trờng th&thcs pờ ly ngài gv:lộc xuân đại Ngaứy daùy: Tieỏt (TKB): Sú soỏ: Vaộng: Đ4. diện tích hình thang I. Mục tiêu: 1, Về kiến thức: Học sinh hiểu cách xây dựng công thức tính diện tích hình thang , hình bình hành 2, Về kĩ năng: Học sinh tính đợc diện tích hình thang , hình bình hành theo công thức đã học. 3, Về t duy, thái độ: - Rèn luyện tính kiên trì trong suy luận , cẩn thận, chính xác trong vẽ hình II. Chuẩn bị của giáo viên và học sinh : GV : Giáo án , Thớc thẳng, êke, giấy rời, kéo, keo dán. bảng phụ vẽ hình 136 HS : Giấy, thớc thẳng, êke, bảng phụ nhóm, Ôn tập công thức tính diện tích tam goác III. Tiến trình dạy học: 1. Kiểm tra bài cũ: không. 2.Bài mới. Hoạt động của giáo viên Hoạt động của học sinh Phần ghi bảng HĐ 1: Tổ chức tình huống học tập. - Giới thiệu nội dung bài học, ghi đầu bài. HĐ 2: Nội dung bài học. * ND 1: - Các em sinh hoạt nhóm làm ?1 . - Hớng dẫn : Nối đờng chéo AC, hạ đ- ờng cao AH của tam giác ADC và đờng cao CH của tam giác ABC AH và CH thế nào với nhau ? Vì sao ? Tính S ADC = ? S ABC = ? S ABCD = ? Vậy để tính diện tích hình thang ta phải làm sao ? - Ghi đầu bài. ?1 - Nối đờng chéo AC, hạ đờng cao AH của tam giác ADC và đờng cao CH của tam giác ABC. S ADC = 2 1 DC. AH S ABC = 2 1 AB. CH S ABCD = S ADC + S ABC = 2 1 DC. AH + 2 1 AB. CH mà AH = CH (khoảng cách của hai đơng thẳng song song) 1) Công thức tính diện tích hình thang. Diện tích hình thang bằng nửa tích của tổng hai đáy với chiều cao S = ( ) 2 h.ba + giáo án hình học 8 năm học 2010-2011 Trang 1 H D C BA H H D C BA b a h trờng th&thcs pờ ly ngài gv:lộc xuân đại * ND 2: - Hình bình hành có phải là hình thang không ? - Hình bình hành là hình thang có hai đáy thế nào với nhau ? - Các em làm ?2 - Cho hs tự đọc ví dụ sgk-124. S ABCD = 2 1 AH( DC + AB ) - Hình bình hành là hình thang đặc biệt. - Hình bình hành là hình thang có hai đáy bằng nhau. ?2 Giải áp dụng công thức tính diện tích hình thang ta có : S = ( ) 2 h.ba + Mà a = b nên S = ( ) 2 h.aa + = 2 h.a2 = a.h - Đọc bài. 2) Công thức tính diện tích hình bình hành. Diện tích hình bình hành bằng tích của một cạnh với chiều cao ứng với cạnh đó S = a.h ?2 Giải áp dụng công thức tính diện tích hình thang ta có : S = ( ) 2 h.ba + Mà a = b nên: S = ( ) 2 h.aa + = 2 h.a2 = a.h. 3) Ví dụ ( SGK trang 124 ) 3.Củng cố- luyện tập. - Nêu công thức tính diện tích hình thang , hình bình hành ? - Các em làm bài tập 26 trang 125; Để tìm diện tích hình thang ABED ta làm sao ? * S ABED = 2 DEAB + .BC ; mà BC = ? - Các em làm bài tập 27 trang 125. Bài 26 (sgk-125 ) Giải ABCD là hình chữ nhật nên ta có BC = 828 : 23 = 36 m S ABED = 2 DEAB + .BC = ( ) 2 36.3123 + = 972 (m 2 ) Bài 27 (sgk-125) Giải Hình chữ nhật ABCD và hình bình hành ABEF có cùng diện tích vì có dáy chung là AB và có chiều cao bằng nhau. 4.H ớng dẫn về nhà. - Học thuộc công thức giáo án hình học 8 năm học 2010-2011 Trang 2 a h F ED C B A 31 m D C A B E 23 m trờng th&thcs pờ ly ngài gv:lộc xuân đại - Bài tập về nhà : 28, 28, 30, 31 trang 126 SGK. ____________________________________ Ngaứy daùy: Tieỏt (TKB): Súsoỏ: Vaộng: Tiết 34. 5. diện tích hình thoi I. Mục tiêu : 1, Về kiến thức: Học sinh hiểu cách xây dựng công thức tính diện tích hình thoi. 2, Về kĩ năng: Học sinh biết đợc hai cách tính diện tích hình thoi, biết cách tính diện tích của một tứ giác có hai đờng chéo vuông góc. 3, Về t duy, thái độ: - Rèn luyện tính kiên trì trong suy luận , cẩn thận, chính xác trong vẽ hình. II. Chuẩn bị: - GV: Giáo án , SGK, đồ dùng dạy học. - HS: SGK, vở ghi, đồ dùng học tập. III. Tiến trình dạy học: 1. Kiểm tra bài cũ. - Nêu y/c kiểm tra: + Câu 1: Phát biểu quy tắc, viết công thức tính diện tích hình thang, hình bình hành (vẽ hình minh hoạ) ? => Nhận xét, đánh giá. - Giới thiệu nội dung bài học, ghi đầu bài. 2.Bài mới. HĐ GV HĐ HS Nội dung ghi bảng - Nêu y/c ?1 - Diện tích hình thoi ABCD. - Các em thực hiện: S ABC = ? S ADC = ? S ABCD = ? -Vậy để tính diện tích của một tứ giác có hai đ- ờng chéo vuông góc ta làm sao ? -Các em thực hiện ?2 : - Đọc ?1 . - Thực hiện theo y/c của GV. S ABC = 2 1 AC. BH S ADC = 2 1 AC. DH S ABCD = S ABC + S ADC = 2 1 AC.BH + 2 1 AC. DH = 2 1 AC( BH + DH ) = 2 1 AC.BD 1. Cách tính diện tích của một tứ giác có hai đờng chéo vuông góc. ?1 Giải S ABC = 2 1 AC. BH S ADC = 2 1 AC. DH S ABCD = S ABC + S ADC = 2 1 AC.BH + 2 1 AC. DH = 2 1 AC( BH + DH ) = 2 1 AC.BD 2. Công thức tính diện giáo án hình học 8 năm học 2010-2011 Trang 3 trờng th&thcs pờ ly ngài gv:lộc xuân đại -Hai đờng chéo hình thoi có tính chất gì ? -Vậy để tính diện tích hình thoi có hai đờng chéo là d 1 và d 2 ta làm sao ? -Các em sinh họat nhóm để thực hiện ?2 -Hình thoi cũng là hình gì ? -Vậy hãy áp dụng công thức tính diện tích hình bình hành để tính diện tích hình thoi ? -Nếu ABCD là tứ giác thờng thì tứ giác MENG là hình gì ? -Khi cho ABCD là hình thang cân thì hai đờng chéo của nó thế nào với nhau ? -Do đó hình bình hành MENG có hai cạnh kề thế nào với nhau ? -Vậy tứ giác MENG là hình gì ? -Muốn tìm diện tích hình thoi ta làm sao ? -MN là đờng gì của hình thang ? Vậy MN = ? -EG là đờng gì của hình thang ? -Muốn tìm đờng cao của hình thang khi biết diện tích và đờng trung bình ta làm sao ? -Hai đờng chéo hình thoi vuông góc với nhau -Để tính diện tích hình thoi có hai đờng chéo là d 1 và d 2 ta lấy d 1 nhân với d 2 rồi chia cho 2. -Hình thoi cũng là hình bình hành. -Vậy công thức khác để tình diện tích hình thoi là: lấy độ dài một cạnh nhân với chiều cao. Giải : a) Ta có ME // BD và ME = 2 1 BD GN // BD và GN = 2 1 BD ME// GN và ME =GN = 2 1 BD Vậy MENG là hình bình hành Tơng tự ta có: EN // MG và EN = MG = 2 1 AC Mặt khác ta có BD = AC (hai đờng chéo của hình thang cân) ME = GN = EN = MG từ đó MENG là hình thoi b) MN là đờng trung bình của hình thang nên MN= 40 2 5030 2 CDAB = + = + EG là đờng cao của hình thang nên MN. EG = 800, Suy ra EG = 800: 40 =20(m ) Diện tích bồn hoa hình thoi là : tích hình thoi ?2 S = 2 1 AC. BD * Diện tích hình thoi bằng nửa tích hai đờng chéo: S = 21 d.d 2 1 ?3 S = a. h 3).Ví dụ : ( SGK trang 127 ) Giải : a) Ta có ME // BD và ME = 2 1 BD GN // BD và GN = 2 1 BD ME// GN và ME =GN = 2 1 BD. Vậy MENG là hình bình hành Tơng tự ta có: EN // MG và EN = MG = 2 1 AC Mặt khác ta có BD = AC (hai đờng chéo của hình thang cân) ME = GN = EN = MG từ đó MENG là hình thoi b) MN là đờng trung bình của hình thang nên MN= 40 2 5030 2 CDAB = + = + EG là đờng cao của hình thang nên MN. EG = 800, Suy ra EG = 800: 40 =20(m ) Diện tích bồn hoa hình giáo án hình học 8 năm học 2010-2011 Trang 4 a h N E D C B A M GH trờng th&thcs pờ ly ngài gv:lộc xuân đại 2 1 MN. EG = 2 1 . 40. 20 = 400 (m 2 ) thoi là : 2 1 MN. EG = 2 1 . 40. 20 = 400 (m 2 ) Củng cố. - Nêu công thức tính diện tích hình thoi ? - Các em làm bài tập 33 trang 128. Cho hình thoi MNPQ Vẽ hình chữ nhật có một cạnh là MP , cạnh kia bằng IN ( IN = 2 1 NQ ) Ta có S MNPQ = S MPBA = MP.IN = 2 1 MP.NQ 4.H ớng dẫn về nhà. - Học thuộc các công thức. - Bài tập về nhà: 32, 34, 35, 36 trang 128, 129. ____________________________________ Ngaứy daùy: .Tieỏt (TKB): Sú soỏ: Vaộng: Tiết 35. Đ6. diện tích đa giác. I. Mục tiêu: a) Kiến thức: - Nắm vững công thức tính diện tích các đa thức đơn giản, đặc biệt là các cách tính diện tích tam giác và hình thang. b) Kỹ năng: - Biết chia một cách hợp lí đa giác cần tìm diện tích thành những đa giác đơn giản mà có thể tính đợc diện tích. - Biết thực hiện các phép vẽ và đo cần thiết. - Rèn luyện tính cẩn thận, chính xác khi vẽ, đo, tính. c) Thái độ: - Tích cực, tự giác trong học tập. II. Chuẩn bị: - GV: Giáo án, sgk, đồ dùng dạy học. - HS : SGK, vở ghi, đồ dùng học tập. III. Tiến trình dạy học: 1. Kiểm tra bài cũ. - Nêu y/c kiểm tra: giáo án hình học 8 năm học 2010-2011 Bài 33/128. Trang 5 Q P M B A N I trờng th&thcs pờ ly ngài gv:lộc xuân đại + Phát biểu công thức tính diện tích hình thoi, viết công thức và vẽ hình minh hoạ ? => Nhận xét, đánh giá. 2.Bài mới. HĐGV HĐHS Nội dung ghi bảng - Quan sát hình 148 và hình 149 SGK rồi nêu các cách phân chia đa giác để tính diện tích ? - Ta có thể chia đa giác thành các tam giác (h 148a) hoặc tạo ra một tam giác nào đó có chứa đa giác (h 148b), do đó việc tính diện tích của một đa giác bất kì thờng đợc quy về việc tính diện tích các tam giác a) b) Hình 148 - Trong một số trờng hợp, để việc tính toán thuận lợi ta có thể chia đa giác thành nhiều tam giác vuông và hình thang vuông(h 149) Hình 149 - Để tính diện tích đa giác ABCDEGHI ta làm ntn ? Để tính diện tích ba hình : Hình thang vuông DEGC,hình chữ nhật ABGH và tam giác AIH Ta cần xác định số đo các cạnh nào - Quan saựt hỡnh, laộng nghe gv giaỷng baứi. - Để tính diện tích đa giácABCDEGHI ta chia hình ABCDEGHI thành ba hình : Hình thang vuông DEGC,hình chữ nhật ABGH và tam giác AIH Ví dụ : Thực hiên các phép vẽ và đo cần thiết để tính diện tích hình ABCDEGHI trên hình 150 Giải Ta chia hình ABCDEGHI thành ba hình : Hình thang vuông DEGC,hình chữ nhật ABGH và tam giác AIH Muốn thế phải vẽ thêm các đoạn thẳng CG, AH Để tính diện tích các hình trên , ta đo sáu đoạn thẳng CD, DE, CG, AB, AH và đ- ờng cao IK của tam giác AIH. Kết quả nh sau CD = 2cm, DE = 3cm, CG = 5cm AB = 3cm, AH = 7cm, IK = 3cm Ta có : DEGC S = ( ) 2 3 5 .2 8 2 cm + = ABGH S = 3.7 = 21 (cm 2 ) ( ) 2 AIH 1 S .3.7 10,5 cm 2 = = ABCDEGHI DEGC ABGH AIH S =S +S +S = 39,5(cm 2 ) 3.Củng cố - Y/c Một HS lên bảng giải Bài 37 sgk-130. - Để tính diện tích hình ABCDE ta cần xác định số đo các đoạn thẳng nào ? Bài 37 SGK-130. Thực hiện phép đo ta có kết quả sau: BG = 19mm, AH = 8mm, giáo án hình học 8 năm học 2010-2011 Trang 6 H G E D C B A K I trờng th&thcs pờ ly ngài gv:lộc xuân đại AC = 47mm, HK = 18mm, KC = 22mm, EH = 15mm, KD = 23mm 2 ABC 1 S .47.19 446,5 2 mm= = 2 AHE 1 S .8.15 60 2 mm= = 2 HKDE 15 23 S .18 222 2 mm + = = 2 KCD 1 S .23.22 253 2 mm= = ( ) ABCDE 2 S 446,5 60 222 253 981,5 mm = + + + = - Y/c một hs lên bảng làm Bài 38 sgk-130. Bài 38 Diện tích hình chữ nhật ABCD là: ( ) 2 ABCD S 150.120 18000 m= = Diện tích con đờng hình bình hành EBGF là : EBGF S = 50.120 = 6000(m 2 ) Diện tích phần còn lại là : 18000 - 6000 = 12000 (m 2 ) 4: Dặn dò. - Làm bài tập 39, 40 SGK. - Ôn tập chơng II. Ngaứy daùy: Tieỏt (TKB): Sú soỏ: Vaộng: Tiết 36. ôn tập chơng I (chơng iii) I. Mục tiêu: a) Kiến thức: - Học sinh hiểu và vận dụng đợc: + Định nghĩa đa giác lồi, đa giác đều. + Các công thức tính diện tích: Hình chữ nhật, hình vuông, bình hành, tam giác, hình thang, hình thoi. b) Kỹ năng: - Biết vận dụng các kiến thức đã học vào giải toán. giáo án hình học 8 năm học 2010-2011 Trang 7 G K H E D C B A 19 18 8 15 23 22 47 trờng th&thcs pờ ly ngài gv:lộc xuân đại c) Thái độ: - Tích cực, tự giác trong học tập. II. Chuẩn bị: - GV: Giáo án, SGK, đồ dùng dạy học. - HS: SGK, vở ghi, đồ dùng học tập. III. Tiến trình dạy học: 1. Kiểm tra bài cũ ( lồng ghép trong tiết dạy) 2.Bài mới. HĐGV HĐHS Nội dung ghi bảng 1) Xem hình 156,157, 158 và trả lời các câu hỏi sau : a) Vì sao hình năm cạnh GHIKL(h 156) không phải là đa giác lồi ? b) Vì sao hình năm cạnh MNOPQ(h 157) không phải là đa giác lồi ? c)Vì sao hình sáu cạnh RSTVXY (h 158) là một đa giác lồi ? Hảy phát biểu định nghĩa đa giác lồi. 2) Điền vào chỗ trống trong các câu sau : a) Biết rằng tổng số đo các góc của một đa giác n cạnh là : .Vậy tổng số đo các góc của một đa giác 7 cạnh là . . . . b) Đa giác đều là đa giác có . . . . . . . . . . . . . . . c) Biết rằng số đo mỗi góc của một đa giác đều n cạnh là ( ) 0 2 180n n , vậy : Số đo mỗi góc của ngủ giác đều là . . . . . . . . . . Số đo mỗi góc của lục giác đều là . . . . . . . . . . . 3) Hãy viết công thức tính diện tích của mỗi hình trong khung sau: - Suy nghĩ trả lời câu hỏi. 1) a) Hình năm cạnh GHIKL(h 156) không phải là đa giác lồi vì đa giác này không nằm trên nửa mặt phẳng bờ HI hoặc LK b) Hình năm cạnh MNOPQ(h 157) không phải là đa giác lồi vì đa giác này không nằm trên nửa mặt phẳng bờ OP hoặc OM c) Hình sáu cạnh RSTVXY (h 158) là một đa giác lồi vì đa giác này luôn nằm trong một nửa mặt phẳng có bờ là đờng thẳng chứa bất kì cạnh nào của đa giác đó. Định nghĩa đa giác lồi : Đa giác lồi là đa giác luôn nằm trong một nửa mặt phẳng có bờ là đờng thẳng chứa bất kì cạnh nào của đa giác đó. 2) Điền vào chỗ trống trong các câu sau: a) Biết rằng tổng số đo các góc của một đa giác n cạnh là : .Vậy tổng số đo các góc của một đa giác 7 cạnh là (7 - 2) 180 0 = 5. 180 0 = 900 0 b) Đa giác đều là đa giác có tất cả các cạnh bằng nhau và tất cả các góc bằng nhau c) Biết rằng số đo mỗi góc của một đa giác đều n cạnh là ( ) 0 2 180n n , vậy : Số đo mỗi góc của ngủ giác đều là 108 0 Số đo mỗi góc của lục giác đều là 120 0 giáo án hình học 8 năm học 2010-2011 Trang 8 a b h a h a a h a b a h S = . . . . . trờng th&thcs pờ ly ngài gv:lộc xuân đại 3/ Củng cố, vận dụng. Các em giải bài tập 41 trang 132 Các em giải bài tập 42 trang 132 Hình 160 Trên hình 160 (AC // BF), hãy tìm tam giác có diện tích bằng diện tích của tứ giác ABCD Vì sao ? Các em giải bài tập 43 trang 133 Các em giải bài tập 45 trang 133 - Nghe GVHD, lên bảng làm bài tập. Luyện tập Bài 41/132. Theo đề ta có: DE = EC = 12: 2 = 6 (cm) KC = 6: 2 = 3 (cm) HC = 6,8 : 2 = 3,4 (cm) IC = 3,4 : 2 = 1,7 (cm) a) DBE DE.BC 6.6,8 S 2 2 = = = 20,4(cm 2 ) b) EHIK EHC KIC S = S - S = 6.3, 4 3.1,7 2 2 = 10,2 - 2,55 = 7,65 (cm 2 ) Bài 42/132 Tam giác DAF có diện tích bằng diện tích của tứ giác ABCD vì : DAF DAC CAF S = S + S ABCD DAC CAB S = S + S mà CAF 1 S = AC.BH 2 CAB 1 S = AC.FH' 2 vì BH = FHbằng khoảng cách giữa hai đờng thẳng song song AC và BF nên CAF CAB S = S Do đó DAF ABCD S = S Bài 43/133 Theo tính chất hai đờng chéo của hình vuông ta có : 2 AOB ABCD 1 1 S = S = a 4 4 OEBF AOB AOE BOF S = S - S + S mà AOE= BOF ( g. c. g ) Suy ra AOE BOF S = S Vậy 2 OEBF AOB 1 S = S a 4 = Bài 45/133 ABCD S = AB.AH = AD.AK= 6.AH = 4.AK giáo án hình học 8 năm học 2010-2011 Trang 9 A D C B KE I 6,8 cm 12cm H F D C B A H E O D C B A F h a d 1 d 2 S = . . . . . trờng th&thcs pờ ly ngài gv:lộc xuân đại Một em lên bảng giải Một đờng cao có độ dài 5cm, thì đó là AK vì AK < AB ( 5 < 6 ) , không thể là AH vì AH < 4 Vậy 6.AH = 4.5 = 20 Suy ra AH = 20 10 6 3 = ( cm ) 4.H ớng dẫn về nhà. - Giải các bài tập ôn tập còn lại. - Chuẩn bị tiết sau Ngaứy daùy: Tieỏt (TKB): Sú soỏ: Vaộng: Tiết 37. Chơng III . Tam giác đồng dạng Đ1. định lí ta lét trong tam giác I. Mục tiếu: a) Kiến thức: - HS hiểu đợc các định nghĩa:Tỉ số của hai đoạn thẳng,các đoạn thẳng tỉ lệ ,hiểu đợc định lí Ta-Lét (thuận) b) Kĩ năng: - Biết vận dụng định lí vào việc tìm ra các tỉ số bằng nhau trên hình vẽ trong SGK. c) Thái độ: Tích cực, tự giác trong học tập. II. Chuẩn bị: + GV: sgk, giáo án, đồ dùng dạy học. + HS: sgk, vở ghi, đồ dùng học tập. III. Tiến trình bài dạy: 1. Kiểm tra bài cũ: không 2.Bài mới. HĐGV HĐHS Nội dung ghi bảng HĐ 1: Tổ chức tình huống học tập. - Giới thiệu chơng III. Tam giác đồng dạng. - Giới thiệu nội dung bài học, ghi đầu bài. HĐ 2: Nội dung bài học. * ND 1: - Tỉ số của hai số là gì ? - Tỉ số của hai đoạn thẳng là gì ? Các em thực hiện ?1 . Cho AB = 3cm ; CD = 5cm; AB CD = ? EF = 4dm; MN = 7dm; EF MN = ? - Vài em đọc định nghĩa. - Qua ví dụ các em thấy tỉ - Nghe GV giảng bài. - HS : Tỉ số của hai số là thơng trong phép chia của hai số đó. ?1 AB CD = 3 5 EF MN = 4 7 - HS : Tỉ số của hai đoạn thẳng không phụ 1. Tỉ số của hai đoạn thẳng. Định nghĩa : Tỉ số của hai đoạn thẳng là tỉ số độ dài của chúng theo cùng một đơn vị đo. Tỉ số của hai đoạn thẳng AB và CD đợc kí hiệu là AB CD Ví dụ : Nếu AB = 300cm; CD = 400cm giáo án hình học 8 năm học 2010-2011 Trang 10 HD C B A K 6 4 [...]... nªn ta DB EA cã : 5 4 = y = CE + EA = 4 + 2 ,8 = 3,5 EA 6 ,8 3,5.4 ⇒ EA = = 2 ,8 5 V× E ë giưa CA nªn ta cã : y = CE + EA = 4 + 2 ,8 = 6 ,8 3.Cđng cè - Nh¾c l¹i néi dung ®Þnh lý ta lÐt trong tam gi¸c ? - Cho hs lªn b¶ng lµm bµi tËp 1 sgk- 58 Bµi 1/ 58 Gi¶i a) TØ sè cđa hai ®o¹n th¼ng AB = 5cm vµ CD = 15cm lµ : b) TØ sè cđa hai ®o¹n th¼ng AB 5 1 = = CD 15 3 EF = 48cm vµ GH =16dm =160cm Lµ : c) TØ sè cđa hai... 3 = ?3 8, 5 x − 3 5 3 ⇔ 5x- 15 = = ?3 25,5 8, 5 x − 3 ⇔ 5x = 40,5 ⇔ 5x – 15 = 25,5 ⇔ x = 8, 1 ⇔ 5x = 40,5 ⇔ x = 8, 1 3/Củng cố: - Nêu t/c đường phân giác của tam giác? 4/Hướng dẫn ở nhà: - Häc thc ®Þnh lÝ, biÕt vËn dơng ®Þnh lÝ ®Ĩ gi¶i bµi t©p - Lµm BT : 15, 16, 17/Tr 68- SGK - Chn bÞ tiÕt “Lun tËp“ Ngày dạy: .Tiết (TKB): Só số: Vắng: gi¸o ¸n h×nh häc 8 Trang 19 n¨m häc 2010-2011. .. gãc so le trong B”A’’O M P b) 8 vµ OA’B’ b»ng nhau 15 0 A’B’// AB v× cã B 7 F B” 2 A’ A” O 3 A”B”// AB v× cïng song song víi A’B’ B’ 4,5 3 A B D 9,5 M OA ' OB ' 2 3 = = = A ' A B ' B 3 4,5 C 21 8 - HS 3: lµm bµi tËp Bµi 7/62 7 trang 62 h×nh 14 h×nh 14 a) ∆ DEF cã MN // EF nªn theo hƯ qu¶ cđa ®Þnh lÝ Ta-lÐt ta cã : N 9,5 8 DM MN = hay = 37,5 x DE EF 37,5 .8 ⇒x = ≈ 31, 58 9,5 28 E x a) MN//EF F - HD, y/c... III tiÕn tr×nh bµi d¹y 1/Kiểm tra bài cũ ? Ph¸t biĨu ®Þnh lÝ tÝnh chÊt ®êng ph©n gi¸c cđa tam gi¸c Lµm BT- 18/ Tr 68- SGK Đáp án EB AB 5 XÐt ∆ ABC cã AE lµ tia ph©n gi¸c BAC ⇒ (T/c ®êng ph©n gi¸c) = = EC AC 6 EB 5 EB 5 5.7 ⇒ ⇒ ⇒ EB = = = ≈ 3, 18 (cm) EB + EC 5 + 6 7 11 11 ⇒ EC = BC – EB = 7 – 3, 18 ≈ 3 ,82 2 Bµi míi Hoạt động GV Hoạt động HS - Cho HS ®äc ®Ị - §äc ®Ị BT-19 - Gäi 1HS lªn - VÏ h×nh b¶ng vÏ h×nh... ?3 CD C'D' * ND 3: - §Þnh lÝ Ta-lÐt trong tam a) AB' = AC' = 5 b) ?3 AB AC 8 gi¸c AB' AC' 5 AB' AC' 5 a) b) = = C¸c em thùc hiƯn ?3 = = AB AC 8 B'B C'C 3 B'B C'C 3 c) = = AB AC 8 VÝ dơ : TÝnh ®é dµi x trong h×nh 4 D 6,5 4 M N x E F C¸c em thùc hiƯn ? 4 TÝn ®é dµi x vµ y trong h×nh 5 D 5 x a E 1 0 B a // BC gi¸o ¸n h×nh häc 8 3 §Þnh lÝ Ta-lÐt trong tam gi¸c §Þnh lÝ : ( SGK ) VÝ dơ : TÝnh ®é dµi x trong... häc 8 Trang 21 n¨m häc 2010-2011 trêng th&thcs pê ly ngµi gv:léc xu©n ®¹i - GV: Tranh vẽ hình đồng dạng (hình 28) - HS : Sách giáo khoa, thước kẻ C TIẾN TRÌNH DẠY HỌC: 1/Kiểm tra bài cũ: Kiểm tra việc làm bài tập ở nhà và việc chuẩn bị bài mới của HS 2 Bµi míi Ghi bảng Hoạt động GV Hoạt động HS Ho¹t ®éng 1: H×nh ®ồng d¹ng - C¸c h×nh trong mçi GV ®Ỉt vÊn ®Ị nh SGK nhãm cã h×nh d¹ng - Treo b¶ng h×nh 28/ Tr69... h×nh häc 8 Trang 24 n¨m häc 2010-2011 trêng th&thcs pê ly ngµi gv:léc xu©n ®¹i 2 AM AN MN 1 3 = = = AB AC BC 3 Cã ∆ A’B’C’ = ∆ AMN (c/d) A’B’C’ ∆ AMN ⇒ ∆ AMN ∽ ∆ ⇒∆ 2 ABC - Cho HS lµm BT-27 theo tØ sè k = HD: Dùa vµo hƯ qu¶ cđa 3 ®Þnh lÝ TalÐt Bµi 27 ∆ AMN ∆ ABC 1 1 víi k = víi k = 3 3 BNL ∆ BAC ⇒∆ T¬ng tù: - Cho HS lµm BT- 28 2 ⇒ ∆ BNL ∆ BAC HD: víi k = 3 a b c a+b+c = = = x y z x+y+z Bµi 28 §äc ®Ị... SGK.GV u cầu HS hoạt động theo nhóm để giải bài tập B x 16 A 5 O I 8 C D y 10 a) Xét ∆OCB và ∆OAD có, OC 8 OB 16 8 OC OB = , = = ,⇒ = , OA 5 OD 10 5 OA OD O chung ⇒ ∆OCB ∽ ∆OAD (cgc) b) Vì ∆OCB ∽ ∆OAD nên B = D (hai góc tương ứng) Xét ∆IAB và ∆ICD có : I1 = I2 (đối đỉnh) , B = D (C/m trên) ⇒ IAB = ICD (Vì tổng ba góc của một tam giác = 180 0) Vậy ∆IAB và ∆ICD có các góc bằng nhau từng đơi một 4/Hướng dẫn... Y/ cÇu 1HS lªn b¶ng HS lªn b¶ng tr×nh bµy §Þnh lÝ: (sgk/ 78) ∆ ?1 ∆ ABC ∆ PMN ∆ A’B’C’ ∆ D’E’F’ ∆ ?2 a) ∆ ABC ∆ ADB b) x = 2 (cm), y = 2,5 (cm) c) BC = 3,75 (cm),DB = 2,5 (cm) 3/Củng cố: - Cho HS lµm BT-36/Tr79 Bµi 36 XÐt ∆ ABD vµ ∆ BDC cã A = B2 (gt), B1 = D1 (slt AB//DC) ⇒ ∆ ABD ∽ ∆ 12,5 x AB BD = BDC ⇒ hay ⇒ x2 = 12,5. 28, 5 ⇒ x ≈ 18, 9 = x 28, 5 BD DC 4/Hướng dẫn ở nhà: - Häc thc, n¾m v÷ng c¸c ®Þnh... h×nh häc 8 n¨m häc 2010-2011 Trang 32 trêng th&thcs pê ly ngµi gv:léc xu©n ®¹i 1.KiĨm tra bµi cò: Nªu y/c kiĨm tra:+ Ph¸t biĨu néi dung cđa ®Þnh lÝ trêng hỵp ®ång d¹ng thø 3 cđa tam gi¸c VÏ h×nh viÕt GT, Kl cđa ®Þnh lÝ ®ã - NhËn xÐt, ®¸nh gi¸ - Giíi thiƯu néi dung bµi häc 2 Bµi míi H§GV H§HS Néi dung Néi dung bµi häc: Lun tËp - Y/c HS lªn b¶ng - 1 HS lªn b¶ng Bµi tËp 38 (tr79-SGK) ch÷a bµi tËp 38 sgk- . = 2 AHE 1 S .8. 15 60 2 mm= = 2 HKDE 15 23 S . 18 222 2 mm + = = 2 KCD 1 S .23.22 253 2 mm= = ( ) ABCDE 2 S 446,5 60 222 253 981 ,5 mm = + + + = - Y/c một hs lên bảng làm Bài 38 sgk-130. Bài 38 Diện. ' ' 'AH B H H C AH BH HC = = = giáo án hình học 8 năm học 2010-2011 Trang 16 28 E D 9,5 N M F x 8 a) MN//EF A 15 0 5 8 3 F M P CB 7 21 B A B A O A B 2 3 3 4,5 H C B A d C B H trờng. có kết quả sau: BG = 19mm, AH = 8mm, giáo án hình học 8 năm học 2010-2011 Trang 6 H G E D C B A K I trờng th&thcs pờ ly ngài gv:lộc xuân đại AC = 47mm, HK = 18mm, KC = 22mm, EH = 15mm, KD