1. Trang chủ
  2. » Luận Văn - Báo Cáo

Ứng dụng mô hình Arima trong dự báo lạm phát Việt Nam

26 779 4

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 26
Dung lượng 437,43 KB

Nội dung

BỘ GIÁO DỤC VÀ ĐÀO TẠO ĐẠI HỌC ĐÀ NẴNG ĐẶNG THỊ NGỌC NIN ỨNG DỤNG MÔ HÌNH ARIMA TRONG DỰ BÁO LẠM PHÁT VIỆT NAM Chuyên ngành: Tài chính – Ngân hàng Mã số : 60.34.20 TÓM TẮT LUẬN VĂN THẠC SĨ QUẢN TRỊ KINH DOANH Đà Nẵng – Năm 2015 Công trình được hoàn thành tại ĐẠI HỌC ĐÀ NẴNG Người hướng dẫn khoa học: TS. ĐINH BẢO NGỌC Phản biện 1: TS. Đặng Tùng Lâm Phản biện 2: GS.TS. Dương Thị Bình Minh Luận văn đã được bảo vệ trước Hội đồng chấm Luận văn tốt nghiệp Thạc sĩ Quản trị kinh doanh họp tại Đại Học Đà Nẵng vào ngày 26 tháng 01 năm 2015. Có thể tìm hiểu Luận văn tại: - Trung tâm Thông tin - Học liệu, Đại học Đà Nẵng - Thư viện trường Đại học Kinh tế, Đại học Đà Nẵng 1 MỞ ĐẦU 1. Tính cấp thiết của đề tài Lạm phát thường có tác động tiêu cực đến phát triển kinh tế- xã hội. Tuy nhiên, nếu nền kinh tế thích ứng được với sự thay đổi của lạm phát thì có thể hạn chế thiệt hại do lạm phát gây ra cũng như khai thác mặt tích cực của lạm phát trong một số trường hợp. Điều này đòi hỏi lạm phát phải được dự đoán trước. Song, những biến động kinh tế trong và ngoài nước sẽ có những ảnh hưởng không nhỏ đến mục tiêu lạm phát từ nay đến năm 2015. Mục tiêu Kế hoạch Phát triển Kinh tế - xã hội năm 2014 và dự kiến cho năm 2015 của Bộ kế hoạch và Đầu tư là kiểm soát lạm phát ở mức khoảng 7% năm 2014 và khoảng 5% năm 2015. Theo dự báo của Ernst & Young (2/2014), lạm phát Việt Nam năm 2014 là 6.5% và năm 2015 là 6%. Dựa trên nhận định nhu cầu tiêu dùng trong nước giảm, nguồn cung thực phẩm cao và giá nhiên liệu toàn cầu ổn định, Ngân hàng Phát triển Châu Á (ADB) lại đưa ra kì vọng về lạm phát Việt Nam trong năm 2014 là khoảng 4.5% và năm 2015 là 5.5%. Gần đây nhất, trong Báo cáo triển vọng kinh tế khu vực Đông Á Thái Bình Dương, Ngân hàng thế giới (WB) dự báo lạm phát Việt Nam là 4.5% năm 2014 và 5% năm 2015. Trước những nhận định khác nhau như vậy về lạm phát của Việt Nam năm 2014, 2015, việc xây dựng một mô hình phù hợp để dự báo lạm phát Việt Nam là một điều cần thiết, nhằm đưa ra con số dự báo độc lập với các dự báo đã dược công bố, hỗ trợ các nhà hoạch định chính sách cũng như các doanh nghiệp có căn cứ lập kế hoạch phát triển cùng những giải pháp thích hợp để phòng ngừa và tối thiểu hóa thiệt hại do lạm phát gây ra. Lạm phát có thể dược dự báo bằng các mô hình như: Mô hình đường cong Phillips, mô hình lý thuyết tiền tệ truyền thống, mô hình hiệu chỉnh sai số, mô hình Tự hồi quy tích hợp trung bình trượt 2 (ARIMA), mô hình Tự hồi quy vecto, … Trong đó, mô hình ARIMA chỉ dùng các giá trị trong quá khứ của chính biến số cần dự báo nên nó được dùng khá phổ biến và tỏ ra hiệu quả hơn trong việc dự báo ngắn hạn các chuỗi thời gian như tỉ giá, lạm phát, tăng trưởng, … so với các mô hình khác. Do vậy, đề tài: “Ứng dụng mô hình ARIMA trong dự báo lạm phát Việt Nam” được lựa chọn để tiến hành nghiên cứu. 2. Mục tiêu nghiên cứu - Hệ thống lại cơ sở lý luận cơ bản về lạm phát và mô hình ARIMA. - Tổng quan thực tiễn lạm phát ở Việt Nam trong giai đoạn từ tháng 1/2005 đến tháng 10/2014, để thấy được phần nào quy luật diễn biến phức tạp của lạm phát tại một nước đang phát triển như nước ta. - Xây dựng mô hình ARIMA phù hợp để dự báo lạm phát Việt Nam trong thời gian tới từ tháng 11/2014 đến tháng 6/2015. Từ đó, đề xuất một số khuyến nghị đối với Chính phủ và Ngân hàng Nhà nước trong điều hành chính sách vĩ mô. 3. Câu hỏi nghiên cứu 4. Đối tượng và phạm vi nghiên cứu Đối tượng nghiên cứu: Đề tài tập trung nghiên cứu việc vận dụng mô hình ARIMA xem xét chuỗi chỉ số giá tiêu dùng CPI (chỉ số được sử dụng để phản ánh lạm phát ở Việt Nam) của cả nước được quan sát theo tháng từ tháng 1/2005 đến tháng 6/2014 nhằm dự báo lạm phát Việt Nam từ tháng 7/2014 đến tháng 6/2015. Trong đó, kết quả dự báo các tháng 7, 8, 9 và 10/2014 được so sánh với giá trị thực để đánh giá dự báo. Phạm vi nghiên cứu: Để xây dựng mô hình ARIMA cho lạm phát Việt Nam, đề tài chỉ sử dụng các dữ liệu chuỗi thời gian trong quá khứ của chỉ số 3 CPI từ tháng 1/2005 đến tháng 6/2014. Trên cơ sở mô hình xây dựng được, nghiên cứu đưa ra dự báo lạm phát Việt Nam trong ngắn hạn, từ tháng 11/2014 đến tháng 6/2015. Như đã nói ở trên, các tháng 7/2014-10/2014 được dùng để đánh giá dự báo. 5. Phương pháp nghiên cứu: Đề tài vận dụng phương pháp Box-Jenkins xây dựng mô hình ARIMA dự báo lạm phát với quy trình gồm 4 bước: Nhận dạng mô hình; Ước lượng mô hình; Kiểm tra mô hình và Dự báo. Dữ liệu mẫu được thu thập và tính toán trên cơ sở nguồn dữ liệu sơ cấp từ Tổng cục Thống kê Việt Nam kết hợp phương pháp nội suy.Công cụ hỗ trợ cho nghiên cứu là phần mềm Excel và Eview. Ngoài ra, các phương pháp khác như: phương pháp định tính, phân tích thống kê mô tả, tổng hợp, so sánh cũng được sử dụng nhằm làm rõ những vấn đề nghiên cứu. 6. Bố cục của đề tài Chương 1: Cơ sở lý luận về lạm phát và mô hình ARIMA. Chương 2: Thiết kế nghiên cứu dự báo lạm phát Việt Nam bằng mô hình ARIMA. Chương 3: Kết quả nghiên cứu dự báo lạm phát Việt Nam và một số khuyến nghị. 7. Ý nghĩa khoa học và thực tiễn của đề tài 4 CHƯƠNG 1 CƠ SỞ LÝ LUẬN VỀ LẠM PHÁT VÀ MÔ HÌNH ARIMA 1.1. CƠ SỞ LÝ LUẬN VỀ LẠM PHÁT 1.1.1. Khái niệm về lạm phát Lạm phát là sự gia tăng liên tục của mức giá chung hay sự giảm giá liên tục sức mua của đồng tiền. Đây là khái niệm hiện nay được hầu hết tác giả trong và ngoài nước sử dụng. Với khái niệm này, biểu hiện của lạm phát là giá cả của hầu hết các hàng hóa trong nền kinh tế tăng lên một cách đồng thời và liên tục trong một khoảng thời gian đủ dài để có thể nhận rõ xu hướng này. Lạm phát không phải là hiện tượng giá cả của một vài hàng hóa hay nhóm hàng hóa nào đó tăng lên mà là sự tăng lên của mức giá chung của nền kinh tế. Ngoài ra, việc tăng giá mang tính đột biến hay ngắn hạn không được xem là biểu hiện của lạm phát. 1.1.2. Phân loại lạm phát a. Phân loại lạm phát theo căn cứ định lượng b. Phân loại lạm phát theo căn cứ định tính 1.1.3. Đo lường lạm phát Lạm phát được đo lường bằng chỉ tiêu tỉ lệ lạm phát, thể hiện qua chỉ số giá cả. Chỉ số giá cả là tỉ lệ giữa mức giá cả trung bình ở kỳ tính toán so với mức giá cả trung bình ở kỳ gốc của một nhóm hàng hóa nhất định. Tỉ lệ lạm phát = [mức giá cả chung trung bình (t) – mức giá cả chung trung bình (t 0 )] / mức giá cả chung trung bình (t 0 ). Chỉ số giá tiêu dùng (Consumer Price Index – CPI) được sử dụng để tính tỉ lệ lạm phát của phần lớn quốc gia trên thế giới. 5 1.1.4. Tác động của lạm phát a. Tác động tiêu cực của lạm phát b. Tác động tích cực của lạm phát 1.2 MỘT SỐ MÔ HÌNH NGHIÊN CỨU VỀ LẠM PHÁT 1.2.1. Một số mô hình lý thuyết về lạm phát a. Mô hình đường cong Phillips b. Mô hình lạm phát do chi phí đẩy c. Mô hình lạm phát do cầu kéo d. Mô hình lạm phát theo quan điểm kì vọng e. Mô hình lạm phát theo trường phái tiền tệ 1.2.2. Một số mô hình định lượng dự báo lạm phát phổ biến a. Mô hình dự báo chuỗi thời gian b. Mô hình nhân quả c. Mô hình mạng thần kinh (Neural Network) 1.3. CƠ SỞ LÝ LUẬN VỀ MÔ HÌNH ARIMA 1.3.1. Giới thiệu chuỗi thời gian trong kinh tế a. Định nghĩa và các thành phần của chuỗi thời gian Chuỗi thời gian là một dãy các giá trị của một đại lượng nào đó được quan sát theo trình tự thời gian. Ta đặt Y t là giá trị quan sát của chuỗi ở thời đoạn (hoặc thời điểm) t, với t =1; 2; 3; …; n. Các thành phần của dữ liệu chuỗi thời gian trong kinh tế gồm: - Thành phần xu thế (Trend component). - Thành phần mùa (Seasonality). - Thành phần chu kì (Cyclical). - Thành phần ngẫu nhiên (Irregular). b. Quá trình ngẫu nhiên(Stochastic process) * Định nghĩa quá trình ngẫu nhiên: * Một số quá trình ngẫu nhiên giản đơn: - Nhiễu trắng (White noise): 6 Nhiễu trắng là một quá trình ngẫu nhiên có trung bình bằng 0, phương sai đồng nhất và không tương quan. - Bước ngẫu nhiên (Random walk): - Bước ngẫu nhiên với bước nhảy (Random walk with drift): c. Định nghĩa chuỗi thời gian dừng Quá trình ngẫu nhiên {Y t } được xem là dừng mạnh (dừng theo nghĩa hẹp) nếu {Y t } có quy luật phân phối xác suất độc lập với thời gian, tức là trung bình và phương sai của quá trình không thay đổi theo thời gian và hiệp phương sai giữa hai thời đoạn chỉ phụ thuộc vào khoảng cách độ trễ về thời gian giữa các thời đoạn này chứ không phụ thuộc vào thời điểm thực tế mà hiệp phương sai được tính. Quá trình được gọi là dừng yếu (dừng theo nghĩa rộng) khi thỏa mãn điều kiện (1.8) dưới đây: Chuỗi thời gian không thỏa mãn cả 3 điều kiện ở (1.8) là chuỗi không dừng. Theo định nghĩa về quá trình dừng, ta thấy nhiễu trắng là chuỗi dừng, bước ngẫu nhiên không có tính dừng. 1.3.2. Một số công cụ cơ bản trong phân tích chuỗi thời gian a. Toán tử trễ và toán tử sai phân b. Hàm tự tương quan (ACF) c. Hàm tự tương quan riêng phần (PACF) 1.3.3 Tổng quan về mô hình tự hồi quy tích hợp trung bình trượt (ARIMA) Một phương pháp rất phổ biến trong dự báo chuỗi thời gian là lập mô hình tự hồi quy tích hợp trung bình trượt. Mô hình tự hồi ï î ï í ì = "¥< "= - )(),( ,)( ,)( kYYCov tYVar tYE ktt t t g m (1.8) 7 quy tích hợp trung bình trượt (Autoregressive Intergrated Moving Average – ARIMA) là mô hình dự báo chuỗi thời gian đơn biến được Box, G.E.P., và G.M Jenkins giới thiệu vào năm 1976 dựa trên ý tưởng cho rằng, chuỗi thời gian có thể được giải thích bằng cách kết hợp các hành vi hiện tại và trong quá khứ với các yếu tố ngẫu nhiên (gọi là nhiễu) ở hiện tại và quá khứ. Thực chất, ARIMA là tổng hợp của các mô hình: mô hình tự hồi quy (AR), mô hình tích hợp (I) và mô hình trung bình trượt (MA). Chuỗi dữ liệu nghiên cứu bằng mô hình ARIMA phải có tính dừng. a. Mô hình tự hồi quy (AR) Quá trình chuỗi tự hồi quy bậc p được kí hiệu là AR(p) có phương trình (1.19): Y t = m + 1 f Y t-1 + 2 f Y t-2 + … + p f Y t-p + t e (1.19) trong đó t e là nhiễu trắng. b. Mô hình trung bình trượt (MA) Quá trình trung bình trượt bậc q được kí hiệu là MA(q) có phương trình (1.23): Y t = m + 1 q 1-t e + 2 q 2-t e + … + q q qt- e + t e (1.23) trong đó t e là nhiễu trắng. c. Mô hình Tự hồi quy tích hợp trung bình trượt (ARIMA) Mô hình tự hồi quy bậc p trung bình trượt bậc q [kí hiệu là ARMA (p, q)] là mô hình tổng hợp từ AR(p) và MA(q) có phương trình (1.27) sau: Y t = m + 1 f Y t-1 + 2 f Y t-2 +…+ p f Y t-p + 1 q 1-t e + 2 q 2-t e +… + q q qt- e + t e (1.27) trong đó t e là nhiễu trắng. ARMA(p, q) có thể viết lại dưới dạng toán tử trễ ở phương trình (1.28): (1 – 1 f L – 2 f L 2 - … - p f L p )Y t = m + (1 + 1 q L + 2 q L 2 + … + q q L q ) t e (1.28) 8 Mô hình ARMA chỉ áp dụng để nghiên cứu các chuỗi thời gian dừng. Tuy nhiên trong thực tế, phần lớn các chuỗi thời gian là chuỗi không dừng, ta có thể lấy sai phân d lần (1-L) d để biến đổi chuỗi Y t thành chuỗi dừng. Khi đó, chuỗi Y t được xem là chuỗi tích hợp bậc d, kí hiệu là I(d). Áp dụng chuỗi ARMA(p, q) cho chuỗi tích hợp bậc d, ta được chuỗi tự hồi quy tích hợp trung bình trượt, và mô hình là ARIMA(p, d, q), có dạng như phương trình (1.29) sau: p f (L)(1 – L) d Y t = q q (L) t e (1.29) trong đó t e là nhiễu trắng và d là bậc sai phân của Y t . Trường hợp chuỗi Y t có yếu tố mùa với chu kì mùa là s thời đoạn, phương pháp đơn giản nhất để loại bỏ yếu tố mùa trong chuỗi là lấy sai phân thứ s của chuỗi Y t (hay còn được gọi là sai phân mùa (1-L S )). Áp dụng chuỗi ARIMA(p, d, q) cho chuỗi sai phân mùa bậc D, tự hồi quy mùa bậc P, trung bình trượt mùa bậc Q, ta được mô hình ARIMA(p, d, q)(P, D, Q) s có dạng như phương trình (1.30): p f (L) P F (L s )(1 – L) d (1- L s ) D Y t = q q (L) Q Q (L s ) t e + m (1.30) trong đó t e là nhiễu trắng. Hàm tự tương quan và hàm tự tương quan riêng phần của mô hình ARIMA phức tạp hơn so với mô hình AR và MA. KẾT LUẬN CHƯƠNG 1 [...]... NGHIÊN CỨU DỰ BÁO LẠM PHÁT VIỆT NAM BẰNG MÔ HÌNH ARIMA 2.1 TỔNG QUAN VỀ LẠM PHÁT VIỆT NAM 2.1.1 Cách thức đo lường lạm phát tại Việt Nam 2.1.2 Tình hình lạm phát Việt Nam trong giai đoạn từ năm 2005 đến tháng 10/2014 2.2 CƠ SỞ ĐỀ XUẤT VẬN DỤNG MÔ HÌNH ARIMA TRONG DỰ BÁO LẠM PHÁT VIỆT NAM 2.2.1 Sự cần thiết phải áp dụng mô hình định lượng trong dự báo lạm phát tại Việt Nam 2.2.2 Ưu điểm của mô hình ARIMA. .. thấy tính ứng dụng cao của phương pháp Box-Jenkins Do đó, đề tài vẫn sử dụng phương pháp này để lập mô hình và dự báo lạm phát Việt Nam trong 12 tháng tới 2.3 THIẾT KẾ NGHIÊN CỨU DỰ BÁO LẠM PHÁT VIỆT NAM BẰNG MÔ HÌNH ARIMA 2.3.1 Phương pháp nghiên cứu Đề tài sử dụng phương pháp Box-Jenkins để xây dựng mô hình ARIMA dự báo lạm phát Việt Nam Phương pháp này tiến hành 10 dự báo lạm phát chỉ dựa trên việc... các mô hình khác và sự phù hợp của mô hình ARIMA với thực tiễn Việt Nam 2.2.3 Một số nghiên cứu thực nghiệm về dự báo lạm phát bằng mô hình ARIMA * Nghiên cứu ở nước ngoài: * Nghiên cứu tại Việt Nam: Như vậy, trước sự cần thiết phải ứng dụng phương pháp định lượng vào dự báo lạm phát tại Việt Nam, với những ưu cùng tính hiệu quả trong dự báo ngắn hạn và sự phù hợp với thực tiễn Việt Nam, mô hình ARIMA. .. kiện để xây dựng mô hình ARIMA cho chuỗi CPI trong thời kì 9/2011-6/2014 Vậy nên, đề tài vẫn sẽ sử dụng mô hình ban đầu là ARIMA( 1; 1; 0)(2; 0; 2)12 đã loại bỏ biến SMA(12) cho chuỗi logCPI để dự báo lạm phát Việt Nam trong 12 tháng tới 3.2.5 Đánh giá dự báo Mô hình ARIMA tìm được để dự báo lạm phát Việt Nam là ARIMA( 1; 1; 0) (2; 0; 2)12 đã loại bỏ biến SMA(12) Đề tài tiến hành dự báo trong mẫu để... của chuỗi dữ liệu lạm phát (do thay đổi chính sách hoặc cú sốc kinh tế) hay không Nếu có sự thay đổi cấu trúc giữa các thời kì, đề tài sẽ thực hiện dự báo theo 2 hướng, dự báo mô hình ban đầu và dự báo mô hình kể từ điểm gãy cuối cùng Từ đó, ta so sánh và đưa ra nhận định mô hình nào là mô hình phù hợp nhất để dự báo lạm phát Việt Nam e Dự báo Bước cuối cùng, dựa vào mô hình ARIMA xây dựng được, đề tài... thời gian là tương đối ổn định Dù vậy, mô hình cũng đã cung cấp được một xu hướng biến đổi tương đối hợp lý của lạm phát qua các tháng trong năm để phục vụ cho công tác dự báo Luận văn này được thực hiện với mong muốn tìm hiểu rõ hơn về mô hình dự báo ARIMA, về tổng quan tình hình lạm phát Việt Nam, đồng thời áp dụng mô hình ARIMA cho việc dự báo lạm phát ở Việt Nam trong thời gian tới ... biết xu hướng lạm phát tại Việt Nam trong thời gian tới, ngoài kết quả dự báo từ mô hình ARIMA, ta cũng nên theo dõi Chỉ số lòng tin tiêu dùng của các nước ASEAN vì lạm phát của Việt Nam sẽ phụ thuộc nhiều hơn vào nền kinh tế khu vực 3.3.2 Quan điểm chính sách và mục tiêu lạm phát của Việt Nam năm 2015 3.3.3 Một số khuyến nghị về chính sách Mô hình nghiên cứu đưa ra dự báo lạm phát Việt Nam năm 2014... liệu trong thời kì từ tháng 9/2011 đến nay, nên đề tài vẫn tiếp tục sử dụng mô hình dự báo đã xây dựng ban đầu Tuy nhiên, trong tương lai, khi chuỗi dữ liệu CPI có độ dài tương đối, mô hình ARIMA cho lạm phát Việt Nam nên được xây dựng dựa trên chuỗi dữ liệu CPI được quan sát từ tháng 9/2011 đến thời điểm nghiên cứu để phản ánh đúng nhất diễn biến lạm phát trong thời gian tới Thứ tư, dự báo lạm phát. .. báo Thứ nhất, mặc dù dự báo hậu nghiệm cho khoảng tin cậy của dự báo chứa giá trị thực của CPI Nhưng càng dự báo về sau, sai số dự báo càng tăng Do đó, mô hình dự báo nên được sử dụng trong ngắn hạn, còn dự báo trong dài hạn, mô hình chỉ mang tính chất tham khảo trong các quyết định của nhà làm chính sách, nhà kinh doanh và người tiêu dùng 22 Thứ hai, khi sử dụng phương trình để dự báo một thời đoạn... xác định giá trị dự báo điểm và khoảng tin cậy của dự báo cho chuỗi lạm phát bằng phần mềm Eviews với độ tin cậy là 95% và k=1.96 như sau: Ù Dự báo điểm: Yt Ù Ù Ù Khoảng tin cậy: Yt -k s (e t ) < Yt < Yt + k s (e t ) (2.11) 2.3.2 Phương pháp thu thập và xử lí số liệu Đề tài tiến hành nghiên cứu dự báo lạm phát Việt Nam theo phương pháp Box-Jenkins Theo đó, lạm phát Việt Nam được dự báo dựa trên việc nghiên . VẬN DỤNG MÔ HÌNH ARIMA TRONG DỰ BÁO LẠM PHÁT VIỆT NAM 2.2.1. Sự cần thiết phải áp dụng mô hình định lượng trong dự báo lạm phát tại Việt Nam 2.2.2. Ưu điểm của mô hình ARIMA so với các mô hình. NGHIÊN CỨU DỰ BÁO LẠM PHÁT VIỆT NAM BẰNG MÔ HÌNH ARIMA 2.1. TỔNG QUAN VỀ LẠM PHÁT VIỆT NAM 2.1.1. Cách thức đo lường lạm phát tại Việt Nam 2.1.2. Tình hình lạm phát Việt Nam trong giai. NGHIÊN CỨU VỀ LẠM PHÁT 1.2.1. Một số mô hình lý thuyết về lạm phát a. Mô hình đường cong Phillips b. Mô hình lạm phát do chi phí đẩy c. Mô hình lạm phát do cầu kéo d. Mô hình lạm phát theo

Ngày đăng: 13/07/2015, 12:39

TỪ KHÓA LIÊN QUAN

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN

w