ĐỀ THI HỌC SINH GIỎI LỚP 9 TỈNH BẮC NINH * Môn thi : Toán * Thời gian : 150 phút * Khóa thi : 2002 - 2003 Bài 1 : (2,5 điểm) 1) Tìm các số tự nhiên x ; y thỏa mãn : x 2 + 3 y = 3026. 2) Tìm các số nguyên x ; y thỏa mãn : Bài 2 : (3,5 điểm) 1) Tìm các giá trị của m để phương trình sau có hai nghiệm phân biệt đều lớn hơn m : x2 + x + m = 0. 2) Tìm các giá trị của a để phương trình có hai nghiệm phân biệt : 4x.|x| + (a - 7)x + 1 = 0. 3) Tìm x thỏa mãn : Bài 3 : (3 điểm) Cho đường tròn tâm O bán kính R và dây AB cố định trương cung 120 o . Lấy C thay đổi trên cung lớn AB (C không trùng A và B) ; M trên cung nhỏ AB (M không trùng A và B). Hạ ME, MF thứ tự vuông góc với AC và BC. 1) Cho M cố định, hãy chứng minh EF luôn đi qua điểm cố định khi C thay đổi. 2) Cho M cố định, hãy chứng minh giá trị không thay đổi khi C thay đổi. 3) Khi M thay đổi, hạ MK vuông góc với AB. Hãy xác định vị trí của M sao cho đạt giá trị nhỏ nhất. Bài 4 : (1 điểm) Cho tam giác đều ABC. Lấy điểm M ngoài tam giác sao cho MA = ; MB = 2 (cùng đơn vị đo độ dài với cạnh tam giác) ; góc AMC = 15 o (tia CM nằm giữa hai tia CA và CB). Tính độ dài CM và số đo góc BMC. . ĐỀ THI HỌC SINH GIỎI LỚP 9 TỈNH BẮC NINH * Môn thi : Toán * Thời gian : 150 phút * Khóa thi : 2002 - 2003 Bài 1 : (2,5 điểm) 1). mãn : Bài 2 : (3,5 điểm) 1) Tìm các giá trị của m để phương trình sau có hai nghiệm phân biệt đều lớn hơn m : x2 + x + m = 0. 2) Tìm các giá trị của a để phương trình có hai nghiệm phân biệt. với AB. Hãy xác định vị trí của M sao cho đạt giá trị nhỏ nhất. Bài 4 : (1 điểm) Cho tam giác đều ABC. Lấy điểm M ngoài tam giác sao cho MA = ; MB = 2 (cùng đơn vị đo độ dài với cạnh tam giác)