Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống
1
/ 151 trang
THÔNG TIN TÀI LIỆU
Thông tin cơ bản
Định dạng
Số trang
151
Dung lượng
5,11 MB
Nội dung
1) ∀ x, y, z chøng minh r»ng : a) x 2 + y 2 + z 2 ≥ xy+ yz + zx b) x 2 + y 2 + z 2 ≥ 2xy – 2xz + 2yz c) x 2 + y 2 + z 2 +3 ≥ 2 (x + y + z) Gi¶i: a) Ta xÐt hiÖu x 2 + y 2 + z 2 - xy – yz - zx = 2 1 .2 .( x 2 + y 2 + z 2 - xy – yz – zx) = 2 1 [ ] 0)()()( 222 ≥−+−+− zyzxyx ®óng víi mäi x;y;z R∈ V× (x-y) 2 ≥ 0 víi∀x ; y DÊu b»ng x¶y ra khi x=y (x-z) 2 ≥ 0 víi∀x ; z DÊu b»ng x¶y ra khi x=z (y-z) 2 ≥ 0 víi∀ z; y DÊu b»ng x¶y ra khi z=y VËy x 2 + y 2 + z 2 ≥ xy+ yz + zx DÊu b»ng x¶y ra khi x = y =z b)Ta xÐt hiÖu x 2 + y 2 + z 2 - ( 2xy – 2xz +2yz ) = x 2 + y 2 + z 2 - 2xy +2xz –2yz =( x – y + z) 2 0≥ ®óng víi mäi x;y;z R∈ VËy x 2 + y 2 + z 2 ≥ 2xy – 2xz + 2yz ®óng víi mäi x;y;z R∈ DÊu b»ng x¶y ra khi x+y=z c) Ta xÐt hiÖu x 2 + y 2 + z 2 +3 – 2( x+ y +z ) = x 2 - 2x + 1 + y 2 -2y +1 + z 2 -2z +1 = (x-1) 2 + (y-1) 2 +(z-1) 2 ≥ 0 DÊu(=)x¶y ra khi x=y=z=1 2) chøng minh r»ng : a) 2 22 22 + ≥ + baba ;b) 2 222 33 ++ ≥ ++ cbacba 1 c) Hãy tổng quát bài toán giải a) Ta xét hiệu 2 22 22 + + baba = ( ) 4 2 4 2 2222 bababa ++ + = ( ) abbaba 222 4 1 2222 + = ( ) 0 4 1 2 ba Vậy 2 22 22 + + baba Dấu bằng xảy ra khi a=b b)Ta xét hiệu 2 222 33 ++ ++ cbacba = ( ) ( ) ( ) [ ] 0 9 1 222 ++ accbba Vậy 2 222 33 ++ ++ cbacba Dấu bằng xảy ra khi a = b =c c)Tổng quát 2 21 22 2 2 1 +++ +++ n aaa n aaa nn 3) Chứng minh m,n,p,q ta đều có m 2 + n 2 + p 2 + q 2 +1 m(n+p+q+1) Giải: 01 4444 2 2 2 2 2 2 2 ++ ++ ++ + m m qmq m pmp m nmn m 01 2222 2222 + + + m q m p m n m (luôn đúng) 2 Dấu bằng xảy ra khi = = = = 01 2 0 2 0 2 0 2 m q m p m n m = = = = 2 2 2 2 m m q m p m n === = 1 2 qpn m 4) Cho a, b, c, d,e là các số thực chứng minh rằng a) ab b a + 4 2 2 b) baabba ++++ 1 22 c) ( ) edcbaedcba +++++++ 22222 Giải: a) ab b a + 4 2 2 abba 44 22 + 044 22 + baa ( ) 02 2 ba (bất đẳng thức này luôn đúng) Vậy ab b a + 4 2 2 (dấu bằng xảy ra khi 2a=b) b) baabba ++++ 1 22 ) )(21(2 22 baabba ++>++ 012122 2222 +++++ bbaababa 0)1()1()( 222 ++ baba Bất đẳng thức cuối đúng. Vậy baabba ++++ 1 22 Dấu bằng xảy ra khi a=b=1 c) ( ) edcbaedcba +++++++ 22222 ( ) ( ) edcbaedcba +++++++ 44 22222 ( ) ( ) ( ) ( ) 044444444 22222222 +++++++ cacadadacacababa ( ) ( ) ( ) ( ) 02222 2222 +++ cadacaba 3 Bất đẳng thức đúng vậy ta có điều phải chứng minh 5) Chứng minh rằng: ( )( ) ( )( ) 4488221010 babababa ++++ Giải: ( )( ) ( )( ) 4488221010 babababa ++++ 128448121210221012 bbabaabbabaa ++++++ ( ) ( ) 0 22822228 + abbababa a 2 b 2 (a 2 -b 2 )(a 6 -b 6 ) 0 a 2 b 2 (a 2 -b 2 ) 2 (a 4 + a 2 b 2 +b 4 ) 0 Bất đẳng thứccuối đúng vậy ta có điều phải chứng minh 6) cho x.y =1 và x.y Chứng minh yx yx + 22 22 Giải: yx yx + 22 22 vì :x y nên x- y 0 x 2 +y 2 22 ( x-y) x 2 +y 2 - 22 x+ 22 y 0 x 2 +y 2 +2- 22 x+ 22 y -2 0 x 2 +y 2 +( 2 ) 2 - 22 x+ 22 y -2xy 0 vì x.y=1 nên 2.x.y=2 (x-y- 2 ) 2 0 Điều này luôn luôn đúng . Vậy ta có điều phải chứng minh 7) 1)CM: P(x,y)= 01269 222 ++ yxyyyx Ryx , 2)CM: cbacba ++++ 222 (gợi ý :bình phơng 2 vế) 3)choba số thực khác không x, y, z thỏa mãn: ++<++ = zyx zyx zyx 111 1 Chứng minh rằng :có đúng một trong ba số x,y,z lớn hơn 1 Giải: Xét (x-1)(y-1)(z-1)=xyz+(xy+yz+zx)+x+y+z-1 =(xyz-1)+(x+y+z)-xyz( zyx 111 ++ )=x+y+z - ( 0) 111 >++ zyx (vì zyx 111 ++ < x+y+z theo gt) 2 trong 3 số x-1 , y-1 , z-1 âm hoặc cả ba sỗ-1 , y-1, z-1 là dơng. 4 Nếủ trờng hợp sau xảy ra thì x, y, z >1 x.y.z>1 Mâu thuẫn gt x.y.z=1 bắt buộc phải xảy ra trờng hợp trên tức là có đúng 1 trong ba số x ,y ,z là số lớn hơn 1 8) Cho a, b ,c là các số không âm chứng minh rằng (a+b)(b+c)(c+a) 8abc Giải: Cách 1:Dùng bất đẳng thức phụ: ( ) xyyx 4 2 + Tacó ( ) abba 4 2 + ; ( ) bccb 4 2 + ; ( ) acac 4 2 + ( ) 2 ba + ( ) 2 cb + ( ) 2 ac + ( ) 2 222 864 abccba = (a+b)(b+c)(c+a) 8abc Dấu = xảy ra khi a = b = c 9)Cho a,b,c>0 và a+b+c=1 CMR: 9 111 ++ cba (403-1001) 2)Cho x,y,z>0 và x+y+z=1 CMR:x+2y+z )1)(1)(1(4 zyx 3)Cho a>0 , b>0, c>0 CMR: 2 3 + + + + + ba c ac b cb a 4)Cho x 0 ,y 0 thỏa mãn 12 = yx ;CMR: x+y 5 1 10) Cho a>b>c>0 và 1 222 =++ cba chứng minh rằng 3 3 3 1 2 a b c b c a c a b + + + + + Giải: Do a,b,c đối xứng ,giả sử a b c + + + ba c ca b cb a cba 222 áp dụng BĐT Trê- b-sép ta có + + + + + ++ + + + + + ba c ca b cb acba ba c c ca b b cb a a . 3 222 222 = 2 3 . 3 1 = 2 1 Vậy 2 1 333 + + + + + ba c ca b cb a Dấu bằng xảy ra khi a=b=c= 3 1 11) Cho a,b,c,d>0 và abcd =1 .Chứng minh rằng : 5 ( ) ( ) ( ) 10 2222 +++++++++ acddcbcbadcba Giải: Ta có abba 2 22 + cddc 2 22 + Do abcd =1 nên cd = ab 1 (dùng 2 11 + x x ) Ta có 4) 1 (2)(2 222 +=+++ ab abcdabcba (1) Mặt khác: ( ) ( ) ( ) acddcbcba +++++ =(ab+cd)+(ac+bd)+(bc+ad) = 222 111 ++ ++ ++ + bc bc ac ac ab ab Vậy ( ) ( ) ( ) 10 2222 +++++++++ acddcbcbadcba 12 ) Cho 4 số a,b,c,d bất kỳ chứng minh rằng: 222222 )()( dcbadbca ++++++ Giải: Dùng bất đẳng thức Bunhiacopski tacó ac+bd 2222 . dcba ++ mà ( ) ( ) ( ) 2222 22 2 dcbdacbadbca +++++=+++ ( ) 22222222 .2 dcdcbaba ++++++ 222222 )()( dcbadbca ++++++ 13) Chứng minh rằng acbcabcba ++++ 222 Giải: Dùng bất đẳng thức Bunhiacopski Cách 1: Xét cặp số (1,1,1) và (a,b,c) ta có ( ) ( ) 2 222222 .1.1.1)(111 cbacba ++++++ 3 ( ) ( ) acbcabcbacba +++++++ 2 222222 acbcabcba ++++ 222 Điều phải chứng minh Dấu bằng xảy ra khi a=b=c 14) Cho a, b, c ,d >0 thỏa mãn a> c+d , b>c+d Chứng minh rằng ab >ad+bc 6 Gi¶i: Tacã +> +> dcb dca ⇒ >>− >>− 0 0 cdb dca ⇒ (a-c)(b-d) > cd ⇔ ab-ad-bc+cd >cd ⇔ ab> ad+bc (®iÒu ph¶i chøng minh) 15) Cho a,b,c>0 tháa m·n 3 5 222 =++ cba Chøng minh abccba 1111 <++ Gi¶i: Ta cã :( a+b- c) 2 = a 2 +b 2 +c 2 +2( ab –ac – bc) 〉 0 ⇒ ac+bc-ab 〈 2 1 ( a 2 +b 2 +c 2 ) ⇒ ac+bc-ab 6 5 ≤ 〈 1 Chia hai vÕ cho abc > 0 ta cã cba 111 −+ 〈 abc 1 16) Cho 0 < a,b,c,d <1 Chøng minh r»ng (1-a).(1-b) ( 1-c).(1-d) > 1-a-b-c-d Gi¶i: Ta cã (1-a).(1-b) = 1-a-b+ab Do a>0 , b>0 nªn ab>0 ⇒ (1-a).(1-b) > 1-a-b (1) Do c <1 nªn 1- c >0 ta cã ⇒ (1-a).(1-b) ( 1-c) > 1-a-b-c ⇒ (1-a).(1-b) ( 1-c).(1-d) > (1-a-b-c) (1-d) =1-a-b-c-d+ad+bd+cd ⇒ (1-a).(1-b) ( 1-c).(1-d) > 1-a-b-c-d (§iÒu ph¶i chøng minh) 17) 1- Cho 0 <a,b,c <1 . Chøng minh r»ng accbbacba 222333 3222 +++<++ Gi¶i : Do a < 1 ⇒ 1 2 <a vµ 7 Ta có ( ) ( ) 01.1 2 < ba 1-b- 2 a + 2 a b > 0 1+ 2 a 2 b > 2 a + b mà 0< a,b <1 2 a > 3 a , 2 b > 3 b Từ (1) và (2) 1+ 2 a 2 b > 3 a + 3 b Vậy 3 a + 3 b < 1+ 2 a 2 b Tơng tự 3 b + 3 c cb 2 1+ c 3 + 3 a ac 2 1+ Cộng các bất đẳng thức ta có : accbbacba 222333 3222 +++++ 18)Chứng minh rằng : Nếu 1998 2222 =+=+ dcba thì ac+bd =1998 Giải: Ta có (ac + bd) 2 + (ad bc ) 2 = a 2 c 2 + b 2222 2 daabcdd ++ 22 cb+ - abcd2 = = a 2 (c 2 +d 2 )+b 2 (c 2 +d 2 ) =(c 2 +d 2 ).( a 2 + b 2 ) = 1998 2 rỏ ràng (ac+bd) 2 ( ) ( ) 2 22 1998=++ bcadbdac 1998+ bdac 19) Cho a,b,c,d > 0 .Chứng minh rằng 21 < ++ + ++ + ++ + ++ < bad d adc c dcb b cba a Giải : Theo tính chất của tỉ lệ thức ta có dcba da cba a cba a +++ + < ++ < ++ 1 (1) Mặt khác : dcba a cba a +++ > ++ (2) Từ (1) và (2) ta có dcba a +++ < cba a ++ < dcba da +++ + (3) Tơng tự ta có dcba ab dcb b dcba b +++ + < ++ < +++ (4) 8 dcba cb adc c dcba c +++ + < ++ < +++ (5) dcba cd bad d dcba d +++ + < ++ < +++ (6) cộng vế với vế của (3); (4); (5); (6) ta có 21 < ++ + ++ + ++ + ++ < bad d adc c dcb b cba a điều phải chứng minh 20) Cho: b a < d c và b,d > 0 .Chứng minh rằng b a < d c db cdab < + + 22 Giải: Từ b a < d c 22 d cd b ab < d c d cd db cdab b ab =< + + < 2222 Vậy b a < d c db cdab < + + 22 điều phải chứng minh 21) Cho a;b;c;dlà các số nguyên dơng thỏa mãn : a+b = c+d =1000 tìm giá trị lớn nhất của d b c a + giải : Không mất tính tổng quát ta giả sử : c a d b Từ : c a d b d b dc ba c a + + 1 c a vì a+b = c+d a, Nếu :b 998 thì d b 998 d b c a + 999 b, Nếu: b=998 thì a=1 d b c a + = dc 9991 + Đạt giá trị lớn nhất khi d= 1; c=999 Vậy giá trị lớn nhất của d b c a + =999+ 999 1 khi a=d=1; c=b=999 22) Với mọi số tự nhiên n >1 chứng minh rằng 4 31 2 1 1 1 2 1 < + ++ + + + < nnnn Giải: Ta có nnnkn 2 111 = + > + với k = 1,2,3, ,n-1 Do đó: 2 1 22 1 2 1 2 1 2 1 1 1 ==++>++ + + + n n nnnnn 9 23) Chøng minh r»ng: ( ) 112 1 3 1 2 1 1 −+>++++ n n Víi n lµ sè nguyªn Gi¶i : Ta cã ( ) kk kkkk −+= ++ >= 12 1 2 2 21 Khi cho k ch¹y tõ 1 ®Õn n ta cã 1 > 2 ( ) 12 − ( ) 232 2 1 −> ……………… ( ) nn n −+> 12 1 Céng tõng vÕ c¸c bÊt ®¼ng thøc trªn ta cã ( ) 112 1 3 1 2 1 1 −+>++++ n n 24) Chøng minh r»ng 2 1 1 2 < ∑ = n k k Zn ∈∀ Gi¶i: Ta cã ( ) kkkkk 1 1 1 1 11 2 − − = − < Cho k ch¹y tõ 2 ®Õn n ta cã 1 1 3 1 2 1 1 1 11 3 1 2 1 3 1 2 1 1 2 1 222 2 2 2 <+++⇒ − − < −< −< n nnn 10 [...]... chứng minh b) Vế trái có thể viết H = ( a 2b + 1) 2 + ( b 1) 2 + 1 H > 0 ta có điều phải chứng minh c) vế trái có thể viết H = ( a b + 1) 2 + ( b 1) 2 H 0 ta có điều phải chứng minh 39) Cho x > y và xy =1 Chứng minh rằng (x ) 2 + y2 8 ( x y) 2 2 16 a >0 ) Giải : x 2 + y 2 = ( x y ) + 2 xy = ( x y ) + 2 2 Ta có (x 2 + y2 ) = ( x y) 2 4 2 (vì xy = 1) + 4.( x y ) + 4 2 Do đó BĐT cần chứng... đúng do xy > 1 Vậy ta có điều phải chứng minh 41) Cho a , b, c là các số thực và a + b +c =1 Chứng minh rằng a 2 + b 2 + c 2 1 3 Giải : áp dụng BĐT BunhiaCôpski cho 3 số (1,1,1) và (a,b,c) (1.a + 1.b + 1.c ) 2 (1 + 1 + 1).( a 2 + b 2 + c 2 ) Ta có ( a + b + c ) 2 3.( a 2 + b 2 + c 2 ) 17 a2 + b2 + c2 1 3 (vì a+b+c =1 ) (đpcm) 42) Cho a,b,c là các số dơng 1 1 1 Chứng minh rằng ( a + b + c ). + + ... (3) Ta chứng minh (3) (+) Giả sử a b và giả thiết cho a -b a b k a k b bk (a k ) b k ( a b ) 0 k (+) Giả sử a < b và theo giả thiết - a 0 , ab+bc+ac > 0 , abc > 0 Chứng minh rằng a > 0 , b > 0 , c > 0 Giải : Giả sử a 0 thì từ abc > 0 a 0 do đó a < 0 Mà abc > 0 và a < 0... Vậy có một và chỉ một trong ba số x , y,z lớn hơn 1 37) Cho abc = 1 và a 3 > 36 Chứng minh rằng a2 + b2+c2> ab+bc+ac 3 Giải 15 a2 + b2+c2- ab- bc ac Ta có hiệu: 3 = a2 a2 + + b2+c2- ab- bc ac 4 12 = ( a2 a2 + b2+c2- ab ac+ 2bc) + 3bc 4 12 a 2 a 3 36abc 12a a 2 a 3 36abc >0 (vì abc=1 và a3 > 36 nên 12a =( -b- c)2 + =( -b- c)2 + a2 Vậy : + b2+c2> ab+bc+ac Điều phải chứng minh 3 38) Chứng minh rằng... x4 + y 4 + z 4 Tìm giá trị nhỏ nhất của Giải : áp dụng BĐT Bunhiacốpski cho 6 số (x,y,z) ;(x,y,z) ( xy + yz + zx ) Ta có 2 ( ( x2 + y 2 + z 2 1 x2 + y 2 + z 2 ) ) 2 2 (1) Ap dụng BĐT Bunhiacốpski cho ( x 2 , y 2 , z 2 ) và (1,1,1) Ta có ( x 2 + y 2 + z 2 ) 2 (12 + 12 + 12 )( x 4 + y 4 + z 4 ) ( x 2 + y 2 + z 2 ) 2 3( x 4 + y 4 + z 4 ) Từ (1) và (2) 1 3( x 4 + y 4 + z 4 ) x4 + y 4 + z 4 1... a c a (1) 1 + + + + 1 + + + + 1 9 a b a c b c 3+ + + + + + 9 b a c a c b x y + 2 y x áp dụng BĐT phụ Với x,y > 0 Ta có BĐT cuối cùng luôn đúng 1 1 1 Vậy ( a + b + c ). + + 9 a b (đpcm) c 43) Cho 0 < a, b,c 0 và x+y+z =1 Giải : Vì x,y,z > 0 ,áp dụng BĐT Côsi ta có 20 (1) (2) x+ y + z 3 3 xyz 3 xyz 1 1 xyz 3 27 áp dụng bất... +1+1 1 < k (k + 2) < ( k + 1) 2 k2+2k 0 33) n a+b an + bn Chứng minh rằng (1) 2 2 Giải Ta thấy BĐT (1) đúng với n=1 Giả sử BĐT (1) đúng với n=k ta phải chứng minh BĐT đúng với n=k+1 Thật vậy với n = k+1 ta có a+b (1) 2 k +1 a k +1 + b k +1 2 k a+b a+b a k +1 + b k +1 2 2 2 Vế trái (2) (2) a... y + 3 Giải : áp dụng BĐT BunhiaCốpski ta có : ( ) x + 2 x 2 12 + 12 x 2 + 2 x 2 2 2 = 2 Dấu (=) xảy ra khi x = 1 Mặt khác 4 y 2 + 4 y + 3 = ( 2 y + 1) + 2 2 2 Dấu (=) xảy ra khi y = - 1 2 Vậy x + 2 x 2 = 4 y 2 + 4 y + 3 = 2 khi x =1 và y =- x =1 Vậy nghiệm của phơng trình là 1 y = 2 22 1 2 54) Giải hệ phơng trình sau: x + y + z =1 4 4 4 x + y + z = xyz Giải : áp dụng BĐT Côsi ta có x4... Bất đẳng thức cuối cùng đúng vì ( + x 2; y z y z x + 2 nên ta có điều phải chứng + 2; y z x z minh 28) Cho a,b,c > 0 và a+b+c 0 Theo bất đẳng thức Côsi ta có x + y + z 3 3 xyz 1 1 1 1 + + 3 . thức (1)đợc chứng minh 33) Cho Nn và a+b> 0 Chứng minh rằng n ba + 2 2 nn ba + (1) Giải Ta thấy BĐT (1) đúng với n=1 Giả sử BĐT (1) đúng với n=k ta phải chứng minh BĐT đúng với. ) 0 1.1.1 1 22 2 +++ xyyx xyxy BĐT cuối này đúng do xy > 1 .Vậy ta có điều phải chứng minh 41) Cho a , b, c là các số thực và a + b +c =1 Chứng minh rằng 3 1 222 ++ cba Giải : áp dụng BĐT BunhiaCôpski. a>b>c>0 và 1 222 =++ cba chứng minh rằng 3 3 3 1 2 a b c b c a c a b + + + + + Giải: Do a,b,c đối xứng ,giả sử a b c + + + ba c ca b cb a cba 222 áp dụng BĐT Trê- b-sép