xx xx x 2 21 2 2 2 − =− − + Phòng GD& ĐT Bình Sơn Ôn tập toán 8 kì II GV : Võ Duy Thành Trường THCS Bình Tân ĐT: 0973188513 Email: Duythanhtt22@yahoo.com.vn ĐỀ CƯƠNG ÔN THI HỌC KÌ II LỚP 8 NĂM HỌC 2009-2010 I/ Lý thuyết : a) Đại số : Câu 1 : Phát biểu định nghĩa phương trình bậc nhất một ẩn ? cho ví dụ minh hoạ . Câu 2: Nêu các bước giải phương trình chứa ẩn ở mẫu ? Câu 3: Nêu các bước giải bài toán bằng cách lập phương trình ? Câu4 : Phát biểu hai qui tắc biến đổi bất phương trình. b) Hình học : Câu 1: Phát biểu định lý Ta lét trong tam giác. Nêu hệ quả của định lý . Áp dụng : Cho tam giác ABC , có AB = 7cm; BC = 9cm . Trên cạnh AB lấy điểm M sao cho AM = 3cm , từ M kẻ đường thẳng song song với BC cắt AC tại N.Tính độ dài đoạn thẳng MN Câu 2 : Phát biểu định nghĩa hai tam giác đồng dạng . Áp dụng : Cho ΔABC ~ ∆MNP . Biết AB = 5cm; AC = 8cm ; MN = 10 cm; MP = 14cm. Tìm các cạnh còn lại của hai tam giác . Câu 3: Nêu các trường hợp đồng dạng của hai tam giác ( Kể cả trường hợp đồng dạng của tam giác vuông ) II/ Bài tập : A: ĐẠI SỐ 1/ Phương trình bậc nhất một ẩn : Dạng1: Giải các phương trình sau : a) 2x + 3 = 0 b) 2x + 6 = 0 c) 2x - 3 = 0 d) 3x – 2 = 2x + 5 e) 2x +1 = 15 – 5x f/ x – 3 = 18 g/ x(2x – 1) = 0 Dạng 2: Giải các phương trình sau : a/ x(2- x ) + 5 = x ( 4- x) b) (2x - 3)(x + 1) + x(x - 2) = 3(x + 2) 2 . c/ 3 – 4x( 25- 2x ) = 8x 2 + x – 300 d) 2 2 (2 1) (2 1) 4( 3)x x x− − + = − Dạng 3: Giải các phương trình sau : a) 2 1 3 x − + x = 4 2 x + b) +2x = c) 3(2 1) 3 1 2(3 2) 1 4 10 5 x x x− + + − + = d) 2 3(2 1) 5 3 5 3 4 6 12 x x x x − − − − − = + Dạng 4: Giải các phương trình sau : a) + 2 = b) c) 2 2 2 3 = + + − − x x x x d) + = e) 2 5 3 4 4 3 5 2 + = + = + + + xxxx f) 2 4 6 8 98 96 94 92 x x x x+ + + + + = = Dạng5 : Giải các phương trình sau : a) | 3x| = x+ 6 b) 13 −=− xx c) | 2x – 3 | = 3 –2x Dạng 6: Tìm giá trị nguyên của x để phân thức M có giá trị nguyên 1 ( ) 3 x 1 x 2 1 10 5 > + − + 2 3 Phòng GD& ĐT Bình Sơn Ôn tập toán 8 kì II GV : Võ Duy Thành Trường THCS Bình Tân ĐT: 0973188513 Email: Duythanhtt22@yahoo.com.vn M = 2 10 7 5 2 3 x x x − − − Dạng 7 : Chứng minh rằng : 2x 2 +4x +3 > 0 với mọi x . Dạng 8 : Chứng minh rằng: Với a, b dương 2 2 2 2 2 2 ) ) 2 2 a b a b a ab b b a + ≥ + ≥ 2/ Bất phương trình : Dạng1 : Giải bất phương trình và biểu diễn tập hợp nghiệm trên trục số a) 3x – (7x + 2) > 5x + 4 b) 2x + 3( x – 2 ) < 5x – ( 2x – 4 ) c) x(x - 2) – (x + 1)(x + 2) < 12. c) 2x – x(3x + 1) ≤ 15 – 3x(x + 2) d) (x-3) (x + 3) < ( x+2) 2 + 3 e) ( x+1) (2x-2) – 3 ≥ -5x – ( 2x + 1) ( 3 – x) f) 2x + 3( x – 2 ) < 5x – ( 2x – 4 ) Dạng2: Giải bất phương trình sau: a) b) 2 + < 3 - c) - < - d) 1 1 3 x x − > − 3/ Giải bài toán bằng cách lập phương trình : • Toán tìm hai số : Bài 1: Tổng số học sinh của hai lớp 8 A và 8 B là 78 em. Nếu chuyển 2 em tờ lớp 8 A qua lớp 8 B thì số học sinh của hai lớp bằng nhau. Tính số học sinh của mỗi lớp? Bài 2: Một hình chữ nhật có độ dài một cạnh bằng 5cm và độ dài đường chéo bằng 13cm . Tính diện tích của hình chữ nhật đó . Bài 3:Tổng của hai chồng sách là 90 quyển . Nếu chuyển từ chồng thứ hai sang chồng thứ nhất 10 quyển thì số sách ở chồng thứ nhất sẽ gấp đôi chồng thứ hai . Tìm số sách ở mỗi chồng lúc ban đầu Bài 4: Có 15 quyển vở gồm hai loại : loại I giá 2000 đồng một quyển , loại II giá 1500 đồng một quyển . Số tiền mua 15 quyển vở là 26000 đồng . Hỏi có mấy quyển vở mỗi loại ? Bài 5: Tìm hai số biết tổng của chúng là 100, nếu tăng số thứ nhất lên 2 lần và cộng them vào số thứ hai 5 đơn vị thì khi đó số thứ nhất gấp 5 lần số thứ hai. • Toán chuyển động : Bài 1: Lúc 7giờ. Một ca nô xuôi dòng từ A đến B cách nhau 36km rồi ngay lập tức quay về bên A lúc 11giờ 30 phút.Tính vận tốc của ca nô khi xuôi dòng.Biết rằng vận tốc nước chảy là 6km/h Bài 2:Một người đi xe đạp từ địa điểm A đến địa điểm B với vận tốc 15km/h và sau đó quay trở về từ B đến A với vận tốc 12km/h. Cả đi lẫn về mất 4giờ 30 phút.Tính chiều dài quảng đường ? Bài 3: Một bạn học sinh đi học từ nhà đến trường với vận tốc trung bình 4 km/h . Sau khi đi được quãng đường bạn ấy đã tăng vận tốc lên 5 km/h . Tính quãng đường từ nhà đến trường của bạn học sinh đó , biết rằng thời gian bạn ấy đi từ nhà đến trường là 28 phút 2 Phòng GD& ĐT Bình Sơn Ơn tập tốn 8 kì II GV : Võ Duy Thành Trường THCS Bình Tân ĐT: 0973188513 Email: Duythanhtt22@yahoo.com.vn Bài 4: Một người đi xe đạp từ A đén B với vận tốc trung bình 12km/h . Khi đi về từ B đến A . Người đó đi với vận tốc trung bình là 10 km/h, nên thời gian về nhiều hơn thời gian đi là 15 phút . Tính độ dài quảng đường AB ? Bài 5: Một xe ơ tơ đi từ A đến B hết 3g12ph .Nếu vận tốc tăng thêm 10km/h thì đến B sớm hơn 32ph. Tính qng đường AB và vận tốc ban đầu của xe ? Bài 6: Một ca nơ xi dòng từ bến A đến bến B mất 4 giờ, và ngược dòng từ bến B đến bến A mất 5h. Tính khoảng cách giữa hai bến , biết vận tốc dòng nước là 2km/h. Bài 7:Lúc 7 giờ , một người đi xe máy khởi hành từ A với v = 30 km/h. Sau đó một giờ , người thứ hai cũng đi xe máy từ A đuổi theo với v = 45 km/h . Hỏi đến mấy giờ , người thứ hai đuổi kòp người thứ nhất ? Nơi gặp nhau cách A bao nhiêu km. Bài 8 : Một người đi xe máy từ thành phố Quảng Ngãi lúc 7 giờ sáng dự đònh đến thành phố Đà Nẵng lúc 10 giờ 20 phút .Nhưng mỗi giờ đi chậm hơn so với dự kiến 6km nên đên thành phố Đà Nẵng lúc 11 giờ trưa. Tính quãng đường từ thành phố Quảng Ngãi đến thành phố Đà Nẵng.Bài IV : Giải bài tốn sau bằng cách lập phương trình Bài 9 : Một người đi ừ A đến B với vận tốc 24 km/h rồi đi tiếp từ B đến C với vận tốc 32 km/h. Tính qng đường AB và BC, biết rằng qng đường AB dài hơn qng đường BC là 6 km và vận tốc trung bình của người đó trên cả qng đường AC là 27 km/h ? • Toán n ă ng su ấ t : Bài 1: Một đội máy kéo dự đònh mỗi ngày cày 40ha. Khi thực hiện, mỗi ngày cày được 52ha . Vì vậy, đội không những đã cày xong trước thời hạn 2 ngày mà còn cày thêm được 4ha nữa . Tính diện tích ruộng mà đội phải cày theo kế hoạch dự đònh. Bài 2 : Một vòi nước chảy vào một bể không có nước . Cùng lúc đó một vòi nước khác chảy từ bể ra. Mỗi giờ lượng nước chảy ra bằng lượng nước chảy vào . Sau 5 giờ nước trong bể đạt tới dung tích của bể . Hỏi nếu bể không có nước mà chỉ mở vòi chảy vào thì bao lâu đầy bể ? Bài 4 : Một tổ sản xuất theo kế hoạch mỗi ngày phải sản xuất 50 sản phẩm . Khi thực hiện , mỗi ngày tổ đã sản xuất được 57 sản phẩm . Do đó tổ đã hoàn thành trước kế hoạch 1 ngày và còn vượt mức 13 sản phẩm. Hỏi theo kế hoạch tổ phải sản xuất bao nhiêu sản phẩm Bài 5: Một xí nghiệp dệt thảm dự đònh dệt một số thảm trong 20 ngày . Do cải tiến kó thuật , năng suất dệt của xí nghiệp đã tăng 20%. Bởi vậy , chỉ trong 18 ngày , xí nghiệp không những đã hoàn thành số thảm cần dệt mà còn làm vượt mức 24 tấm thảm nữa. Tính số thảm mà xí nghiệp đã dự đònh ban đầu . B .HÌNH HỌC Bài1: Cho hình thang ABCD ( AB // CD ) có góc DAB bằng góc DBC và AD= 3cm, AB = 5cm, BC = 4cm. a/ Chứng minh tam giác DAB đồng dạng với tam giác CBD. b/ Tính độ dài của DB, DC. c/ Tính diện tích của hình thang ABCD, biết diện tích của tam giácABD bằng 5cm 2 . 3 Phòng GD& ĐT Bình Sơn Ôn tập toán 8 kì II GV : Võ Duy Thành Trường THCS Bình Tân ĐT: 0973188513 Email: Duythanhtt22@yahoo.com.vn Bài2: Cho hình chữ nhật có AB = 8cm; BC = 6cm. Vẽ đường cao AH của tam giác ADB a/ Chứng minh tam giác AHB đồng dạng tam giác BCD b/ Chứng minh AD 2 = DH.DB c/ Tính độ dài đoạn thẳng DH, AH Bài 3: Cho ABC ∆ vuông tại A có đường cao AH .Cho biết AB=15cm, AH=12cm a) Chứng minh CHAAHB ∆∆ , đồng dạng b) Tính độ dài đoạn thẳng HB;HC;AC . c) Trên cạnh AC lấy điểm E sao cho CE=5cm ;trên cạnh BC lấy điểm F sao cho CF=4cm. Chứng minh ∆ CE F vuông. d) Chứng minh :CE.CA=CF Bài4: Cho tam giác ABC có AB = 6cm, AC = 8 cm. Trên tia đối của AB lấy điểm D sao cho AD = 1/3AB. Kẻ DH vuông góc với BC. a/ Chứng minh tam giác ABC đồng dạng với tam giác HBD b/ Tính BC, HB, HD, HC c/ Gọi K là giao điểm của DH và AC. Tính tỉ số diện tích của tam giác AKD và tam giác ABC Bài5: Cho rABC vuông tại A có AB = 9cm ; BC = 15cm . Lấy M thuộc BC sao cho CM = 4cm , vẽ Mx vuông góc với BC cắt AC tại N. a/Chứng minh rCMN đồng dạng với rCAB , suy ra CM.AB = MN.CA . b/Tính MN . c/Tính tỉ số diện tích của rCMN và diện tích rCAB . Bài 6 : Cho tam giác ABC vuông tại A, có AB = 3cm, AC = 5cm , đường phân giác AD. Đường vuông góc với DC cắt AC ở E . a) Chứng minh rằng tam giác ABC và tam giác DEC đồng dạng . b) Tính độ dài các đoạn thẳng BC , BD c) Tính độ dài AD Tính diện tích tam giác ABC và diện tích tứ giác ABDE Bài 7 : Cho tam giác ABC vuông tại A. AB = 15cm, AC = 20cm.Vẽ tia Ax//BC và tia By vuông góc với BC tại B, tia Ax cắt By tại D. a) Chứng minh ∆ ABC ∼ ∆ DAB b) Tính BC, DA, DB. c) AB cắt CD tại I. Tính diện tích ∆ BIC Bài 8: Cho hình thang ABCD cóÂ = D =90º. Hai đường chéo AC và BD vuông góc với nhau tại I. Chứng minh : a / ΔABD ~ ∆DAC Suy ra AD 2 = AB . DC b/ Gọi E là hình chiếu của B xuống DC và O là trung điểm của BD .Chứng minh ba điểm A, O , E thẳng hàng. c/ Tính tỉ số diện tích hai tam giác AIB và DIC.? Bài 9: Cho ∆ ABC có AB=12cm , AC= 15cm , BC = 16cm . Trên cạnh AB lấy điểm M sao cho AM =3cm . Từ M kẻ đường thẳng song song với BC cắt AC tại N , cắt trung tuyến AI tại K . a/ Tính độ dài MN b/ Chứng minh K là trung điểm của MN 4 Phòng GD& ĐT Bình Sơn Ơn tập tốn 8 kì II GV : Võ Duy Thành Trường THCS Bình Tân ĐT: 0973188513 Email: Duythanhtt22@yahoo.com.vn c/ Trên tia MN lấy điểm P sao cho MP= 8cm . Nối PI cắt AC tại Q chứng minh ΔAMN ~ ∆QIC Bài 10 :Cho tam giác ABC cân tại A và M là trung điểm của BC. Lấy các điểm D,E theo thứ t€ thuộc các cạnh AB, AC sao cho góc DME bằng góc B. a/ Chứng minh ∆ BDM đồng dạng với ∆ CME b/ Chứng minh BD.CE khơng đổi. c/ Chứng minh DM là phân giác của góc BDE. Bài 11: Cho hình thang cân ABCD có AB// CD và AB< CD, đường chéo BD vng góc với cạnh bên BC.Vẽ Đường cao BH. a/ Chứng minh ∆ BDC ∆ HBC b/ Cho BC =15; DC=25.Tính HC,HD c/ Tính diện tích hình thang ABCD Bài 12 : Cho hình thang ABCD có đáy nhỏ AB . Trên CD lấy điểm E sao cho = . Gọi M là giao điểm của AE và BD , N là giao điểm của BE và AC . Chứng minh rằng: a) ME.AB = MA.EC và ME.NB = NE.MA b) MN // CD Bài 13: Cho tam giác ABC vuông tại A . Đường cao AH cắt đường phân giác BD tại I . Chứng minh rằng : a) IA. BH = IH.BA b) AB 2 = BH.BC c) = Bài 14: Cho tam giác ABC vuông tại A, có AB = 6cm. AC = 8cm . Vẽ đường cao AH. a) Tính BC b) Chứng minh : AB 2 = BH.BC ; Tính BH, HC c) Vẽ phân giác Adcủa góc A. (D є BC). Chứng minh H nằm giữa B và D Bài 15: Cho hình thang cân ABCD (AB //CD) và AB < DC . Đường chéo BD ⊥BC. Vẽ đường cao BH a) Chứng minh: r BDC ∽ r HBC b) Cho BC = 15 ; DC = 25 ; Tính HC, HD c) Tính S ABCD Bài 16: Cho hình thang ABCD (AB //CD) có đường chéo BD hợp với tia BC thành một góc DBC = DAB , AB= 2,5 cm, AD= 3,5cm, BD= 5cm. a) Chứng minh r ABD ∽ r BCD b) Tính độ dài cạnh BC và cạnh CD c) Chứng minh rằng diện tích tam giác BDC gấp 4 lần diện tích tam giác ABD. C/ HÌNH HỌC KHÔNG GIAN: Bài1: Cho hình chóp tứ giác đều S.ABCD có cạnh đáy AB = 20 cm, cạnh bên SA= 24 cm. a/ Tính chiều cao SO rồi tính thể tích của hình chóp 5 Phòng GD& ĐT Bình Sơn Ơn tập tốn 8 kì II GV : Võ Duy Thành Trường THCS Bình Tân ĐT: 0973188513 Email: Duythanhtt22@yahoo.com.vn b/ Tính diện tích tồn phần của hình chóp Bài 2: Một hình hộp chữ nhật có chiều dài là 10cm , chiều rộng là 8cm , chiều cao là 5cm . Tính thể tích hình hộp chữ nhật đó . Bài 3 . Cho hình chóp tam giác đều có cạnh đáy a = 6 cm, chiều cao h = 4 cm . a) Tính thể tích của hình chóp b) Tính độ dài cạnh bên của hình chóp c) Tính diện tích xung quanh của hình chóp Bài 4: Một lăng trụ đứng là tam giác đều cạnh a = 3cm , đường cao h = 5cm. Tính diện tích xung quanh , diện tích toàn phần và thể tích của hình lăng trụ đó . Bài 4 : Cho hình hộp chữ nhật ABCDA’B’C’D’, có AB = 10cm, BC = 20cm , AA’ = 15cm a) Tính V hình hộp b) Tính độ dài đường chéo AC’ của hình hộp chữ nhật Bài 5: Cho hình chóp tứ giác đều . S ABCD có đáy AB = 10 ; cạnh bên SA = 12 a) Tính đường chéo AC b) Tính đường cao SO rồi tính V hình chóp Bài 6: Cho một hình chóp tứ giác đều S. ABCD có độ dài mỗi cạnh bên là b = 15cm. Đáy ABCD là một hình vuông có độ dài mỗi cạnh là a= 10cm Tính thể tích và diện tích xung quanh của hình chóp đó ( Tính kết quả chính xác đến hai chữ số ở phần thập phân) ./. Chúc các em ơn thi đạt kết quả !!! 6 . định lý Ta lét trong tam giác. Nêu hệ quả của định lý . Áp dụng : Cho tam giác ABC , có AB = 7cm; BC = 9cm . Trên cạnh AB lấy điểm M sao cho AM = 3cm , từ M kẻ đường thẳng song song với BC cắt. Một xí nghiệp dệt thảm dự đònh dệt một số thảm trong 20 ngày . Do cải tiến kó thuật , năng suất dệt của xí nghiệp đã tăng 20%. Bởi vậy , chỉ trong 18 ngày , xí nghiệp không những đã hoàn thành. minh rằng tam giác ABC và tam giác DEC đồng dạng . b) Tính độ dài các đoạn thẳng BC , BD c) Tính độ dài AD Tính diện tích tam giác ABC và diện tích tứ giác ABDE Bài 7 : Cho tam giác ABC vuông