Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống
1
/ 59 trang
THÔNG TIN TÀI LIỆU
Thông tin cơ bản
Định dạng
Số trang
59
Dung lượng
1,45 MB
Nội dung
Trần Sĩ Tùng PP toạ độ trong mặt phẳng Trang 1 TĐP 01: ĐƯỜNG THẲNG Câu 1. Trong mặt phẳng với hệ toạ độ Oxy, cho 2 đường thẳng dxy 1 :7170 -+= , dxy 2 :50 +-= . Viết phương trình đường thẳng (d) qua điểm M(0;1) tạo với dd 12 , một tam giác cân tại giao điểm của dd 12 , . · Phương trình đường phân giác góc tạo bởi d 1 , d 2 là: xyxy xy () xy () 1 2222 2 7175 3130 340 1(7)11 D D -++- é +-= =Û ê = ë +-+ Đường thẳng cần tìm đi qua M(0;1) và song song với 1 D hoặc 2 D . KL: xy 330 +-= và xy 310 -+= Câu 2. Trong mặt phẳng với hệ trục toạ độ Oxy, cho cho hai đường thẳng dxy 1 :250 -+= . dxy 2 :36–70 += . Lập phương trình đường thẳng đi qua điểm P(2; –1) sao cho đường thẳng đó cắt hai đường thẳng d 1 và d 2 tạo ra một tam giác cân có đỉnh là giao điểm của hai đường thẳng d 1 , d 2 . · d 1 VTCP a 1 (2;1) =- r ; d 2 VTCP a 2 (3;6) = r Ta có: aa 12 .2.31.60 =-= uuruur nên dd 12 ^ và d 1 cắt d 2 tại một điểm I khác P. Gọi d là đường thẳng đi qua P( 2; –1) có phương trình: dAxByAxByAB :(2)(1)020 -++=Û+-+= d cắt d 1 , d 2 tạo ra một tam giác cân có đỉnh I Û khi d tạo với d 1 ( hoặc d 2 ) một góc 45 0 AB AB AABB BA AB 022 2222 2 3 cos453830 3 2(1) - é = Û=Û =Û ê =- ë ++- * Nếu A = 3B ta có đường thẳng dxy :350 +-= * Nếu B = –3A ta có đường thẳng dxy :350 = Vậy có hai đường thẳng thoả mãn yêu cầu bài toán. dxy :350 +-= ; dxy :350 = . Câu hỏi tương tự: a) dxy 1 :7170 -+= , dxy 2 :50 +-= , P (0;1) . ĐS: xy 330 +-= ; xy 310 -+= . Câu 3. Trong mặt phẳng Oxy, cho hai đường thẳng dxy 1 :350 ++= , dxy 2 :310 ++= và điểm I (1;2) - . Viết phương trình đường thẳng D đi qua I và cắt dd 12 , lần lượt tại A và B sao cho AB 22 = . · Giả sử AaadBbbd 12 (;35);(;31) Î Î ; IAaaIBbb (1;33);(1;31) = = + uuruur I, A, B thẳng hàng bka IBkIA bka 1(1) 31(33) ì -=- Þ=Û í -+= î uuruur · Nếu a 1 = thì b 1 = Þ AB = 4 (không thoả). · Nếu a 1 ¹ thì b baab a 1 31(33)32 1 - -+= Û=- - ABbaabtt 2 222 ()3()422(34)8 éù =-+-+=Û++= ëû (với tab =- ). tttt 2 2 512402; 5 Û++=Û=-=- + Với tabba 220,2 =-Þ-=-Þ==- xy :10 ÞD++= PP to trong mt phng Trn S Tựng Trang 2 + Vi tabba 2242 , 5555 =ị-=ị== xy :790 ịD = Cõu 4. Trong mt phng vi h trc to Oxy, cho hai ng thng dxy 1 :10 ++= , dxy 2 :210 = . Lp phng trỡnh ng thng (d) i qua M(1;1) ct (d 1 ) v (d 2 ) tng ng ti A v B sao cho MAMB 20 += uuuruuurr . ã Gi s: A(a; a1), B(b; 2b 1). T iu kin MAMB 20 += uuuruuurr tỡm c A(1; 2), B(1;1) suy ra (d): x 1 = 0 Cõu 5. Trong mt phng vi h ta Oxy, cho im M(1; 0). Lp phng trỡnh ng thng (d) i qua M v ct hai ng thng dxy dxy 12 :10,:220 ++=+= ln lt ti A, B sao cho MB = 3MA. ã Ad AaaMAaa BdBbb MBbb 1 2 () (;1)(1;1) ()(22;) (23;) ỡ ỡ ẻ ù ỡ = ị ớớớ ẻ- =- ợ ù ợ ợ uuur uuur . T A, B, M thng hng v MBMA 3 = ị MBMA 3= uuuruuur (1) hoc MBMA 3=- uuuruuur (2) (1) ị A dxy B 21 ; ():510 33 (4;1) ỡ ổử ù ỗữ ị = ớ ốứ ù ợ hoc (2) ị ( ) A dxy B 0;1 ():10 (4;3) ỡ - ị = ớ ợ Cõu 6. Trong mt phng vi h ta Oxy, cho im M(1; 1). Lp phng trỡnh ng thng (d) i qua M v ct hai ng thng dxy dxy 12 :350,:40 =+-= ln lt ti A, B sao cho MAMB 230 = . ã Gi s Aaad 1 (;35) -ẻ , Bbbd 2 (;4) -ẻ . Vỡ A, B, M thng hng v MAMB 23 = nờn MAMB MAMB 23(1) 23(2) ộ = ờ =- ở uuuruuur uuuruuur + ab a AB ab b 5 55 2(1)3(1) (1);,(2;2) 2 2(36)3(3) 22 2 ỡ ổử ù ỡ -=- = ị ớớ ỗữ -=- ợ ốứ ù = ợ . Suy ra dxy :0 -= . + aba AB abb 2(1)3(1)1 (2)(1;2),(1;3) 2(36)3(3)1 ỡỡ -= = ị- ớớ -= = ợợ . Suy ra dx :10 -= . Vy cú dxy :0 -= hoc dx :10 -= . Cõu 7. Trong mt phng vi h to Oxy, cho im M(3; 1). Vit phng trỡnh ng thng d i qua M ct cỏc tia Ox, Oy ti A v B sao cho OAOB (3) + nh nht. ã PT ng thng d ct tia Ox ti A(a;0), tia Oy ti B(0;b): xy ab 1 += (a,b>0) M(3; 1) ẻ d Cụsi ab abab 3131 12.12 - =+ị . M OAOBabab 332312 +=+= ab a OAOB b ab min 3 6 (3)12 311 2 2 ỡ = ù ỡ = ị+= ớớ = == ợ ù ợ Phng trỡnh ng thng d l: xy xy 1360 62 +=+-= Trn S Tựng PP to trong mt phng Trang 3 Cõu 8. Trong mt phng vi h to Oxy, vit phng trỡnh ng thng D i qua im M(4;1) v ct cỏc tia Ox, Oy ln lt ti A v B sao cho giỏ tr ca tng OAOB + nh nht. ã xy 260 +-= Cõu 9. Trong mt phng vi h to Oxy, vit phng trỡnh ng thng d i qua im M(1; 2) v ct cỏc trc Ox, Oy ln lt ti A, B khỏc O sao cho OAOB 22 94 + nh nht. ã ng thng (d) i qua M (1;2) v ct cỏc trc Ox, Oy ln lt ti A, B khỏc O, nờn AaBb (;0);(0;) vi ab .0 ạ ị Phng trỡnh ca (d) cú dng xy ab 1 += . Vỡ (d) qua M nờn ab 12 1 += . p dng bt ng thc Bunhiacụpski ta cú : abab ab 22 22 12132194 1.1.1 39 ổửổửổửổử =+=+Ê++ ỗữỗữỗữỗữ ốứốứốứốứ ab 22 949 10 + OAOB 22 949 10 + . Du bng xy ra khi ab 132 :1: 3 = v ab 12 1 += ab 20 10, 9 == ị dxy :29200 +-= . Cõu 10. Trong mt phng vi h to Oxy, vit phng trỡnh ng thng D i qua im M(3;1) v ct cỏc trc Ox, Oy ln lt ti B v C sao cho tam giỏc ABC cõn ti A vi A(2;2). ã xyxy 360;20 +-= = Cõu 11. Trong mt phng vi h ta (Oxy). Lp phng trỡnh ng thng d qua M (2;1) v to vi cỏc trc ta mt tam giỏc cú din tớch bng S 4 = . ã Gi AaBbab (;0),(0;)(,0) ạ l giao im ca d vi Ox, Oy, suy ra: xy d ab :1 += . Theo gi thit, ta cú: ab ab 21 1 8 ỡ += ù ớ ù = ợ baab ab 2 8 ỡ += ớ = ợ . ã Khi ab 8 = thỡ ba 28 += . Nờn: badxy 1 2;4:240 ==ị+-= . ã Khi ab 8 =- thỡ ba 28 +=- . Ta cú: bbb 2 440222 +-==- . + Vi ( ) ( ) bdxy 222:1221240 =-+ị-++-= + Vi ( ) ( ) bdxy 222:1221240 = ị++-+= . Cõu hi tng t: a) MS (8;6),12 = . S: dxy :32120 = ; dxy :38240 -+= Cõu 12. Trong mt phng vi h ta Oxy, cho im A(2; 1) v ng thng d cú phng trỡnh xy 230 += . Lp phng trỡnh ng thng (D) qua A v to vi d mt gúc cú cos 1 10 = . ã PT ng thng ( D ) cú dng: axby (2)(1)0 ++= axbyab 20 ++= ab 22 (0) +ạ Ta cú: ab ab 22 21 cos 10 5() a - == + 7a 2 8ab + b 2 = 0. Chon a = 1 ị b = 1; b = 7. ị ( D 1 ): x + y 1 = 0 v ( D 2 ): x + 7y + 5 = 0 PP toạ độ trong mặt phẳng Trần Sĩ Tùng Trang 4 Câu 13. Trong mặt phẳng với hệ tọa độ Oxy, cho điểm A (2;1) và đường thẳng dxy :2340 ++= . Lập phương trình đường thẳng D đi qua A và tạo với đường thẳng d một góc 0 45 . · PT đường thẳng ( D ) có dạng: axby (–2)(1)0 +-= Û axbyab –(2)0 ++= ab 22 (0) +¹ . Ta có: ab ab 0 22 23 cos45 13. + = + Û aabb 22 52450 = Û ab ab 5 5 é = ê =- ë + Với ab 5 = . Chọn ab 5,1 == Þ Phương trình xy :5110 D +-= . + Với ab 5 =- . Chọn ab 1,5 ==- Þ Phương trình xy :530 D -+= . Câu 14. Trong mặt phẳng với hệ toạ độ Oxy , cho đường thẳng dxy :220 = và điểm I (1;1) . Lập phương trình đường thẳng D cách điểm I một khoảng bằng 10 và tạo với đường thẳng d một góc bằng 0 45 . · Giả sử phương trình đường thẳng D có dạng: axbyc 0 ++= ab 22 (0) +¹ . Vì · d 0 (,)45 D = nên ab ab 22 2 1 2 .5 - = + ab ba 3 3 é = Û ê =- ë · Với ab 3 = Þ D : xyc 30 ++= . Mặt khác dI (;)10 D = c4 10 10 + Û= c c 6 14 é = Û ê =- ë · Với ba 3 =- Þ D : xyc 30 -+= . Mặt khác dI (;)10 D = c2 10 10 -+ Û= c c 8 12 é =- Û ê = ë Vậy các đường thẳng cần tìm: xy 360; ++= xy 3140 +-= ; xy 380; = xy 3120 -+= . Câu 15. Trong mặt phẳng với hệ tọa độ Oxy , cho điểm M (0; 2) và hai đường thẳng d 1 , d 2 có phương trình lần lượt là xy 320 ++= và xy 340 -+= . Gọi A là giao điểm của d 1 và d 2 . Viết phương trình đường thẳng đi qua M, cắt 2 đường thẳng d 1 và d 2 lần lượt tại B , C ( B và C khác A ) sao cho ABAC 22 11 + đạt giá trị nhỏ nhất. · AddA 12 (1;1) =ÇÞ- . Ta có dd 12 ^ . Gọi D là đường thẳng cần tìm. H là hình chiếu vuông góc của A trên D . ta có: ABACAHAM 2222 1111 +=³ (không đổi) Þ ABAC 22 11 + đạt giá trị nhỏ nhất bằng AM 2 1 khi H º M, hay D là đường thẳng đi qua M và vuông góc với AM. Þ Phương trình D : xy 20 +-= . Câu hỏi tương tự: a) Với M (1;2) - , dxy 1 :350 ++= , dxy 2 :350 -+= . ĐS: xy :10 D ++= . Câu 16. Trong mặt phẳng với hệ trục tọa độ Oxy, cho đường thẳng dxy ():–3–40 = và đường tròn Cxyy 22 ():–40 += . Tìm M thuộc (d) và N thuộc (C) sao cho chúng đối xứng qua điểm A(3; 1). · M Î (d) Þ M(3b+4; b) Þ N(2 – 3b; 2 – b) N Î (C) Þ (2 – 3b) 2 + (2 – b) 2 – 4(2 – b) = 0 Þ b b 6 0; 5 == Trn S Tựng PP to trong mt phng Trang 5 Vy cú hai cp im: M(4;0) v N(2;2) hoc M N 38684 ;,; 5555 ổửổử - ỗữỗữ ốứốứ Cõu 17. Trong mt phng ta Oxy, cho im A(1; 1) v ng thng D: xy 2340 ++= . Tỡm im B thuc ng thng D sao cho ng thng AB v D hp vi nhau gúc 0 45 . ã D cú PTTS: xt yt 13 22 ỡ =- ớ =-+ ợ v VTCP u (3;2) =- r . Gi s Btt (13;22) D +ẻ . AB 0 (,)45 D = ị ABu 1 cos(;) 2 = uuurr ABu ABu .1 . 2 = uuur r r t tt t 2 15 13 169156450 3 13 ộ = ờ = ờ ờ =- ở . Vy cỏc im cn tỡm l: BB 12 3242232 ;,; 13131313 ổửổử ỗữỗữ ốứốứ . Cõu 18. Trong mt phng vi h ta Oxy, cho ng thng dxy :360 = v im N (3;4) . Tỡm ta im M thuc ng thng d sao cho tam giỏc OMN (O l gc ta ) cú din tớch bng 15 2 . ã Ta cú ON (3;4) = uuur , ON = 5, PT ng thng ON: xy 430 -= . Gi s Mmmd (36;) +ẻ . Khi ú ta cú ONM ONM S SdMONONdMON ON 2 1 (,).(,)3 2 D D === mm mmm 4.(36)313 3924151; 53 + =+==-= + Vi mM 1(3;1) =-ị- + Vi mM 1313 7; 33 ổử =ị- ỗữ ốứ Cõu 19. Trong mt phng to Oxy , cho im A (0;2) v ng thng dxy :220 -+= . Tỡm trờn ng thng d hai im B, C sao cho tam giỏc ABC vuụng B v AB = 2BC . ã Gi s BbbCccd (22;),(22;) ẻ . Vỡ D ABC vuụng B nờn AB ^ d d ABu .0 = uuur r B 26 ; 55 ổử ỗữ ốứ ị AB 25 5 = ị BC 5 5 = BCcc 2 1 125300180 5 =-+= 5 5 cC cC 1(0;1) 747 ; 555 ộ =ị ờ ổử ờ =ị ỗữ ốứ ở Cõu 20. Trong mt phng to Oxy, cho hai ng thng dxy 1 :30 +-= , dxy 2 :90 +-= v im A (1;4) . Tỡm im BdCd 12 , ẻẻ sao cho tam giỏc ABC vuụng cõn ti A. ã Gi BbbdCccd 12 (;3),(;9) -ẻ-ẻ ị ABbb (1;1) = uuur , ACcc (1;5) = uuur . D ABC vuụng cõn ti A ABAC ABAC .0 ỡ = ớ = ợ uuuruuur bcbc bbcc 2222 (1)(1)(1)(5)0 (1)(1)(1)(5) ỡ +-= ớ -++=-+- ợ (*) Vỡ c 1 = khụng l nghim ca (*) nờn PP to trong mt phng Trn S Tựng Trang 6 (*) bc b c c bbcc c 2 2222 2 (1)(5) 1(1) 1 (5) (1)(1)(1)(5)(2) (1) ỡ +- -= ù - ù ớ - ù +++=-+- ù - ợ T (2) bc 22 (1)(1) +=- bc bc 2 ộ =- ờ =- ở . + Vi bc 2 =- , thay vo (1) ta c cb 4,2 == ị BC (2;1),(4;5) . + Vi bc =- , thay vo (1) ta c cb 2,2 ==- ị BC (2;5),(2;7) - . Vy: BC (2;1),(4;5) hoc BC (2;5),(2;7) - . Cõu 21. Trong mt phng to Oxy, cho cỏc im A(0; 1) B(2; 1) v cỏc ng thng cú phng trỡnh: dmxmym 1 :(1)(2)20 ++= ; dmxmym 2 :(2)(1)350 ++= . Chng minh d 1 v d 2 luụn ct nhau. Gi P = d 1 ầ d 2 . Tỡm m sao cho PAPB + ln nht. ã Xột H PT: mxmym mxmym (1)(2)2 (2)(1)35 ỡ -+-=- ớ -+-=-+ ợ . Ta cú mm Dmm mm 2 31 12 20, 21 22 ổử ==-+>" ỗữ ốứ ị dd 12 , luụn ct nhau. Ta cú: AdBddd 1212 (0;1),(2;1), ẻ-ẻ^ ị D APB vuụng ti P ị P nm trờn ng trũn ng kớnh AB. Ta cú: PAPBPAPBAB 2222 ()2()216 +Ê+== ị PAPB 4 +Ê . Du "=" xy ra PA = PB P l trung im ca cung ằ AB P(2; 1) hoc P(0; 1) m 1 = hoc m 2 = . Vy PAPB + ln nht m 1 = hoc m 2 = . Cõu 22. Trong mt phng to Oxy, cho ng thng (D): xy 220 = v hai im A (1;2) - , B (3;4) . Tỡm im M ẻ (D) sao cho MA MB 22 2 + cú giỏ tr nh nht. ã Gi s M MttAMttBMtt (22;)(23;2),(21;4) D +ẻị=+-= uuuruuur Ta cú: AMBMttft 222 215443() +=++= ị ftf 2 min() 15 ổử =- ỗữ ốứ ị M 262 ; 1515 ổử - ỗữ ốứ Cõu 23. Trong mt phng to Oxy, cho ng thng dxy :230 -+= v 2 im AB (1;0),(2;1) . Tỡm im M trờn d sao cho MAMB + nh nht. ã Ta cú: AABB xyxy (23).(23)300 -+-+=> ị A, B nm cựng phớa i vi d. Gi A Â l im i xng ca A qua d ị A (3;2) Â - ị Phng trỡnh ABxy :570 Â +-= . Vi mi im M ẻ d, ta cú: MAMBMAMBAB ÂÂ +=+ . M MAMB Â + nh nht A Â , M, B thng hng M l giao im ca A Â B vi d. Khi ú: M 817 ; 1111 ổử - ỗữ ốứ . Trn S Tựng PP to trong mt phng Trang 7 TP 02: NG TRềN Cõu 1. Trong mt phng vi h to Oxy, gi A, B l cỏc giao im ca ng thng (d): xy 250 = v ng trũn (C): xyx 22 20500 +-+= . Hóy vit phng trỡnh ng trũn (C) i qua ba im A, B, C(1; 1). ã A(3; 1), B(5; 5) ị (C): xyxy 22 48100 + += Cõu 2. Trong mt phng vi h to Oxy, cho tam giỏc ABC cú din tớch bng 3 2 , A(2; 3), B(3; 2), trng tõm ca DABC nm trờn ng thng dxy :380 = . Vit phng trỡnh ng trũn i qua 3 im A, B, C. ã Tỡm c C (1;1) 1 - , C 2 (2;10) . + Vi C 1 (1;1) - ị (C): 22 xyxy 111116 0 333 +-++= + Vi C 2 (2;10) ị (C): 22 xyxy 9191416 0 333 +-++= Cõu 3. Trong mt phng vi h to Oxy, cho ba ng thng: dxy 1 :230 +-= , dxy 2 :3450 ++= , dxy 3 :4320 ++= . Vit phng trỡnh ng trũn cú tõm thuc d 1 v tip xỳc vi d 2 v d 3 . ã Gi tõm ng trũn l Itt (;32) - ẻ d 1 . Khi ú: dId dId 23 )(,) (, = tt tt 34(32)5 5 43(32)2 5 +-+ = +-+ t t 2 4 ộ ờ ở = = Vy cú 2 ng trũn tho món: xy 22 49 25 (2)(1) =-++ v xy 22 9 (4)(5) 25 -++=. Cõu hi tng t: a) Vi dxy 1 :6100 = , dxy 2 :3450 ++= , dxy 3 :4350 = . S: xy 22 (10)49 -+= hoc xy 222 10707 434343 ổửổửổử -++= ỗữỗữỗữ ốứốứốứ . Cõu 4. Trong mt phng vi h to Oxy, cho hai ng thng D : xy 380 ++= , xy ':34100 D -+= v im A(2; 1). Vit phng trỡnh ng trũn cú tõm thuc ng thng D , i qua im A v tip xỳc vi ng thng DÂ. ã Gi s tõm Itt (38;) ẻ D Ta cú: dIIA (,) D Â = tt tt 22 22 3(38)410 (382)(1) 34 + = ++- + t 3 =- ị IR (1;3),5 -= PT ng trũn cn tỡm: x y 22 (1)(3)25 -++= . Cõu 5. Trong mt phng vi h to Oxy, cho hai ng thng xy :4330 D -+= v xy ':34310 D = . Lp phng trỡnh ng trũn C () tip xỳc vi ng thng D ti im cú tung bng 9 v tip xỳc vi '. D Tỡm ta tip im ca C () v ' D . ã Gi Iab (;) l tõm ca ng trũn (C). C () tip xỳc vi D ti im M (6;9) v C () tip xỳc vi D Â nờn PP to trong mt phng Trn S Tựng Trang 8 a abab dIdI aa IMu ab ab 543 4333431 (,)(,') 433685 4 55 (3;4) 3(6)4(9)0 3454 D DD ỡ ỡ - -+ ỡ = ùù -+=- = ớớớ ^= ợ ùù -+-= += ợ ợ uuur r aa ab a ab b 251504685 10;6 543 190;156 4 ỡ -=- ù ộ == - ớ ờ =-= = ở ù ợ Vy: Cxy 22 ():(10)(6)25 -+-= tip xỳc vi ' D ti N (13;2) hoc Cxy 22 ():(190)(156)60025 ++-= tip xỳc vi ' D ti N (43;40) Cõu 6. Trong mt phng vi h to Oxy, vit phng trỡnh ng trũn i qua A (2;1) - v tip xỳc vi cỏc trc to . ã Phng trỡnh ng trũn cú dng: xayaaa xayaab 222 222 ()()() ()()() ộ -++= ờ -+-= ờ ở a) ị aa 1;5 == b) ị vụ nghim. Kt lun: xy 22 (1)(1)1 -++= v xy 22 (5)(5)25 -++= . Cõu 7. Trong mt phng vi h ta Oxy, cho ng thng dxy ():240 = . Lp phng trỡnh ng trũn tip xỳc vi cỏc trc ta v cú tõm trờn ng thng (d). ã Gi Immd (;24)() -ẻ l tõm ng trũn cn tỡm. Ta cú: mmmm 4 244, 3 =-== . ã m 4 3 = thỡ phng trỡnh ng trũn l: xy 22 4416 339 ổửổử -++= ỗữỗữ ốứốứ . ã m 4 = thỡ phng trỡnh ng trũn l: xy 22 (4)(4)16 -+-= . Cõu 8. Trong mt phng vi h ta Oxy, cho im A(1;1) v B(3;3), ng thng (D): xy 3480 += . Lp phng trỡnh ng trũn qua A, B v tip xỳc vi ng thng (D). ã Tõm I ca ng trũn nm trờn ng trung trc d ca on AB d qua M(1; 2) cú VTPT l AB (4;2) = uuur ị d: 2x + y 4 = 0 ị Tõm I(a;4 2a) Ta cú IA = d(I,D) aaa 2 118551010 -=-+ 2a 2 37a + 93 = 0 a a 3 31 2 ộ = ờ = ờ ở ã Vi a = 3 ị I(3;2), R = 5 ị (C): (x 3) 2 + (y + 2) 2 = 25 ã Vi a = 31 2 ị I 31 ;27 2 ổử - ỗữ ốứ , R = 65 2 ị (C): xy 2 2 314225 (27) 24 ổử -++= ỗữ ốứ Cõu 9. Trong h to Oxy cho hai ng thng dxy :230 +-= v xy :350 D +-= . Lp phng trỡnh ng trũn cú bỏn kớnh bng 210 5 , cú tõm thuc d v tip xỳc vi D . ã Tõm I ẻ d ị Iaa (23;) -+ . (C) tip xỳc vi D nờn: dIR (,) D = a 2 210 5 10 - = a a 6 2 ộ = ờ =- ở Trn S Tựng PP to trong mt phng Trang 9 ị (C): xy 22 8 (9)(6) 5 ++-= hoc (C): xy 22 8 (7)(2) 5 -++= . Cõu 10. Trong mt phng vi h to Oxy, cho ng trũn (C): xyx 22 4340 ++-= . Tia Oy ct (C) ti A. Lp phng trỡnh ng trũn (CÂ), bỏn kớnh RÂ = 2 v tip xỳc ngoi vi (C) ti A. ã (C) cú tõm I (23;0) - , bỏn kớnh R= 4; A(0; 2). Gi I Â l tõm ca (C Â ). PT ng thng IA : xt yt 23 22 ỡ = ớ =+ ợ , IIA ' ẻ ị Itt (23;22) Â + . AIIAtI 1 2'(3;3) 2 Â ==ị uuruur ị (C Â ): xy 22 (3)(3)4 -+-= Cõu 11. Trong mt phng vi h to Oxy, cho ng trũn (C): xyy 22 450 += . Hóy vit phng trỡnh ng trũn (CÂ) i xng vi ng trũn (C) qua im M 42 ; 55 ổử ỗữ ốứ ã (C) cú tõm I(0;2), bỏn kớnh R = 3. Gi I l im i xng ca I qua M ị I Â 86 ; 55 ổử - ỗữ ốứ ị (C Â ): xy 22 86 9 55 ổửổử -++= ỗữỗữ ốứốứ Cõu 12. Trong mt phng vi h ta Oxy, cho ng trũn (C): xyxy 22 2420 +-++= . Vit phng trỡnh ng trũn (CÂ) tõm M(5; 1) bit (CÂ) ct (C) ti hai im A, B sao cho AB 3 = . ã (C) cú tõm I(1; 2), bỏn kớnh R 3 = . PT ng thng IM: xy 34110 = . AB 3 = . Gi Hxy (;) l trung im ca AB. Ta cú: HIM IHRAH 22 3 2 ỡ ẻ ù ớ =-= ù ợ xy xy 22 34110 9 (1)(2) 4 ỡ = ù ớ -++= ù ợ xy xy 129 ; 510 1111 ; 510 ộ =-=- ờ ờ ờ ==- ở ị H 129 ; 510 ổử ỗữ ốứ hoc H 1111 ; 510 ổử - ỗữ ốứ . ã Vi H 129 ; 510 ổử ỗữ ốứ . Ta cú RMHAH 222 43 Â =+= ị PT (C Â ): xy 22 (5)(1)43 -+-= . ã Vi H 1111 ; 510 ổử - ỗữ ốứ . Ta cú RMHAH 222 13 Â =+= ị PT (C Â ): xy 22 (5)(1)13 -+-= . Cõu 13. Trong mt phng vi h ta Oxy, cho ng trũn (C): xy 22 (1)(2)4 -+-= v im K (3;4) . Lp phng trỡnh ng trũn (T) cú tõm K, ct ng trũn (C) ti hai im A, B sao cho din tớch tam giỏc IAB ln nht, vi I l tõm ca ng trũn (C). ã (C) cú tõm I (1;2) , bỏn kớnh R 2 = . IAB S D ln nht D IAB vuụng ti I AB 22 = . M IK 22 = nờn cú hai ng trũn tho YCBT. + T 1 () cú bỏn kớnh RR 1 2 == ị Txy 22 1 ():(3)(4)4 -+-= PP to trong mt phng Trn S Tựng Trang 10 + T 2 () cú bỏn kớnh R 22 2 (32)(2)25 =+= ị Txy 22 1 ():(3)(4)20 -+-= . Cõu 14. Trong mt phng vi h to Oxy, vit phng trỡnh ng trũn ni tip tam giỏc ABC vi cỏc nh: A(2;3), BC 1 ;0,(2;0) 4 ổử ỗữ ốứ . ã im D(d;0) d 1 2 4 ổử << ỗữ ốứ thuc on BC l chõn ng phõn giỏc trong ca gúc A khi v ch khi ( ) ( ) d DBAB ddd DCACd 2 2 2 2 9 1 3 4 4 41631. 2 43 ổử +- ỗữ - ốứ ==ị-=-ị= - +- Phng trỡnh AD: xy xy 23 10 33 +- =+-= - ; AC: xy xy 23 3460 43 +- =+-= - Gi s tõm I ca ng trũn ni tip cú tung l b. Khi ú honh l b 1 - v bỏn kớnh cng bng b. Vỡ khong cỏch t I ti AC cng phi bng b nờn ta cú: ( ) bb bbb 22 3146 35 34 -+- =-= + ị bbb bbb 4 35 3 1 35 2 ộ -=ị=- ờ ờ ờ -=-ị= ở Rừ rng ch cú giỏ tr b 1 2 = l hp lý. Vy, phng trỡnh ca ng trũn ni tip D ABC l: xy 22 111 224 ổửổử -+-= ỗữỗữ ốứốứ Cõu 15. Trong mt phng to Oxy, cho hai ng thng (d 1 ): xy 43120 = v (d 2 ): xy 43120 +-= . Tỡm to tõm v bỏn kớnh ng trũn ni tip tam giỏc cú 3 cnh nm trờn (d 1 ), (d 2 ) v trc Oy. ã Gi AddBdOyCdOy 1212 ,,=ầ=ầ=ầ ị ABC (3;0),(0;4),(0;4) - ị D ABC cõn nh A v AO l phõn giỏc trong ca gúc A. Gi I, R l tõm v bỏn kớnh ng trũn ni tip D ABC ị IR 44 ;0, 33 ổử = ỗữ ốứ . Cõu 16. Trong mt phng vi h to Oxy, cho ng thng d: xy 10 = v hai ng trũn cú phng trỡnh: (C 1 ): xy 22 (3)(4)8 -++= , (C 2 ): xy 22 (5)(4)32 ++-= . Vit phng trỡnh ng trũn (C) cú tõm I thuc d v tip xỳc ngoi vi (C 1 ) v (C 2 ). ã Gi I, I 1 , I 2 , R, R 1 , R 2 ln lt l tõm v bỏn kớnh ca (C), (C 1 ), (C 2 ). Gi s Iaad (;1) ẻ . (C) tip xỳc ngoi vi (C 1 ), (C 2 ) nờn IIRR IIRRIIRIIR 11221122 , =+=+ị= aaaa 2222 (3)(3)22(5)(5)42 -++-=-++- a = 0 ị I(0; 1), R = 2 ị Phng trỡnh (C): xy 22 (1)2 ++= . Cõu 17. Trong mt phng vi h to Oxy, cho tam giỏc ABC vi A(3; 7), B(9; 5), C(5; 9), M(2; 7). Vit phng trỡnh ng thng i qua M v tip xỳc vi ng trũn ngoi tip DABC. [...]... - 2) ; IN = ( y1; y1 - 2) = ( y1 ; y1 - 2); 4IN = (4 y1 ; 4 y1 - 8) uuu r uur ỡ y2 = 4y2 ộ y = 1 ị x1 = 1; y0 = -2; x0 = 4 ù 1 Theo gi thit: IM = 4 IN , suy ra: ớ 0 ờ 1 ù y0 - 2 = 4 y1 - 8 ở y1 = 3 ị x1 = 9; y0 = 6; x0 = 36 ợ Vy, cú 2 cp im cn tỡm: M (4; 2), N (1;1) hay M (36;6), N (9;3) Cõu 17 Trong mt phng vi h to Oxy, cho parabol (P): y 2 = 8 x Gi s ng thng d i qua tiờu im ca (P) v ct (P) ti hai... 3 a2 + b2 ợ T (1) v (2) suy ra a = 2b hoc c = -3a + 2b 2 + TH1: Vi a = 2b Chn b = 1 ị a = 2, c = -2 3 5 ị D : 2 x + y - 2 3 5 = 0 Trang 12 (1) (2) Trn S Tựng PP to trong mt phng ộa = 0 -3a + 2b Thay vo (1) ta c: a - 2b = 2 a2 + b2 ờ 4 ờa = - b 2 3 ở ị D : y + 2 = 0 hoc D : 4 x - 3y - 9 = 0 + TH2: Vi c = Cõu 25 Trong mt phng Oxy, cho ng trũn (C): x 2 + y 2 + 4 3 x - 4 = 0 Tia Oy ct (C) ti im... I(1; 1) v bỏn kớnh R = 5 IM = 2 < 5 ị M nm trong ng trũn (C) Gi s d l ng thng qua M v H l hỡnh chiu ca I trờn d Ta cú: AB = 2AH = 2 IA2 - IH 2 = 2 5 - IH 2 2 5 - IM 2 = 2 3 uuu r Du "=" xy ra H M hay d ^ IM Vy d l ng thng qua M v cú VTPT MI = (1; -1) ị Phng trỡnh d: x - y + 2 = 0 Cõu hi tng t: a) Vi (C): x 2 + y 2 - 8x - 4 y - 16 = 0 , M(1; 0) d : 5x + 2 y + 5 = 0 S: Cõu 39 Trong mt phng vi h... ã (C1) cú tõm O(0; 0), bỏn kớnh R1 = 13 (C2) cú tõm I2(6; 0), bỏn kớnh R2 = 5 Giao im A(2; 3) Gi s d: a( x - 2) + b( y - 3) = 0 (a2 + b2 ạ 0) Gi d1 = d (O, d ), d2 = d ( I 2 , d ) 2 2 2 2 2 2 T gi thit ị R1 - d1 = R2 - d2 d2 - d1 = 12 (6a - 2a - 3b)2 - a2 + b2 (-2a - 3b)2 a2 + b2 = 12 ộb = 0 b2 + 3ab = 0 ờ ở b = -3a ã Vi b = 0: Chn a = 1 ị Phng trỡnh d: x - 2 = 0 ã Vi b = 3a: Chn a = 1, b... phõn bit A, B 1 K ng cao IH ca DIAB, ta cú: SDABC = SIAB = IA.IB.sin ã = sin ã AIB AIB 2 IA Do ú SIAB ln nht sin ã = 1 DAIB vuụng ti I IH = AIB = 1 (tha IH < R) 2 1 - 4m 8 = 1 15m2 8m = 0 m = 0 hay m = 15 m2 + 1 Cõu hi tng t: a) Vi (C ) : x 2 + y 2 - 2 x + 4 y - 4 = 0 , D : 2 x + my + 1 - 2 = 0 S: m = -4 b) Vi (C ) : x 2 + y 2 - 2 x - 4 y - 5 = 0 , D : x + my - 2 = 0 S: m = -2 Cõu 47 Trong... trc honh v tam giỏc ABC l tam giỏc u ổ2 4 3ử ổ2 4 3ử ã Aỗ ; ữ, Bỗ ;ữ 7 ứ ố7 7 ứ ố7 Cõu 3 Trong mt phng vi h to Oxy, cho im C(2; 0) v elip (E): Cõu 4 Trong mt phng vi h to Oxy, cho elip (E): cho ã2 = 1200 (F1, F2 l hai tiờu im ca (E)) F1MF x 2 y2 + = 1 Tỡm cỏc im M ẻ (E) sao 100 25 ã Ta cú: a = 10, b = 5 ị c = 5 3 Gi M(x; y) ẻ (E) ị MF1 = 10 F1F22 = MF12 + MF22 - 2 MF1.MF2 cosã2 F1MF 2 3 3 x , MF2... 52 M (4;3) ẻ ( E ) 9a2 + 16b2 = a2b2 ỡa2 = 52 + b2 ỡa2 = 40 ù ù T (1) v (2) ta cú h: ớ 2 ớ 2 2 2 2 ù9a + 16b = a b ùb = 15 ợ ợ (1) (2) Vy (E): x2 y2 + =1 40 15 x2 y2 = 1 9 4 Gi s (d) l mt tip tuyn thay i v F l mt trong hai tiờu im ca (H), k FM ^(d) Chng minh rng M luụn nm trờn mt ng trũn c nh, vit phng trỡnh ng trũn ú Cõu 15 Trong mt phng vi h trc to Oxy , cho hypebol (H) cú phng trỡnh ã (H) cú... x = 3 // Oy * Xột 2 tip tuyn chung ngoi: (D) : y = ax + b (D) : ax - y + b = 0 ta cú: Trang 11 PP to trong mt phng Trn S Tựng ỡ a + b -1 ỡ ỡ 2 2 =2 ù ùa = ùa = 2 2 ỡd ( I1; D) = R1 ù a +b ù ù 4 4 ớ hay ớ ớd ( I ; ) = R ớ D 4a + b - 1 4-7 2 4+7 2 ợ 2 2 ù ùb = ùb = =1 ù 2 ù ù 2 ợ ợ 4 4 ợ a +b Vy, cú 3 tip tuyn chung: (D1 ) : x = 3, (D2 ) : y = - 2 4+7 2 2 4-7 2 x+ , (D3 ) y = x+ 4 4 4 4 Cõu 22 Trong... + 2 ị AB = FA + FB = x1 + x2 + 4 Cõu 18 Trong mt phng vi h to Oxy, cho Elip (E): x 2 + 5y 2 = 5 , Parabol (P ) : x = 10 y 2 Hóy vit phng trỡnh ng trũn cú tõm thuc ng thng (D) : x + 3y - 6 = 0 , ng thi tip xỳc vi trc honh Ox v cỏt tuyn chung ca Elip (E) vi Parabol (P) ã ng thng i qua cỏc giao im ca (E) v (P): x = 2 ộ 4 - 3b = b ộb =1 Tõm I ẻ D nờn: I (6 - 3b; b) Ta cú: 6 - 3b - 2 = b ờ ờ ở 4 -... giỏc ABC cú A(1; 0), B(0;2) , din tớch tam giỏc bng 2 v trung im I ca AC nm trờn ng thng d: y = x Tỡm to im C Cõu 8 ã Phng trỡnh AB : 2 x + y - 2 = 0 Gi s I (t; t )ẻ d ị C (2t - 1;2t ) 1 4 Theo gi thit: SD ABC = AB.d (C , AB) = 2 6t - 4 = 4 t = 0; t = 2 3 ổ 5 8ử 4 + Vi t = 0 ị C(-1;0) + Vi t = ị C ỗ ; ữ 3 ố3 3ứ Trong mt phng vi h to Oxy, cho tam giỏc ABC cú A(3; 5); B(4; 3), ng phõn giỏc trong . Trần Sĩ Tùng PP toạ độ trong mặt phẳng Trang 1 TĐP 01: ĐƯỜNG THẲNG Câu 1. Trong mặt phẳng với hệ toạ độ Oxy, cho 2 đường thẳng dxy 1 :7170 -+= , dxy 2 :50 +-= thoả mãn yêu cầu bài toán. dxy :350 +-= ; dxy :350 = . Câu hỏi tương tự: a) dxy 1 :7170 -+= , dxy 2 :50 +-= , P (0;1) . ĐS: xy 330 +-= ; xy 310 -+= . Câu 3. Trong mặt phẳng Oxy, cho. ị ( D 1 ): x + y 1 = 0 v ( D 2 ): x + 7y + 5 = 0 PP toạ độ trong mặt phẳng Trần Sĩ Tùng Trang 4 Câu 13. Trong mặt phẳng với hệ tọa độ Oxy, cho điểm A (2;1) và đường thẳng dxy :2340 ++= .