1. Trang chủ
  2. » Giáo án - Bài giảng

Giao an Tu chon Toan 8 Chu de nang cao

9 530 6

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 9
Dung lượng 274 KB

Nội dung

Chủ đề nâng cao T8 TRỊNH MINH CƯỜNG Chuyên đề: PHÂN TÍCH ĐA THỨC THÀNH NHÂN TỬ I- Phương pháp tách một hạng tử thành nhiều hạng tử khác: CÁC BÀI TOÁN Bài 1: Phân tích các đa thức sau thành nhân tử 2 2 2 2 2 2 2 2 2 2 , 5 6 d, 13 36 , 3 8 4 e, 3 18 , 8 7 f, 5 24 ,3 16 5 h, 8 30 7 , 2 5 12 k, 6 7 20 a x x x x b x x x x c x x x x g x x x x i x x x x − + − + − + + − + + − − − + + + − − − − Bài 2: Phân tích các đa thức sau thành nhân tử: (Đa thức đã cho có nhiệm nguyên hoặc nghiệm hữu tỉ) II- Phương pháp thêm và bớt cùng một hạng tử 1) Dạng 1: Thêm bớt cùng một hạng tử làm xuất hiện hằng đẳng thức hiệu của hai bình phương: A 2 – B 2 = (A – B)(A + B) Năm học 2008 – 2009 THCS Ngọc Phụng 16 3 2 3 3 2 3 3 2 3 2 3 2 3 2 1, 5 8 4 2, 2 3 3, 5 8 4 4, 7 6 5, 9 6 16 6, 4 13 9 18 7, 4 8 8 8, 6 6 1 x x x x x x x x x x x x x x x x x x x x x x − + − + − + + + − + − + + − + − − − + − − + + 3 2 3 3 3 2 3 2 3 2 3 3 9, 6 486 81 10, 7 6 11, 3 2 12, 5 3 9 13, 8 17 10 14, 3 6 4 15, 2 4 16, 2 x x x x x x x x x x x x x x x x x x x − − + − − − + − + + + + + + + + − − 2 3 2 3 2 3 2 3 2 3 2 4 3 2 12 17 2 17, 4 18, 3 3 2 19, 9 26 24 20, 2 3 3 1 21, 3 14 4 3 22, 2 1 x x x x x x x x x x x x x x x x x x x x − + − + + + + + + + + − + − − + + + + + + Chủ đề nâng cao T8 TRỊNH MINH CƯỜNG CÁC BÀI TOÁN Bài 1: Phân tích các đâ thức sau thành nhân tử: 2) Dạng 2: Thêm bớt cùng một hạng tử làm xuất hiện thừa số chung CÁC BÀI TOÁN Bài 1: Phân tích các đâ thức sau thành nhân tử: III- Phương pháp đổi biến CÁC BÀI TOÁN Bài 1:Phân tích các đâ thức sau thành nhân tử Bài 2: Phân tích các đâ thức sau thành nhân tử Năm học 2008 – 2009 THCS Ngọc Phụng 17 ( ) 2 2 2 2 2 4 4 4 4 4 4 4 4 4 4 2 1, (1 ) 4 (1 ) 2, 8 36 3, 4 4, 64 5, 64 1 6, 81 4 7, 4 81 8, 64 9, 4 10, x x x x x x x x x x y x y x x + − − − + + + + + + + + + + 1 7 2 7 5 5 4 5 8 7 5 4 5 10 5 1, 1 2, 1 3, 1 4, 1 5, 1 6, 1 7, 1 8, 1 x x x x x x x x x x x x x x x x + + + + + + + + + + − − + − + + 2 2 2 2 2 2 2 2 2 4 4 1, ( 4)( 6)( 10) 128 2, ( 1)( 2)( 3)( 4) 24 3, ( 4 8) 3 ( 4 8) 2 4, ( ) 4 4 12 5, 2 2 2 15 6, ( )( 2 )( 3 )( 4 ) 7, 6 11 x x x x x x x x x x x x x x x x x x x xy y x y x a x a x a x a a x x + + + + + + + + − + + + + + + + + + − + + + + − + + + + + − 2 2 2 2 2 2 2 2 2 2 2 3 8, ( ) 3( ) 2 9, 2 3 3 10 10, ( 2 ) 9 18 20 11, 4 4 2 4 35 12, ( 2)( 4)( 6)( 8) 16 x x x x x xy y x y x x x x x xy y x y x x x x + + + + + − + + − − + + + + − + − + − + + + + + Chủ đề nâng cao T8 TRỊNH MINH CƯỜNG IV- Phương pháp xét giá trị riêng Phương pháp: Trước hết ta xác định dạng các thừa số chứa biến của đa thức, rồi gán cho các biến các giá trị cụ thể để xác định thừa số còn lại. Ví dụ: Phân tích các đa thức sau thành nhân tử: Giải a, Giả sử thay x bởi y thì P = 2 2 ( ) ( ) 0y y z y z y− + − = Như vậy P chứa thừa số x – y Ta lại thấy nếu thay x bởi y, thay y bởi z, thay z bởi x thì P không đổi(ta nói đa thức P có thể hoán vị vòng quanh bởi các biến x, y, z). Do đó nếu P đã chúa thùa số x – y thì cũng chúa thừa số y – z, z – x. Vậy P phải có dạng P = k(x – y)(y – z)(z – x).Ta thấy k phải là hằng số(không chúa biến) vì P có bậc 3 đối với tập hợp các biến x, y, z còn tích (x – y)(y – z)(z – x) cũng có bậc ba đối với tập hợp các biến x, y, z. Vì đẳng thức đúng với mọi x, y, z nên ta gán cho các biến x, y, z các giá trị riêng, chẳng hạn x = 2, y = 1, z = 0 ta được k = -1 Vậy P =- (x – y)(y – z)(z – x) = (x – y)(y – z)(x - z) CÁC BÀI TOÁN Bài 1: Phân tích các đa thức sau thành nhân tử: 2 2 2 ( ) ( ) ( ) ( )( )( )M a b c a b c a b c a b c a b c b c a c a b= + − + + − + + − + + − + − + − 2 2 2 ( ) ( ) ( )N a m a b m b c m c abc= − + − + − − , với 2m = a+ b + c. Bài 2: Phân tích các đa thức sau thành nhân tử Năm học 2008 – 2009 THCS Ngọc Phụng 18 4 3 2 2 2 2 2 2 1, 6 7 6 1 2,( )( ) ( ) x x x x x y z x y z xy yz zx + + − + + + + + + + + 2 2 2 2 2 2 , P = ( ) ( ) ( ) , Q = ( ) ( ) ( ) ( ) ( )( ) a x y z y z x z x y b a b c a b c a b c a b c a b c b c a c a b − + − + − + − + + − + + − + + − + − + − 2 2 2 ( ) ( ) ( ) ( )( )( )x y z y z x z x y k x y y z z x − + − + − = − − − Chủ đề nâng cao T8 TRỊNH MINH CƯỜNG 3 3 2 2 2 2 2 2 3 2 3 2 3 2 3 3 3 2 2 ) ( )( ) . ) ( 2 ) (2 ) . ) ( ) ( ) ( ). ) ( )( ) ( )( ) ( )( ) ) ( ) ( ) ( ) ( 1). ) ( ) ( ) ( ) . ) ( a A a b c ab bc ca abc b B a a b b a b c C ab a b bc b c ac a c d D a b a b b c b c c a c a e E a c b b a c c b a abc abc f f a b c b c a c a b g G a b a b = + + + + − = + − + = + − + + − = + − + + − + + − = − + − + − + − = − + − + − = − 2 2 2 2 4 4 4 ) ( ) ( ). ) ( ) ( ) ( ). b c b c a c c a h H a b c b c a c a b + − + − = − + − + − V-Phưong pháp hệ số bất định CÁC BÀI TOÁN Bài 1: Phân tích các đa thức thành nhân tử 4 3 2 4 3 2 2 2 4 3 2 4 ) 6 12 14 3 ) 4 4 5 2 1 ) 3 22 11 37 7 10 ) 7 14 7 1 ) 8 63 a A x x x x b B x x x x c C x xy x y y d D x x x x e E x x = − + − + = + + + + = + + + + + = − + − + = − + Năm học 2008 – 2009 THCS Ngọc Phụng 19 Chủ đề nâng cao T8 TRỊNH MINH CƯỜNG Chuyên đề 3: XÁC ĐỊNH ĐA THỨC I. Mục tiêu. Học xong chủ đề này học sinh xác định được thành thạo các đa thức thương Học sinh có khả năng xác định được đa thức khi biết một điều kiện nào đấy II.Thời lượng 7 tiết III. Nội dung * Định lí Beout (BêZu) và ứng dụng: 1) Định lí BêZu: Dư trong phép chia đa thức f(x) cho nhị thức x - a bằng f(a) (giá trị của f(x) tại x = a): )()()()( afxqaxxf +−= (Beout, 1730 - 1783, nhà toán học Pháp) Hệ quả: Nếu a là nghiệm của đa thừc f(x) thì f(x) chia hết cho x - a. Áp dụng: Định lí BêZu có thể dùng để phân tích một đa thức thành nhân tử. Thực hiện như sau: Bước 1: Chọn một giá trị x = a nào đó và thử xem x = a có phải là nghiệm của f(x) không. Bước 2: Nếu f(a) = 0, theo định lí BêZu ta có: )()()( xpaxxf −= Để tìm p(x) thực hiện phép chia f(x) cho x - a. Bước 3: Tiếp tục phân tích p(x) thành nhân tử nếu còn phân tích được. Sau đó viết kết quả cuối cùng cho hợp lí. Dạng 1: Tìm đa thức thương bằng phương pháp đồng nhất hệ số(phương pháp hệ số bất định), phương pháp giá trị riêng , thực hiện phép chia đa thức. *Phương pháp1: Ta dựa vào mệnh đề sau đây : Nếu hai đa thức P(x) và Q(x) bằng nhau: P(x) = Q(x) thì các hạng tử cùng bậc ở hai đa thức phải có hệ số phải có hệ số bằng nhau. Năm học 2008 – 2009 THCS Ngọc Phụng 20 Chủ đề nâng cao T8 TRỊNH MINH CƯỜNG Ví dụ: 32)( 2 −+= bxaxxP ; pxxxQ −−= 4)( 2 . Nếu P(x) = Q(x) thì ta có: a = 1(hệ số của lũy thừa 2) 2b = - 4 (hệ số của lũy thừa bậc 1) - 3 = - p (hệ số hạng tử bậc không hay hạng tử tự do) *Phương pháp2: Cho hai đa thức P(x) và Q(x) thỏa mãn deg P(x) > deg Q(x) Gọi thương và dư trong phép chia P(x) cho Q(x) lần lượt là M(x) và N(x) Khi đó ta có: )()().()( xNxMxQxP += (Trong đó: deg N(x) < deg Q(x)) (I) Vì đẳng thức (I) đúng với mọi x nên ta cho x lấy một giá trị bất kì : α =x ( α là hằng số). Sau đó ta đi giải phương trình hoặc hệ phương trình để tìm các hệ số của các hạng tử trong các đa thức ( Đa thức thương, đa thức chia, đa thức bị chia, số dư). Ví dụ: Bài 1(Phần bài tập áp dụng) Gọi thương của phép chia A(x) cho x + 1 là Q(x), ta có: )().1(263 232 xQxaxaxxa +=−−+ . Vì đẳng thức đúng với mọi x nên cho x = -1 ta dược:    = −= ⇒=++−⇒=−++− 3 2 060263 22 a a aaaaa Với a = -2 thì 4104)(,4664 223 +−=+−−= xxxQxxxA Với a = 3 thì 69)(,6699 223 −=−−+= xxQxxxA *Phương pháp 3:Thực hiện phép chia đa thức (như SGK) BÀI TẬP ÁP DỤNG Bài 1: Cho đa thức 2 3 2 ( ) 3 6 2 ( )A x a x ax x a a Q= + − − ∈ . Xác định a sao cho A(x) chia hết cho x + 1. Bài 2: Phân tích đa thức 4 3 ( ) 2 4P x x x x= − − − thành nhân tử, biết rằng một nhân tử có dạng: 2 2x dx+ + Bµi 3: Với giá trị nào của a và b thì đa thức : bxaxx +++ 2 23 chia hết cho đa thức: 1 2 ++ xx . Hãy giải bài toán trên bằng nhiều cách khác nhau. Bµi 4: Xác định giá trị k để đa thức: kxxxxxf +++−= 234 219)( chia hết cho đa thức: 2)( 2 −−= xxxg . Bài 5: Tìm tất cả các số tự nhiên k để cho đa thức: 152)( 23 ++= kkkf chia hết cho nhị thức: 3)( += kkg . Năm học 2008 – 2009 THCS Ngọc Phụng 21 Chủ đề nâng cao T8 TRỊNH MINH CƯỜNG Bài 6: Với giá trị nào của a và b thì đa thức: baxxxxxf +++−= 234 33)( chia hết cho đa thức: 43)( 2 +−= xxxg . Bài 7: a) Xác định các giá trị của a, b và c để đa thức: cbxaxxxP +++= 24 )( Chia hết cho 3 )3( −x . b) Xác định các giá trị của a, b để đa thức: 2376)( 234 +++−= xaxxxxQ chia hết cho đa thức bxxxM +−= 2 )( . c) Xác định a, b để axxxxP +−+= 85)( 23 chia hết cho bxxxM ++= 2 )( . Bài 8: Hãy xác định các số a, b, c để có đẳng thức: (Để học tốt Đại số 8) Bài 9: Xác định hằng số a sao cho: a) axx +− 710 2 chia hết cho 32 −x . b) 12 2 ++ axx chia cho 3−x dư 4. c) 95 45 −+ xax chia hết cho 1−x . Bài 10: Xác định các hằng số a và b sao cho: a) baxx ++ 24 chia hết cho 1 2 +− xx . b) 505 23 −++ xbxax chia hết cho 103 2 ++ xx . c) 1 24 ++ bxax chia hết cho 2 )1( −x . d) 4 4 +x chia hết cho baxx ++ 2 . Bài 11: Tìm các hăng số a và b sao cho baxx ++ 3 chia cho 1+x thì dư 7, chia cho 3−x thì dư -5. Bài 12: Tìm các hằng số a, b, c sao cho cbxax ++ 23 chia hết cho 2+x , chia cho 1 2 −x thì dư 5+x . (Một số vấn đề phát triển Đại số 8) Bài 13: Cho đa thức: baxxxxxP ++−+= 234 )( và 2)( 2 −+= xxxQ . Xác định a, b để P(x) chia hết cho Q(x). Bài 14: Xác định a và b sao cho đa thức 1)( 34 ++= bxaxxP chia hết cho đa thức 2 )1()( −= xxQ Bài 15: Cho các đa thức 237)( 234 +++−= xaxxxxP và bxxxQ +−= 2 )( . Xác định a và b để P(x) chia hết cho Q(x). (23 chuyên đề toán sơ cấp) Dạng 2: Phương pháp nội suy NiuTơn Phương pháp: Để tìm đa thức P(x) bậc không quá n khi biết giá trị của đa thức tại n + 1 điểm 1321 ,,,, +n CCCC  ta có thể biểu diễn P(x) dưới dạng: )())(())(()()( 21212110 nn CxCxCxbCxCxbCxbbxP −−−++−−+−+=  Năm học 2008 – 2009 THCS Ngọc Phụng 22 ))()(( 23 cxbxaxcbxaxx −−−=−+− Chủ đề nâng cao T8 TRỊNH MINH CƯỜNG Bằng cách thay thế x lần lượt bằng các giá trị 1321 ,,,, +n CCCC  vào biểu thức P(x) ta lần lượt tính được các hệ số n bbbb ,,,, 210  . BÀI TẬP ÁP DỤNG Bài 1: Tìm đa thức bậc hai P(x), biết: 9)2(,7)1(,25)0( −=== PPP . Giải Đặt )1()( 210 −++= xxbxbbxP (1) Thay x lần lượy bằng 0; 1; 2 vào (1) ta được: 11.2.2.18259 18257 25 22 11 0 =⇔+−=− −=⇔+= = bb bb b Vậy, đa thức cần tìm có dạng: 2519)()1(1825)( 2 +−=⇔−+−= xxxPxxxxP . Bài 2: Tìm đa thức bậc 3 P(x), biết: 1)3(,4)2(,12)1(,10)0( ==== PPPP Hướng dẫn: Đặt )2)(1()1()( 3210 −−+−++= xxxbxxbxbbxP (1) Bài 3: Tìm đa thức bậc ba P(x), biết khi chia P(x) cho )3(),2(),1( −−− xxx đều được dư bằng 6 và P(-1) = - 18. Hướng dẫn: Đặt )3)(2)(1()2)(1()1()( 3210 −−−+−−+−+= xxxbxxbxbbxP (1) Bài 4: Cho đa thức bậc bốn P(x), thỏa mãn: )1(),12)(1()1()( 0)1( ++=−− =− xxxxPxP P a) Xác định P(x). b) Suy ra giá trị của tổng )(),12)(1(5.3.23.2.1 * NnnnnS ∈+++++=  . Hướng dẫn: Thay x lần lượt bằng 0; 1; 2; 3 vào (1), ta được : 36)2(5.3.2)1()2( 6)1(3.2.1)0()1( 0)0(0)1()0( ,0)2(0)2()1( =⇔=− =⇔=− =⇔=−− =−⇔=−−− PPP PPP PPP PPP Đặt )2)(1()1()1()1()1()1()( 43210 −−++−++++++= xxxxbxxxbxxbxbbxP (2) Thay x lần lượt bằng -1; 0; 1; 2; -2 vào (2) ta được: 2 1 )4)(3)(2)(1()3)(2)(1.(3)2)(1.(30 31.2.3.2.3.336 ,31.2.6 ,00 0 44 33 22 11 0 =⇔−−−−+−−−+−−= =⇔+= =⇔= =⇔= = bb bb bb bb b Vậy, đa thức cần tìm có dạng: )2()1( 2 1 )2)(1()1( 2 1 )1()1(3)1(3)( 2 ++=−−++−+++= xxxxxxxxxxxxxP Năm học 2008 – 2009 THCS Ngọc Phụng 23 Chủ đề nâng cao T8 TRỊNH MINH CƯỜNG (Tuyển chọn bài thi HSG Toán THCS) Bài 5: cho đa thức )0,,(,)( 2 ≠++= cbacbxaxxP . Cho biết 0632 =++ cba 1) Tính a, b, c theo )1(, 2 1 ),0( PPP       . 2) Chứng minh rằng: )1(, 2 1 ),0( PPP       không thể cùng âm hoặc cùng dương. Bài 6: Tìm một đa thức bậc hai, cho biết: 1985)2( 85)1( 19)0( = = = P P P Năm học 2008 – 2009 THCS Ngọc Phụng 24 . – B 2 = (A – B)(A + B) Năm học 20 08 – 2009 THCS Ngọc Phụng 16 3 2 3 3 2 3 3 2 3 2 3 2 3 2 1, 5 8 4 2, 2 3 3, 5 8 4 4, 7 6 5, 9 6 16 6, 4 13 9 18 7, 4 8 8 8, 6 6 1 x x x x x x x x x x x x x. thức sau thành nhân tử Năm học 20 08 – 2009 THCS Ngọc Phụng 17 ( ) 2 2 2 2 2 4 4 4 4 4 4 4 4 4 4 2 1, (1 ) 4 (1 ) 2, 8 36 3, 4 4, 64 5, 64 1 6, 81 4 7, 4 81 8, 64 9, 4 10, x x x x x x x x x. 1 ) 8 63 a A x x x x b B x x x x c C x xy x y y d D x x x x e E x x = − + − + = + + + + = + + + + + = − + − + = − + Năm học 20 08 – 2009 THCS Ngọc Phụng 19 Chủ đề nâng cao T8 TRỊNH MINH CƯỜNG Chuyên

Ngày đăng: 28/06/2015, 19:00

TỪ KHÓA LIÊN QUAN

w