1. Trang chủ
  2. » Giáo án - Bài giảng

mot so bai toan hh kg giai tich trong de thi thu

8 320 0

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 8
Dung lượng 442 KB

Nội dung

1) Trong không gian với hệ toạ độ Oxyz, viết phương trình đường thẳng (d) đi qua M(1;1;1), cắt đường thẳng ( ) 1 2 1 : 3 1 2 + − = = − x y z d và vuông góc với đường thẳng ( ) 2 : 2 2 ; 5 ; 2= − + = − = +d x t y t z t ( ∈t R ). Phương trình mp(P) đi qua M và vuông góc với d 2 : 2 5 2 0− + + =x y z Toạ độ giao điểm A của d 1 và mp(P) là: ( ) 5; 1;3− −A ⇒ d: 1 1 1 3 1 1 − − − = = − x y z 2) Trong không gian với hệ toạ độ Oxyz, viết phương trình đường thẳng (d) vuông góc với mặt phẳng (P): 1 0+ + − =x y z đồng thời cắt cả hai đường thẳng ( ) 1 1 1 : 2 1 1 − + = = − x y z d và 2 ( ) : 1 ; 1;= − + = − = −d x t y z t , với ∈t R . Lấy ( ) 1 ∈M d ⇒ ( ) 1 1 1 1 2 ; 1 ;+ − −M t t t ; ( ) 2 ∈N d ⇒ ( ) 1 ; 1;− + − −N t t Suy ra ( ) 1 1 1 2 2; ;= − − − − uuuur MN t t t t t ( ) ( ) * 1 1 1 . ; 2 2⊥ ⇔ = ∈ ⇔ − − = = − − uuuur r d mp P MN k n k R t t t t t ⇔ 1 4 5 2 5  =    −  =   t t ⇒ 1 3 2 ; ; 5 5 5   = − −  ÷   M ⇒ d: 1 3 2 5 5 5 − = + = +x y z 3) TRƯỜNG THPT ĐẶNG THÚC HỨA THANH CHƯƠNG- NGHỆ AN 1. Trong không gian với hệ tọa độ Oxyz, cho hai đường thẳng d 1 : 1 1 1 2 1 1 x y z+ − − = = − ; d 2 : 1 2 1 1 1 2 x y z− − + = = và mặt phẳng (P): x - y - 2z + 3 = 0. Viết phương trình chính tắc của đường thẳng ∆, biết ∆ nằm trên mặt phẳng (P) và ∆ cắt hai đường thẳng d 1 , d 2 . Gọi A = d 1 ∩(P) suy ra A(1; 0 ; 2) ; B = d 2 ∩ (P) suy ra B(2; 3; 1) Đường thẳng ∆ thỏa mãn bài toán đi qua A và B. Một vectơ chỉ phương của đường thẳng ∆ là (1;3; 1)u = − r Phương trình chính tắc của đường thẳng ∆ là: 1 2 1 3 1 x y z− − = = − 2. Trong không gian với hệ trục tọa độ Oxyz, cho đường thẳng ∆ : 1 3 1 1 4 x y z− − = = và điểm M(0 ; - 2 ; 0). Viết phương trình mặt phẳng (P) đi qua điểm M song song với đường thẳng ∆ đồng thời khoảng cách giữa đường thẳng ∆ và mặt phẳng (P) bằng 4. Giả sử ( ; ; )n a b c r là một vectơ pháp tuyến của mặt phẳng (P). Phương trình mặt phẳng (P): ax + by + cz + 2b = 0. ng thng i qua im A(1; 3; 0) v cú mt vect ch phng (1;1; 4)u = r T gi thit ta cú 2 2 2 . 4 0 / /( ) (1) | 5 | 4 ( ; ( )) 4 (2) n u a b c P a b d A P a b c = + + = + = = + + r r Th b = - a - 4c vo (2) ta cú 2 2 2 2 2 ( 5 ) (2 17 8 ) - 2 8 0a c a c ac a ac c+ = + + = 4 2 a a v c c = = Vi 4 a c = chn a = 4, c = 1 b = - 8. Phng trỡnh mt phng (P): 4x - 8y + z - 16 = 0. Vi 2 a c = chn a = 2, c = - 1 b = 2. Phng trỡnh mt phng (P): 2x + 2y - z + 4 = 0. 4) THPT lơng tài 2 1. Trong không gian với hệ trục tọa độ Oxyz cho mặt cầu (S) có phơng trình 011642 222 =+++ zyxzyx và mặt phẳng ( ) có phơng trình 2x + 2y z + 17 = 0. Viết phơng trình mặt phẳng ( ) song song với ( ) và cắt (S) theo giao tuyến là đờng tròn có chu vi bằng 6. Do () // () nên () có phơng trình 2x + 2y z + D = 0 (D 17) Mặt cầu (S) có tâm I(1; -2; 3), bán kính R = 5 Đờng tròn có chu vi 6 nên có bán kính r = 3. Khoảng cách từ I tới () là h = 435rR 2222 == Do đó = = =+= ++ ++ (loại) 17D 7D 12D54 )1(22 D3)2(21.2 222 Vậy () có phơng trình 2x + 2y z - 7 = 0 2. Trong không gian với hệ trục tọa độ Oxyz cho tam giác ABC với A(1; 2; 5), B(1; 4; 3), C(5; 2; 1) và mặt phẳng (P): x y z 3 = 0. Gọi M là một điểm thay đổi trên mặt phẳng (P). Tìm giá trị nhỏ nhất của biểu thức 222 MCMBMA ++ Gọi G là trọng tâm của tam giác ABC, suy ra G = 3; 3 8 ; 3 7 Ta có ( ) ( ) ( ) 222 222 GCMGGBMGGAMGMCMBMAF +++++=++= 22222222 GCGBGAMG3)GCGBGA(MG2GCGBGAMG3 +++=++++++= F nhỏ nhất MG 2 nhỏ nhất M là hình chiếu của G lên (P) 33 19 111 333/83/7 ))P(,G(dMG = ++ == 3 64 9 104 9 32 9 56 GCGBGA 222 =++=++ VËy F nhá nhÊt b»ng 9 553 3 64 33 19 .3 2 =+         khi M lµ h×nh chiÕu cña G lªn (P) 5) TRƯỜNG THPT CHUYÊN VĨNH PHÚC 1. Trong không gian với hệ tọa độ Oxyz cho mặt phẳng ( ) P : x y z 1 0+ + − = và hai điểm ( ) ( ) A 1; 3;0 , B 5; 1; 2 .− − − Tìm toạ độ điểm M trên mặt phẳng (P) sao cho MA MB− đạt giá trị lớn nhất. Đặt vt của (P) là: ( ) f x; y;z x y z 1= + + − ta có ( ) ( ) A A A B B B f x ;y ;z f x ;y ;z 0< ⇒ A,B nằm về hai phía so với (P).Gọi ' B đối xứng với B qua (P) ( ) ' B 1; 3;4⇒ − − . ' ' MA MB MA MB AB− = − ≤ Đẳng thức xẩy ra khi ' M, A, B thẳng hàng ⇒ ( ) ' M P AB= ∩ .Mặt khác phương trình ' x 1 t AB : y 3 z 2t = +   = −   = −  ⇒ toạ độ M là nghiệm hệ pt: ( ) x 1 t t 3 y 3 x 2 M 2; 3;6 z 2t y 3 x y z 1 0 z 6 = + = −     = − = −   ⇒ ⇒ − −   = − = −     + + − = =   2. Trong không gian với hệ tọa độ 0xyz cho hai đường thẳng : d 1 : − − = = − 2 1 1 1 2 x y z , d 2 : 2 2 3 x t y z t = −   =   =  Viết phương trình mặt cầu có đường kính là đoạn vuông góc chung của d 1 và d 2 Các véc tơ chỉ phương của d 1 và d 2 lần lượt là 1 u ur ( 1; - 1; 2) và 2 u uur ( - 2; 0; 1) Có M( 2; 1; 0) ∈ d 1 ; N( 2; 3; 0) ∈ d 2 Xét 1 2 ; .u u MN     ur uur uuuur = - 10 ≠ 0Vậy d 1 chéo d 2 Gọi A(2 + t; 1 – t; 2t) ∈ d 1 B(2 – 2t’; 3; t’) ∈ d 2 1 2 . 0 . 0 AB u AB u  =   =   uuurur uuur uur ⇒ 1 3 ' 0 t t  = −    =  ⇒ A 5 4 2 ; ; 3 3 3   −  ÷   ; B (2; 3; 0) Đường thẳng ∆ qua hai điểm A, B là đường vuông góc chung của d 1 và d 2 . Ta có ∆ : 2 3 5 2 x t y t z t = +   = +   =  PT mặt cầu nhận đoạn AB là đường kính có dạng: 2 2 2 11 13 1 5 6 6 3 6 x y z       − + − + + =  ÷  ÷  ÷       6) TRƯỜNG THPT THANH THUỶ 2008-2009 1) Trong không gian với hệ tọa độ Oxyz cho hai đường thẳng : 1 1 1 ( ) : 2 1 1 x y z d − + = = − và 2 2 1 ( ) : 1 1 1 x y z d − + = = − . Viết phương trình mặt phẳng chứa (d 1 ) và hợp với (d 2 ) một góc 30 0 . Giả sử mặt phẳng cần tìm là: 2 2 2 ( ) : 0 ( 0)ax by cz d a b c α + + + = + + > . Trên đường thẳng (d 1 ) lấy 2 điểm: A(1; 0; -1), B(-1; 1; 0). Do ( ) α qua A, B nên: 0 2 0 a c d c a b a b d d a b − + = = −   ⇔   − + + = = −   nên ( ) : (2 ) 0ax by a b z a b α + + − + − = . Yêu cầu bài toán cho ta: 0 2 2 2 2 2 2 1. 1. 1.(2 ) 1 sin 30 2 1 ( 1) 1 . (2 ) a b a b a b a b − + − = = + − + + + − 2 2 2 2 2 3 2 3(5 4 2 ) 21 36 10 0a b a ab b a ab b⇔ − = − + ⇔ − + = Dễ thấy 0b ≠ nên chọn b=1, suy ra: 18 114 21 18 114 21 a a  − =    + =   KL: Vậy có 2 mặt phẳng thỏa mãn: 18 114 15 2 114 3 114 0 21 21 21 x y z + + − + + − = 18 114 15 2 114 3 114 0 21 21 21 x y z − − + + + − = . 2) Trong không gian Oxyz cho tứ diện ABCD biết A(0; 0; 2), B(-2; 2; 0), C(2; 0; 2), ( )DH ABC⊥ và 3DH = với H là trực tâm tam giác ABC. Tính góc giữa (DAB) và (ABC). Trong tam giác ABC, gọi K CH AB= ∩ . Khi đó, dễ thấy ( )AB DCK⊥ . Suy ra góc giữa (DAB) và (ABC) chính là góc DKH∠ .Ta tìm tọa độ điểm H rồi Tính được HK là xong. + Phương trình mặt phẳng (ABC). - Vecto pháp tuyến ( ) [ , ] 0; 4; 4n AB AC= = − − r uuur uuur - (ABC): 2 0y z+ − = . + ( )H ABC∈ nên giả sử ( ; ;2 )H a b b− . Ta có: ( ; ; ), (4; 2; 2).AH a b b BC= − = − uuur uuur ( 2; ; ), ( 2; 2; 2).CH a b b AB= − − = − − uuur uuur Khi đó: . 0 0 2 2 2 0 . 0 BC AH a b a b a b AB CH  = − =   ⇔ ⇔ = = −   − + + = =    uuur uuur uuur uuur Vậy H(-2; -2; 4). + Phương trình mặt phẳng qua H và vuông góc với AB là: 4 0x y z− + − = . Phương trình đường thẳng AB là: 2 x t y t z t =   = −   = +  . Giải hệ: 2 4 0 x t y t z t x y z =   = −   = +   − + − =  ta được x =2/3; y =-2/3, z =8/3. Suy ra: K(2/3;-2/3; 8/3). Suy ra: 2 2 2 2 2 8 96 2 2 4 3 3 3 3 HK       = + + − + + − =  ÷  ÷  ÷       . Gọi ϕ là góc cần tìm thì: tan / 96 /12 6 / 3 arctan( 6 / 3)DH HK ϕ ϕ = = = ⇒ = Vậy arctan( 6 / 3) ϕ = là góc cần tìm. 7) TRƯỜNG THPT CHUYÊN LÊ QUÝ ĐÔN 2009 1. Trong không gian với hệ tọa độ Oxyz, cho đường thẳng (D) có phương trình tham số x 2 t y 2t z 2 2t = − +   = −   = +  .Gọi ∆ là đường thẳng qua điểm A(4;0;-1) song song với (D) và I(- 2;0;2) là hình chiếu vuông góc của A trên (D). Trong các mặt phẳng qua C A B D H K ∆ , hãy viết phương trình của mặt phẳng có khoảng cách đến (D) là lớn nhất. Gọi (P) là mặt phẳng đi qua đường thẳng ∆ , thì ( ) //( )P D hoặc ( ) ( )P D⊃ . Gọi H là hình chiếu vuông góc của I trên (P). Ta luôn có IH IA≤ và IH AH⊥ . Mặt khác ( ) ( ) ( ) ( ) ( ) ( ) , ,d D P d I P IH H P  = =   ∈   Trong mặt phẳng ( ) P , IH IA≤ ; do đó axIH = IA H Am ⇔ ≡ . Lúc này (P) ở vị trí (P 0 ) vuông góc với IA tại A. Vectơ pháp tuyến của (P 0 ) là ( ) 6;0; 3n IA= = − r uur , cùng phương với ( ) 2;0; 1v = − r . Phương trình của mặt phẳng (P 0 ) là: ( ) ( ) 2 4 1. 1 2x - z - 9 = 0x z− − + = . 2. Trong không gian với hệ tọa độ Oxyz, cho hai điểm A(1;5;0), B(3;3;6) và đường thẳng ∆ có phương trình tham số x 1 2t y 1 t z 2t = − +   = −   =  .Một điểm M thay đổi trên đường thẳng ∆ , xác định vị trí của điểm M để chu vi tam giác MAB đạt giá trị nhỏ nhất. Gọi P là chu vi của tam giác MAB thì P = AB + AM + BM. Vì AB không đổi nên P nhỏ nhất khi và chỉ khi AM + BM nhỏ nhất. Đường thẳng ∆ có phương trình tham số: 1 2 1 2 x t y t z t = − +   = −   =  . Điểm M ∈∆ nên ( ) 1 2 ;1 ; 2M t t t− + − . ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 4 2 9 20 3 2 5 4 2 2 6 2 9 36 56 3 6 2 5 3 2 5 3 6 2 5 AM t t t t t BM t t t t t t AM BM t t = − + + − − + = + = + = − + + − − + − + = − + = − + + = + + − + Trong mặt phẳng tọa độ Oxy, ta xét hai vectơ ( ) 3 ; 2 5u t= r và ( ) 3 6;2 5v t= − + r . Ta có ( ) ( ) ( ) ( ) 2 2 2 2 | | 3 2 5 | | 3 6 2 5 u t v t  = +     = − +   r r Suy ra | | | |AM BM u v+ = + r r và ( ) 6;4 5 | | 2 29u v u v+ = ⇒ + = r r r r Mặt khác, với hai vectơ ,u v r r ta luôn có | | | | | |u v u v+ ≥ + r r r r Như vậy 2 29AM BM+ ≥ Đẳng thức xảy ra khi và chỉ khi ,u v r r cùng hướng 3 2 5 1 3 6 2 5 t t t ⇔ = ⇔ = − + ( ) 1;0; 2M⇒ và ( ) min 2 29AM BM+ = . Vậy khi M(1;0;2) thì minP = ( ) 2 11 29+ 7) TRƯỜNG THPT TAM DƯƠNG 1. Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng (P) và đường thẳng (d) lần lượt có phương trình: (P): 2x − y − 2z − 2 = 0; (d): 1 2 1 2 1 x y z+ − = = − 1. Viết phương trình mặt cầu có tâm thuộc đường thẳng (d), cách mặt phẳng (P) một khoảng bằng 2 và vắt mặt phẳng (P) theo giao tuyến là đường tròn có bán kính bằng 3. Đường thẳng (∆) có phương trình tham số là: 1 2 ; 2 x t y t t R z t = −   = − + ∈   = +  Gọi tâm mặt cầu là I. Giả sử I(−t; −1 + 2t; 2+ t)∈(∆). Vì tâm mặt cầu cách mặt phẳng (P) một khoảng bằng 3 nên: | 2 1 2 4 2 2 | | 6 5 | ( ; ) 3 3 3 t t t t d I − + − − − − + ∆ = = = ⇔ 2 3 7 3 t t  =    = −   ⇒ Có hai tâm mặt cầu: 2 1 8 7 17 1 I ; ; ; I ; ; 3 3 3 3 3 7     − − −  ÷  ÷     Vì mặt phẳng (P) cắt mặt cầu theo đường tròn có bán kính bằng 4 nên mặt cầu có bán kính là R = 5. Vậy phương trình mặt cầu cần tìm là: 2 2 2 2 2 2 2 1 8 7 17 1 x y z 25 ; x y z 25 3 3 3 3 3 3             + + − + − = − + + + + =  ÷  ÷  ÷  ÷  ÷  ÷             2. Viết phương trình mặt phẳng (Q) chứa đường thẳng (d) và tạo với mặt phẳng (P) một góc nhỏ nhất. Đường thẳng (∆) có VTCP ( 1;2;1)u = − r ; PTTQ: 2 1 0 2 0 x y x z + + =   + − =  Mặt phẳng (P) có VTPT (2; 1; 2)n = − − r Góc giữa đường thẳng (∆) và mặt phẳng (P) là: | 2 2 2 | 6 sin 3 3. 6 − − − α = = ⇒ Góc giữa mặt phẳng (Q) và mặt phẳng (Q) cần tìm là 6 3 cos 1 9 3 α = − = Giả sử (Q) đi qua (∆) có dạng: m(2x + y + 1) + n(x + z − 2) = 0 (m 2 + n 2 > 0) ⇔ (2m + n)x + my + nz + m − 2n = 0 Vậy góc giữa (P) và (Q) là: 2 2 | 3 | 3 cos 3 3. 5 2 4 m m n mn α = = + + ⇔ m 2 + 2mn + n 2 = 0 ⇔ (m + n) 2 = 0 ⇔ m = −n. Chọn m = 1, n = −1, ta có: mặt phẳng (Q) là: x + y − z + 3 = 0 . y z− − = = − 2. Trong không gian với hệ trục tọa độ Oxyz, cho đường thẳng ∆ : 1 3 1 1 4 x y z− − = = và điểm M(0 ; - 2 ; 0). Viết phương trình mặt phẳng (P) đi qua điểm M song song với đường. 1. Trong không gian với hệ trục tọa độ Oxyz cho mặt cầu (S) có phơng trình 011642 222 =+++ zyxzyx và mặt phẳng ( ) có phơng trình 2x + 2y z + 17 = 0. Viết phơng trình mặt phẳng ( ) song song. ĐÔN 2009 1. Trong không gian với hệ tọa độ Oxyz, cho đường thẳng (D) có phương trình tham số x 2 t y 2t z 2 2t = − +   = −   = +  .Gọi ∆ là đường thẳng qua điểm A(4;0;-1) song song với (D)

Ngày đăng: 04/07/2015, 20:00

w