – 1 chia hết cho 24 với mọi số nguyên n. b. Tổng các lập phương của 3 số nguyên liên tiếp thì chia hết cho 9. Câu 3: ( 3 điểm) Giải phương trình: x 4 + x 2 + 6x – 8 = 0 Câu 4: ( 3 điểm) Tìm nghiệm nguyên của phương trình: x 2 = y( y +1)(y + 2)(y + 3) Câu 5: (7,5 điểm) Cho tam giác ABC, O là giao điểm của các đường trung tực trong tam giác, H là trực tâm của tam giác. Gọi P, R, M theo thứ tự là trung điểm các cạnh AB, AC, BC. Gọi Q là trung điểm đoạn thẳng AH. a. Xác định dạng của tứ giác OPQR? Tam giác ABC phải thỏa mãn điều kiện gì để OPQR là hình thoi? b. Chứng minh AQ = OM. c. Gọi G là trọng tâm của tam giác ABC. Chứng minh H, G, O thẳng hàng. d. Vẽ ra ngoài tam giác ABC các hình vuông ABDE, ACFL. Gọi I là trung điểm của EL. Nếu diện tích tam giác ABC không đổi và BC cố định thì I di chuyển trên đường nào? . hết cho 24 với mọi số nguyên n. b. Tổng các lập phương của 3 số nguyên liên tiếp thì chia hết cho 9. Câu 3: ( 3 điểm) Giải phương trình: x 4 + x 2 + 6x – 8 = 0 Câu 4: ( 3 điểm) Tìm nghiệm