ĐỀ THI HỌC SINH GIỎI TINH BẮC GIANG * Môn thi : Toán * Thời gian : 150 phút * Khóa thi : 2002 - 2003 Câu 1 : (4 điểm) a) Tìm phân số tối giản lớn nhất mà khi chia các phân số cho phân số ấy ta được kết quả là các số tự nhiên. b) Cho a là một số nguyên có dạng : a = 3b + 7. Hỏi a có thể nhận những giá trị nào trong các giá trị sau ? Tại sao ? a = 11 ; a = 2002 ; a = 2003 ; a = 11570 ; a = 22789 ; a = 29563 ; a = 299537. Câu 2 : (6 điểm) 1) Cho : A = 1 - 2 + 3 - 4 + + 99 - 100. a) Tính A. b) A có chia hết cho 2, cho 3, cho 5 không ? c) A có bao nhiêu ước tự nhiên ? Bao nhiêu ước nguyên ? 2) Cho A = 1 + 2 + 2 2 + 2 3 + 2 4 + + 2 2001 + 2 2002 và B = 2 2003 . So sánh A và B. 3) Tìm số nguyên tố P để P + 6 ; P + 8 ; P + 12 ; P + 14 đều là các số nguyên tố. Câu 3 : (4 điểm) Có 3 bình, nếu đổ đầy nước vào bình thứ nhất rồi rót hết lượng nước đó vào 2 bình còn lại, ta thấy : Nếu bình thứ hai đầy thì bình thứ ba chỉ được 1/3 dung tích. Nếu bình thứ ba đầy thì bình thứ hai chỉ được 1/2 dung tích. Tính dung tích của mỗi bình, biết rằng tổng dung tích ba bình là 180 lít. Câu 4 : (4 điểm) Cho tam giác ABC có BC = 5,5 cm. Điểm M thuộc tia đối của tia CB sao cho CM = 3 cm. a) Tính độ dài BM. b) Biết BAM = 80 0 , BAC = 60 0 c) Tính độ dài BK thuộc đoạn BM biết CK = 1 cm. Câu 5 : (2 điểm) Cho a = 1 + 2 + 3 + + n và b = 2n + 1 (với n thuộc N, n > 1). Chứng minh : a và b là hai số nguyên tố cùng nhau. . ĐỀ THI HỌC SINH GIỎI TINH BẮC GIANG * Môn thi : Toán * Thời gian : 150 phút * Khóa thi : 2002 - 2003 Câu 1 : (4 điểm) a). sao ? a = 11 ; a = 2002 ; a = 2003 ; a = 11570 ; a = 227 89 ; a = 295 63 ; a = 299 537. Câu 2 : (6 điểm) 1) Cho : A = 1 - 2 + 3 - 4 + + 99 - 100. a) Tính A. b) A có chia hết cho 2, cho 3, cho 5. 2 2002 và B = 2 2003 . So sánh A và B. 3) Tìm số nguyên tố P để P + 6 ; P + 8 ; P + 12 ; P + 14 đều là các số nguyên tố. Câu 3 : (4 điểm) Có 3 bình, nếu đổ đầy nước vào bình thứ nhất rồi rót hết