1. Trang chủ
  2. » Luận Văn - Báo Cáo

Khảo sát điều kiện tối ưu xác định Cu(II), Zn(II), Co(II)

86 619 1
Tài liệu đã được kiểm tra trùng lặp

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 86
Dung lượng 1,67 MB

Nội dung

Các nguyên tố đồng, kẽm, coban có vai trò quan trọng trong đời sống con người, các ngành công nghiệp, và sự sinh tồn của động thực vật nói chung.

MỤC LỤC MỤC LỤC .1 Bảng ký hiệu các từ viết tắt .3 Danh mục bảng 4 Danh mục hình 6 MỞ ĐẦU .7 CHƯƠNG 1. TỔNG QUAN 8 1.1. Vai trò và đặc tính phân tích của đồng, kẽm, coban .8 1.1.1. Vai trò của đồng, kẽm, coban đối với sự phát triển của sinh vật .8 1.1.2. Đặc tính phân tích của đồng, kẽm, coban .11 1.2. Một số phương pháp quang xác định Cu(II), Zn(II), Co(II) 18 1.2.1. Phương pháp phổ hấp thụ nguyên tử AAS .19 1.2.2. Phương pháp phân tích trắc quang .20 1.3. Thuốc thử 1-(2-pyridylazo )-2- naphtol (PAN) 27 1.3.1. Cấu tạo, tính chất vật lí của PAN .27 1.3.2. Khả năng tạo phức của PAN .28 CHƯƠNG 2. THỰC NGHIỆM .34 2.1. Nội dung nghiên cứu .34 2.2. Thiết bị và hóa chất 35 2.2.1 Thiết bị và phần mềm .35 2.2.2. Hóa chất .35 2.3. Cách tiến hành thực nghiệm 37 2.3.1. Qui trình nghiên cứu đơn biến .37 2.3.2. Qui trình nghiên cứu đa biến 37 2.3.3. Qui trình phân tích mẫu .37 2.4. Thuật toán phân tích hồi qui tuyến tính đa biến .38 2.4.1. Phương pháp bình phương tối thiểu thông thường (CLS) 38 2.4.2. Phương pháp bình phương tối thiểu nghịch đảo (ILS) 38 2.4.3. Phương pháp bình phương tối thiểu từng phần (PLS) 39 1 2.4.4. Phương pháp hồi qui cấu tử chính (PCR) 39 CHƯƠNG 3. KẾT QUẢ VÀ THẢO LUẬN .41 3.1. Khảo sát điều kiện tối ưu xác định Cu(II), Zn(II), Co(II) .41 3.1.1. Nét đặc trưng phổ của các phức Cu(II)-PAN, Zn(II) -PAN, Co(II) – PAN .41 3.1.2. Khảo sát ảnh hưởng của pH đến sự tạo phức 43 3.1.3. Khảo sát ảnh hưởng của nồng độ Triton X-100 đến sự tạo phức 45 3.1.4. Khảo sát ảnh hưởng của thuốc thử PAN .46 3.1.5. Khảo sát ảnh hưởng của thời gian 47 3.1.6. Khảo sát ảnh hưởng của nồng độ Cu(II), Zn(II), Co(II) .48 3.1.7. Khảo sát ảnh hưởng của các ion lạ 57 3.2. Xác định Cu(II), Zn(II), Co(II) trong hỗn hợp 61 3.2.1. Xác định Cu(II), Zn(II), Co(II) trong hỗn hợp bằng phương pháp tách 62 3.2.2. Sử dụng thuật toán hồi qui tuyến ttính đa biến xác định đồng thời Cu(II), Zn(II), Co(II) 64 3.3. Ứng dụng vào phân tích mẫu phân vi lượng .75 3.3.1. Qui trình phá mẫu 75 3.3.2. Phân tích mẫu phân vi lượng .75 KẾT LUẬN .80 TÀI LIỆU THAM KHẢO .82 2 Bảng ký hiệu các từ viết tắt STT Kí hiệu viết tắt Tên đầy đủ 1 AAS Atomic absorbtion spectrotometry (Quang phổ hấp thụ nguyên tử) 2 CLS Classical least squares (Phương pháp bình phương tối thiểu thông thường) 3 ILS Inverse least squares (Phương pháp bình phương tối thiểu nghịch đảo) 4 PC Principal component (Cấu tử chính) 5 PCR Principal component regression (Phương pháp hồi qui cấu tử chính) 6 PLS Partial least squares (Phương pháp bình phương tối thiểu từng phần) 7 PP Phương pháp 8 ppm Part per million (Phần triệu) 9 UV-Vis Ultraviolet – visible spectrophotometry (Quang phổ tử ngoại khả kiến) 10 S D Standard deviation (Độ lệch chuẩn ) 11 UV-Vis Ultraviolet – visible spectrophotometry (Quang phổ tử ngoại khả kiến) 3 Danh mục bảng Bảng 1. Sự hình thành phức Cu(II) trong một số thuốc thử hữu cơ 20 Bảng 2. Các tính chất của một số phức kim loại – PAN 29 Bảng 3. Đặc trưng phổ hấp thụ Cu(II) - PAN, Zn(II) – PAN, Co(II) – PAN .43 Bảng 4. Kết quả khảo sát ảnh hưởng của pH đến sự hình thành các phức .43 Bảng 5. Ảnh hưởng của nồng độ đệm citrat đến sự hình thành các phức .44 Bảng 6: Sự phụ thuộc của độ hấp thụ quang vào nồng độ của đệm axetat .45 Bảng 7. Khảo sát ảnh hưởng của nồng độ Triton X–100 đến sự hình thành phức .45 Bảng 8: Kết quả khảo sát ảnh hưởng của thuốc thử PAN 46 Bảng 9: Kết quả sự phụ thuộc của A vào nồng độ Cu(II) .48 Bảng 11: Kết quả đo độ hấp thụ quang của 12 mẫu trắng .50 Bảng 12: Độ hấp thụ quang của phức Cu(II)-PAN ở 3 nồng độ khác nhau 51 Bảng 13:Kết quả đánh giá phương pháp xác định Cu(II) .51 Bảng 14: Kết quả sự phụ thuộc của A vào nồng độ Zn(II) 51 Bảng 15: Kết quả xây dựng đường chuẩn xác định Zn(II) 52 Bảng 16: Kết quả đo độ hấp thụ quang của 12 mẫu trắng 53 Bảng 17: Độ hấp thụ quang của phức Zn-PAN ở 3 nồng độ khác nhau .54 Bảng 18: Kết quả đánh giá phương pháp xác định Zn(II) .54 Bảng 19: Kết quả sự phụ thuộc của A vào nồng độ Co(II) .54 Bảng 20: Kết quả xây dựng đường chuẩn xác định Co(II) 55 Bảng 21: Kết quả đo độ hấp thụ quang của 12 mẫu trắng 56 Bảng 22: Độ hấp thụ quang của phức Co-PAN ở 3 nồng độ khác nhau .57 Bảng 23:Kết quả đánh giá phương pháp xác định Co(II) .57 Bảng 24 : Ảnh hưởng của Mn(II) đến độ hấp thụ quang trong đệm axetat 58 Bảng 25 : Ảnh hưởng của Mn(II) đến độ hấp thụ quang trong hỗn hợp đệm .58 Bảng 26 : Ảnh hưởng của Fe(II) đến độ hấp thụ quang trong đệm axetat .59 Bảng 27 : Ảnh hưởng của Fe(II) đến độ hấp thụ quang trong hỗn hợp đệm 59 Bảng 28 : Ảnh hưởng của Fe(III) đến độ hấp thụ quang trong đệm axetat 60 Bảng 29 : Ảnh hưởng của Fe(III) đến độ hấp thụ quang trong hỗn hợp đệm .60 Bảng 30. Hiệu suất thu hồi theo phương pháp tách dựa vào đường chuẩn .63 4 Bảng 31:Nồng độ thêm chuẩn 63 Bảng 32: Hiệu suất thu hồi theo phương pháp tách dựa vào đường thêm chuẩn 64 Bảng 33: Độ hấp thụ quang của từng ion và của hỗn hợp trên toàn phổ .64 Bảng 34: Sai số giữa nồng độ mẫu chuẩn và nồng độ xác định được từ phương pháp CLS 68 Bảng 35: Sai số giữa nồng độ mẫu chuẩn và nồng độ xác định được từ phương pháp ILS 70 Bảng 36: Sai số giữa nồng độ mẫu chuẩn và nồng độ xác định được từ phương pháp PLS 72 Bảng 37: Sai số giữa nồng độ mẫu chuẩn và nồng độ xác định được từ phương pháp PCR .74 Bảng 38: Hàm lượng Cu(II), Zn(II), Co(II) trên nhãn một số mẫu phân vi lượng 75 Bảng 39: Hàm lượng Cu(II), Zn(II), Co(II) trong mẫu đo bằng phương pháp AAS .76 Bảng 40: Xác định đồng thời hàm lượng Cu(II), Zn(II), Co(II) .76 Bảng 41: Hàm lượng Cu(II), Zn(II), Co(II) trong mẫu đo bằng phương pháp tách .77 Bảng 42 : Hàm lượng trung bình của các ion 77 Bảng 43: Kết quả phân tích hàm lượng Cu(II) (ppm) .78 Bảng 44: Kết quả phân tích hàm lượng Zn(II) (ppm) .78 Bảng 45: Kết quả phân tích hàm lượng Co(II) (ppm) .78 5 Danh mục hình Hình 1. Đặc trưng của phổ hấp thụ các phức màu trong môi trường Tween 80 .41 Hình 2. Đặc trưng của phổ hấp thụ các phức trong môi trường Triton X-100 42 Hình 3. Ảnh hưởng của pH đến độ hấp thụ quang của các phức màu 44 Hình 4. Ảnh hưởng của nồng độ Triton X- 100 đến độ hấp thụ quang của các phức 46 Hình 5: Ảnh hưởng của nồng độ thuốc thử đến độ hấp thụ quang của các phức 47 Hình 6,7,8: Khảo sát độ bền của các phức màu theo thời gian .48 Hình 9: Khảo sát khoảng tuyến tính xác định Cu(II) 49 Hình 10: Đường chuẩn xác định Cu(II) 50 Hình 11: Khảo sát khoảng tuyến tính xác định Zn(II) .52 Hình 12: Đường chuẩn xác định Zn(II) .53 Hình 13: Khảo sát khoảng tuyến tính xác định Co(II) 55 Hình 14: Đường chuẩn xác định Co(II) 56 Hình 15: Phổ hấp thụ của các phức Cu-PAN, Zn -PAN, Co-PAN và phổ hỗn hợp của 3 phức theo lý thuyết và theo thực tế 62 6 MỞ ĐẦU Các nguyên tố đồng, kẽm, coban có vai trò quan trọng trong đời sống con người, các ngành công nghiệp, và sự sinh tồn của động thực vật nói chung. Chúng là các nguyên tố vi lượng có tác dụng thúc đẩy sự phát triển của sinh vật. Đối với thực vật, việc nâng cao năng suất, phát triển chất lượng giống cây trồng là điều thiết yếu và thường được thực hiện bằng việc bổ sung phân vi lượng trong các giai đoạn phát triển của chúng. Sự thiếu hụt cũng như vượt quá ngưỡng cho phép của hàm lượng các nguyên tố này đều gây ra những tác hại không nhỏ. Vì vậy, việc xác định các nguyên tố trên là rất cần thiết. Để phân tích, xác định hàm lượng các nguyên tố nhất là khi chúng cùng có mặt trong mẫu phân tích và hàm lượng thấp là vấn đề khó khăn. Có nhiều phương pháp xác định các nguyên tố vi lượng như điện hoá, phương pháp quang phổ phát xạ AES, ICP- AES, phương pháp huỳnh quang, phương pháp phổ hấp thụ nguyên tử AAS .có độ chọn lọc, độ nhạy cao, cho kết quả phân tích tốt nhưng đòi hỏi trang thiết bị giá thành lớn và kỹ thuật phân tích cao. Phương pháp quang phân tử với trang bị phổ biến, độ chọn lọc thích hợp, kĩ thuật tiến hành đơn giản, kết hợp với phương pháp tách sắc kí, chiết đạt đến độ nhạy cao. Việc phân tích các nguyên tố chuyển tiếp nói chung và ba nguyên tố đồng, kẽm, coban nói riêng đều có những thuốc thử đặc trưng nhưng tốn thời gian, sử dụng dung môi độc. Để khắc phục điều đó, việc sử dụng môi trường mixen trong phép đo trắc quang là một bước tiến không nhỏ, làm giảm thiểu công đoạn chiết, tách. Đặc biệt, phương pháp đo trắc quang sử dụng môi trường mixen, thuốc thử thông dụng kết hợp với thuật toán hồi qui đa biến đem lại hiệu quả tốt trong việc xác định đồng thời các nguyên tố. Trong công trình nghiên cứu này, chúng tôi đã lựa chọn phương pháp đo quang với thuốc thử 1- (2-pyridilazo )- 2- naphtol (PAN) trong môi trường mixen nhằm xác định riêng rẽ từng nguyên tố và kết hợp với thuật toán hồi qui đa biến tuyến tính để xác định đồng thời Cu(II), Zn(II), Co(II). Những kết quả đó được ứng dụng để phân tích Cu(II), Zn(II), Co(II) trong các mẫu phân vi lượng, đặc biệt là phân bón lá và so sánh với phép đo AAS. 7 CHƯƠNG 1. TỔNG QUAN 1.1. Vai trò và đặc tính phân tích của đồng, kẽm, coban 1.1.1. Vai trò của đồng, kẽm, coban đối với sự phát triển của sinh vật Các nguyên tố vi lượng, tuy có không nhiều trong cơ thể nhưng lại đóng một vai trò hết sức quan trọng đối với sự sống, chẳng hạn như hỗ trợ các phản ứng hóa học trong cơ thể; giúp cơ thể sử dụng chất đạm, mỡ và đường; làm vững chắc xương và điều khiển thần kinh, cơ; điều hòa hoạt động của cơ thể, tương tác với các chất khác như các vitamin. Hầu hết trong số chúng được đưa vào cơ thể đều đặn cùng với thức ăn. Hàng ngày, người trưởng thành đưa vào cơ thể từ vài trăm µg (Se, As .) đến vài mg (Fe, I ). Khi thiếu hụt nguyên tố vi lượng có thể dẫn đến các biểu hiện bệnh lý, hay các sự bất ổn cho cơ thể chúng ta. Việc bổ sung định kỳ có kiểm soát các nguyên tố vi lượng là rất có ích cho sức khỏe và giúp ngăn ngừa một số bệnh tật Đối với thực vật, có khoảng 74 nguyên tố trong đó có 14 nguyên tố đa lượng (chiếm 99,95%) và 60 nguyên tố vi lượng và siêu vi lượng (0,05%) nhưng vẫn có vai trò quan trọng. Vi lượng là cơ sở của sự sống vì hầu hết các quá trình tổng hợp và chuyển hóa là nhờ enzym mà thành phần của enzym chủ yếu là các nguyên tố vi lượng. Hiện nay, có khoảng 1000 enzym và 1/3 được hoạt hóa bằng kim loại. Các nguyên tố tồn tại nhiều dạng khác nhau, chủ yếu gồm B, Mn, Zn, Cu, Fe, Mo, Co đã được tìm thấy dưới dạng các phức hữu cơ – khoáng. Các phức hữu cơ – khoáng này có những tính chất cơ bản về mặt hóa học như: tính chất của các phức chất khác biệt với tính chất của các thành phần cấu tạo nên nó, phức chất có thể tham gia vào các phản ứng mà thành phần không có. Cây cần một lượng ít phân vi lượng nhưng đó là những vi chất thiết yếu, nếu thiếu sẽ ảnh hưởng đến năng suất. Với mọi sinh vật, không thể phủ nhận vai trò của các nguyên tố vi lượng nói chung và các nguyên tố đồng, kẽm, coban nói riêng. Đồng tác động đến nhiều chức năng cơ bản và là một phần cấu thành nên các enzym quan trọng trong cơ thể. Nó tham gia vào các hoạt động như sản xuất hồng cầu, sinh tổng hợp elastin và myelin, tổng hợp nhiều hoormon (catecholamin, tuyến giáp, corticoid .), tổng hợp nhiều sắc tố, chuyển hóa sắt và lipit . Do vậy, đồng là 8 một chất dinh dưỡng cần thiết cho cơ thể con người với một hàm lượng rất nhỏ (80 – 99,4 mg trong cơ thể người trưởng thành). Tiêu chuẩn RDA của Mỹ về đồng đối với người lớn khỏe mạnh là 0.9mg/ngày. Đồng với hàm lượng không thích hợp sẽ gây ra ảnh hưởng tiêu cực đối với con người. Sự thiếu hụt đồng thường dẫn đến thiếu máu đối với trẻ nhỏ, mất sắc tố ở lông tóc . Khi hàm lượng đồng vượt có thể gây ra rối loạn dạ dày, những bệnh về gan, thận và phổi. Mức cao nhất có thể chịu được về đồng theo DRI trong chế độ ăn uống đối với người lớn theo mọi nguồn đều là 10 mg/ngày. Đối với thực vật thì đồng (hàm lượng 5 – 20 ppm) - nguyên tố rất đặc biệt về mặt sinh vật học ảnh hưởng trực tiếp đến quá trình sinh trưởng và phát triển sản lượng của cây. Đồng là chất xúc tác của những quá trình oxi hoá nội bào; thành phần của men cytochrome oxydase và thành phần của nhiều enzim – ascorbic, axit axidase, phenolase, lactase; xúc tiến quá trình hình thành vitamin A; cần thiết cho sự hình thành diệp lục và làm xúc tác cho một số phản ứng khác trong cây, nhưng thường không tham gia vào thành phần của chúng. Cây muốn phát triển bình thường, đều cần phải có một ít đồng, cây hấp thụ đồng dưới dạng Cu(II), nhiều loại cây rau biểu hiện thiếu đồng với lá thiếu sức trương, rủ xuống và có mầu xanh, chuyển sang quầng mầu da trời tối trước khi trở nên bạc lá, biến cong và cây không ra hoa được. Lượng đồng thiếu hụt có thể được bổ sung dễ dàng trong một thời gian dài bằng cách bón đồng sunfat hay đồng oxit.và nếu dùng những hợp chất của đồng để bón cho đất (đặc biệt là đất bùn lầy) thì thu hoạch thường tăng lên rất cao. Chelat hay đồng sunfat trung tính (25% đồng) rất phù hợp cho việc bón lá. Kẽm là nguyên tố không thể thiếu trong đời sống của động thực vật. Nó đứng thứ hai sau sắt trong các nguyên tố cần thiết với tổng lượng kẽm là 2 – 3 g với người trưởng thành. Kẽm là nguyên tố vi lượng có trong nhiều enzym quan trọng, nhất là enzym tham gia tổng hợp ARN, protein, kích thích tố sinh trưởng (auxin); cần thiết cho thị lực, giúp cơ thể chống lại bệnh tật. Nhu cầu về kẽm hàng ngày khoảng 10 -15 mg đối với người trưởng thành. Việc thu nạp quá nhiều kẽm của cơ thể có thể sinh ra sự thiếu hụt của các khoáng chất khác trong dinh dưỡng. Sự thiếu hụt kẽm để lại những hiệu ứng rõ nét trong việc tăng trọng của động vật, gây ra các dị tật ở mặt, 9 xương, tim, não, gây ra sự hoạt động không bình thường của các cơ quan thị giác, vị giác, khứu giác và trí nhớ. Trong thực vật, kẽm (hàm lượng 25 – 150 ppm) được hấp thụ dưới dạng Zn(II) được coi như là một trong các nguyên tố vi lượng đầu tiên cần thiết cho cây trồng, liên quan đến tổng hợp và hoạt hóa enzym, là thành phần của các auxin (có tác dụng điều hòa sinh trưởng), cần thiết cho việc sản xuất ra chất Diệp lục và các Hydratcarbon, làm tăng tốc độ trao đổi chất của cây. Tuy chỉ được sử dụng với liều lượng rất nhỏ nhưng để có năng suất cao không thể không có kẽm. Kẽm cũng không được vận chuyển sử dụng lại trong cây nên biểu hiện thiếu thường xảy ra ở những lá non và bộ phân khác của cây, chức năng tế bào của cây bị suy yếu. Kẽm thường được bón cho cây bằng cách phun lên lá dung dịch ZnSO 4 (23% Zn) hay dùng Zn - EDTA bón trực tiếp cho đất. Việc bổ sung kẽm còn giúp tăng cường khả năng sử dụng lân và đạm Coban có nhiều vai trò quan trọng trong cơ thể như kích thích tạo máu, kích thích tổng hợp protein cơ, tham gia chuyển hoá gluxit, chuyển hoá các chất vô cơ. Coban có tác dụng hoạt hoá một số enzim và ức chế một số enzim khác. Coban tham gia vào quá trình tạo vitamin cobalamin - B 12 (C 36 H 88 O 24 N 14 PCo). Coban kết hợp với Mangan có tác dụng rất tốt đối với các triệu chứng đau nửa đầu. Cơ thể thiếu Coban có những biểu hiện đầu tiên là cảm giác mệt mỏi, thiếu tập trung và thiếu máu. Coban không độc như hầu hết các hầu hết các kim loại nặng vì theo những nghiên cứu mới đây tại Mỹ thì không có sự liên hệ giữa coban trong nước và bệnh ung thư ở người. Tuy nhiên, với hàm lượng lớn coban sẽ gây tác động xấu đến cơ thể người và động vật. Triệu trứng nhiễm độc coban ở người là nôn mửa, tiêu chảy… . Thực tế lượng coban mà con người hấp thụ hàng ngày từ nước nhỏ hơn từ thực phẩm. Cũng như ở động vật, trong thực vật, coban là thành phần trung tâm của vitamin cobalamin (vitamin B 12 ). Hoạt tính xúc tác của carbonxylase được gia tăng khi có mặt Mg hoặc Mn, Co. Coban cần cho việc ra hoa, quả, chống sâu bệnh, nắng nóng, ảnh hưởng tốt đến độ bền vững của chlorophyll, tác dụng tốt đến tổng hợp carotenoid, tia gamma phát ra từ 60 Co hiện đang được sử dụng để diệt vi khuẩn và tăng sức đề kháng trên rau quả. Sự có mặt của coban rất cần thiết trong quá trình lên men, trao đổi chất 10 [...]... PAN Khảo sát đặc trưng của hệ M(II) – PAN - Chất hoạt động bề mặt • Xét phổ đặc trưng, ảnh hưởng của pH, mixen, nồng độ thuốc thử • Xác định khoảng tuyến tính, xác định giới hạn phát hiện, giới hạn định lượng • Để ứng dụng, xét ảnh hưởng của nguyên tố này đến nguyên tố kia và cách loại trừ ảnh hưởng, tách các ion khi chúng cùng có mặt Xác định từng nguyên tố • Xác định từng nguyên tố trong điều kiện tối. .. pháp dựa trên sự tạo phức của Co(II), Ni(II) và Pd(II) với thuốc thử PAN trong môi trường tween – 80 Nghiên cứu đã khảo sát các cực đại hấp thụ của Co(II): 575 và 615 nm, của Ni(II): 569 và 530 nm, của Pd(II): 615 và 660 nm tại pH = 5, nồng độ Tween tối ưu là 0,3% Tất cả các yếu tố ảnh hưởng đến độ nhạy của phương pháp đều được tối ưu hoá và xác định được vùng tuyến tính của Co(II), Ni(II) và Pd(II) Ma... để xác định các nguyên tố Cd, Mn, Cu trong xăng, chiết đo màu xác định Pd(II), Co trong nước để tách riêng Zn, Cd, Tác giả xác định các ion trong vỏ màu của thuốc viên, phương pháp đo màu trong quang phổ kế phù hợp với việc xác định ion kẽm thông qua việc tạo phức với PAN ở pH = 2,5; dung dịch phức có màu đỏ, khoảng tuân theo định luật Beer từ 2,0 ÷ 40μg/50ml ở λmax = 730nm, Một số tác giả khác xác định. .. 240,7 nm Một số nghiên cứu cụ thể xác định Cu(II), Zn(II), Co(II) như sau: Người ta sử dụng phương pháp hấp thụ nguyên tử để xác định đồng trong nước sau khi đã làm giàu đồng bằng cách chiết hoặc dùng nhựa trao đổi ion Có thể chiết đồng bằng 5 – cloxalixyl – aldoxim Xác định đồng trong ngọn lửa không khí axetilen Phương pháp AAS kết hợp với phương pháp chiết có thể xác định vi lượng Cu và Zn trong dầu... đều được tối ưu hoá SDS và xác định được vùng tuyến tính của Co(II) và Pd(II) lần lượt là 0,2 – 2 µg/ml và 0,4 – 4 µg/ml Kết quả nghiên cứu được ứng dụng để phân tích các mẫu thực tế là hợp kim [28] Một số nghiên cứu đo quang trong môi trường Triton X- 100 Abbas Afkhami đã xác định Co(II) và Ni(II) dựa trên cơ sở sự tạo phức của chúng với thuốc thử PAN trong môi trường Triton X-100 Qua khảo sát nhận... bề mặt trung tính là Triton X-100 đã được khảo sát Các điều kiện tối ưu đã được phát triển để xác định lượng vết Cu(II) Độ nhạy và khoảng tuyến tính của phương pháp cải tiến này đã được so sánh với các phương pháp đo quang thông thường Đồng thời đối chiếu, đánh giá tính phù hợp với phương pháp phổ hấp thụ nguyên tử AAS [40] Một số nghiên cứu khác cũng xác định Cu(II) bằng các loại thuốc thử hữu cơ... và màu đỏ của [Co(NH3)5Cl]Cl2 Việc tạo nên những phức chất với vài phối tử khác nhau trong cầu nội là một đặc điểm của ion Co(III).[9], [14] 1.2 Một số phương pháp quang xác định Cu(II), Zn(II), Co(II) Để xác định Cu(II), Zn(II), Co(II), có không ít những phương pháp phân tích: Các phương pháp hoá học như phương pháp phân tích thể tích, phương pháp oxi hoá - khử, phương pháp chuẩn độ complexon Các... G.A.Shar and G.A.Soomro đã xác định Co(II), Ni(II), Cu(II) bằng 1-(2 pyridylazo)-2 naphthol trong môi trường chất hoạt động bề mặt Tween 80 Khoảng tuyến tính: Co(II) 0,5 – 4 (ppb), Ni(II) 0,5– 4 (ppb), Cu(II) 0,5 – 3 (ppb) Giới hạn phát hiện: Co(II) 6,7 (ppb), Ni(II) 3,2 (ppb), Cu(II) 3,9 (ppb) Cực đại hấp thụ: Co(II) 580 (nm), Ni(II) 570 (nm), Cu(II) 555 (nm) pH xác định Co(II), Ni(II), Cu(II) lần... Ni(II), Cu(II) lần lượt là 5; 5,5 và 6,5 Nghiên cứu đã khảo sát được tỉ lệ tạo phức của kim loại với phối tử M:L = 1:4 và nồng độ Tween tối ưu là 5% So sánh với phương pháp AAS: thấy không khác biệt giữa 2 phương pháp (độ tin cậy 95%) Phương pháp được ứng dụng để xác định Co, Ni, Cu trong nước thải công nghiệp, dược phẩm [27] M.Arab Chamjangali đã xác định đồng thời coban, niken và paladi trong môi trường... trong môi trường Triton X-100 Qua khảo sát nhận thấy pH tối ưu cho phép đo là 5,8 (đệm citrat), nồng độ của Triton X-100 và PAN lần lượt là 1,4% và 10-3 M [19] Trong một nghiên cứu khác, ông đã xác định Zn(II), Co(II) và Ni(II) trong Triton X-100 nồng độ 0,8 – 1,2%, nền pH = 9,2 (đệm amoni) Các bước sóng hấp thụ cực đại tương ứng với Zn(II), Co(II) và Ni(II) là 564 nm, 584 nm và 552 nm [18], [20] Narinder . LUẬN.............................................................41 3.1. Khảo sát điều kiện tối ưu xác định Cu(II), Zn(II), Co(II). ..............................41 3.1.1. Nét. lạ............................................................57 3.2. Xác định Cu(II), Zn(II), Co(II) trong hỗn hợp................................................61 3.2.1. Xác định Cu(II), Zn(II), Co(II) trong

Ngày đăng: 10/04/2013, 10:22

Nguồn tham khảo

Tài liệu tham khảo Loại Chi tiết
1. Chu Đình Bính, Phạm Luận, 2006, “Nghiên cứu phản ứng tạo phức chất giữa Co(II) và Ni(II) với thuốc thử PAN trong môi trường Mixen, đánh giá khả năng áp dụng vào phân tích đồng thời Co(II) và Ni(II)”, Tạp chí phân tích Hoá, Lý và Sinh học, Tập 11, Số 4/2006 Sách, tạp chí
Tiêu đề: Nghiên cứu phản ứng tạo phức chất giữa Co(II) và Ni(II) với thuốc thử PAN trong môi trường Mixen, đánh giá khả năng áp dụng vào phân tích đồng thời Co(II) và Ni(II)
2. Trần Thúc Bình, Trần Tứ Hiếu, Phạm Luận (1996), “Xác định trắc quang Cu, Ni, Mn, Zn...trong cùng hỗn hợp bằng Pyridin-azo-naphtol(PAN)”, Tạp chí Phân tích Hoá, Lý và Sinh Học, tập 1, số (3+4).) Sách, tạp chí
Tiêu đề: “"Xác định trắc quang Cu, Ni, Mn, Zn...trong cùng hỗn hợp bằng Pyridin-azo-naphtol(PAN)"”, Tạp chí Phân tích Hoá, Lý và Sinh Học
Tác giả: Trần Thúc Bình, Trần Tứ Hiếu, Phạm Luận
Năm: 1996
3. Trần Tứ Hiếu, Từ Vọng Nghi, Nguyễn Xuân Trung, Nguyễn Văn Ri (2003), “Các phương pháp phân tích công cụ”, NXB Đại học Quốc gia Hà Nội Sách, tạp chí
Tiêu đề: Các phương pháp phân tích công cụ
Tác giả: Trần Tứ Hiếu, Từ Vọng Nghi, Nguyễn Xuân Trung, Nguyễn Văn Ri
Nhà XB: NXB Đại học Quốc gia Hà Nội
Năm: 2003
4. Trần Tứ Hiếu (2003), “Phân tích trắc quang phổ hấp thụ UV – VIS”, NXB Đại học Quốc gia Hà Nội Sách, tạp chí
Tiêu đề: Phân tích trắc quang phổ hấp thụ UV – VIS
Tác giả: Trần Tứ Hiếu
Nhà XB: NXB Đại học Quốc gia Hà Nội
Năm: 2003
6. Phạm Luận (2005), Cơ sở của phương pháp hấp thụ nguyên tử, NXB Đại học Quốc Gia Hà Nội Sách, tạp chí
Tiêu đề: Cơ sở của phương pháp hấp thụ nguyên tử
Tác giả: Phạm Luận
Nhà XB: NXB Đại học Quốc Gia Hà Nội
Năm: 2005
7. Lê Văn Khoa, Nguyễn Xuân Cự, Lê Đức, Trần Khắc Hiệp, Trần Cẩm Vân (2003), Đất và môi trường, NXB Giáo dục Sách, tạp chí
Tiêu đề: Đất và môi trường
Tác giả: Lê Văn Khoa, Nguyễn Xuân Cự, Lê Đức, Trần Khắc Hiệp, Trần Cẩm Vân
Nhà XB: NXB Giáo dục
Năm: 2003
8. Lê Đức Ngọc (2007), “Bài giảng xử lí số liệu và kế hoạch hóa thực nghiệm”, Đại học Khoa Học Tự Nhiên – Đại học Quốc Gia Hà Nội Sách, tạp chí
Tiêu đề: Bài giảng xử lí số liệu và kế hoạch hóa thực nghiệm”
Tác giả: Lê Đức Ngọc
Năm: 2007
11. Tạ Thị Thảo (2006), Bài giảng chuyên đề Thống kê trong Hóa phân tích, NXB Đại học Quốc gia Hà Nội Sách, tạp chí
Tiêu đề: Bài giảng chuyên đề Thống kê trong Hóa phân tích
Tác giả: Tạ Thị Thảo
Nhà XB: NXB Đại học Quốc gia Hà Nội
Năm: 2006
12. Tạ Thị Thảo (2005), “Giáo trình chemometrics”, Đại học Khoa Học Tự Nhiên – Đại học Quốc Gia Hà Nội Sách, tạp chí
Tiêu đề: Giáo trình chemometrics”
Tác giả: Tạ Thị Thảo
Năm: 2005
13. Đặng Ứng Vận (2007), Giáo trình hoá tin cơ sở, NXB Đại học Quốc gia Hà Nội Sách, tạp chí
Tiêu đề: Giáo trình hoá tin cơ sở
Tác giả: Đặng Ứng Vận
Nhà XB: NXB Đại học Quốc gia Hà Nội
Năm: 2007
18. Abbas Afkhami (2004), “H-point standard addition method for simultaneous spectrophotometric determination of Co(II) and Ni(II) by 1-(2 pyridylazo)-2 naphthol in micellar media”, Spectrochimica Acta Part A, 60, pp. 181-186 Sách, tạp chí
Tiêu đề: H-point standard addition method for simultaneous spectrophotometric determination of Co(II) and Ni(II) by 1-(2 pyridylazo)-2 naphthol in micellar media"”, Spectrochimica Acta Part A
Tác giả: Abbas Afkhami
Năm: 2004
19. Abbas Afkhami (2004), “Mean centering of ratio kinetic profiles as a nouvel spectrophotometric method for the simultaneous kinetic analysis of binary mixtures”, Analytical Chimica Acta, 526, pp. 211 - 218 Sách, tạp chí
Tiêu đề: Mean centering of ratio kinetic profiles as a nouvel spectrophotometric method for the simultaneous kinetic analysis of binary mixtures"”, Analytical Chimica Acta
Tác giả: Abbas Afkhami
Năm: 2004
20. Abbas Afkhami (2004), “Successive ratio - derivative spectra as a new spectrophotometric method for the analysis of ternary mixtures”, Spectrochimica Acta Part A, 61, pp. 869 - 877 Sách, tạp chí
Tiêu đề: Successive ratio - derivative spectra as a new spectrophotometric method for the analysis of ternary mixtures"”, Spectrochimica Acta Part A
Tác giả: Abbas Afkhami
Năm: 2004
21. Ana Cristi B.Dias, Josiane M.T. Carneiro (2004), “Spectrophotometric flow- injection determination of zinc in plant digests based on a spot test”, Atlanta, 63, pp. 245 - 250 Sách, tạp chí
Tiêu đề: Spectrophotometric flow-injection determination of zinc in plant digests based on a spot test"”, Atlanta
Tác giả: Ana Cristi B.Dias, Josiane M.T. Carneiro
Năm: 2004
22. Alfonso Fernández - González (2005), “ Insights into the reaction of β-lactam antibiotics with copper(II) ions in aqueous and micellar media: Kinetic and spectrophotometric studies”, Analytical Biochemistry, 341, pp. 113 - 121 Sách, tạp chí
Tiêu đề: Insights into the reaction of β-lactam antibiotics with copper(II) ions in aqueous and micellar media: Kinetic and spectrophotometric studies"”, Analytical Biochemistry
Tác giả: Alfonso Fernández - González
Năm: 2005
23. Barry Chiswell and Guy Rauchle (1990), “Spectrophotometric method for the determination of manganese”, Atlanta, 37, pp. 237 - 259 Sách, tạp chí
Tiêu đề: Spectrophotometric method for the determination of manganese"”, Atlanta
Tác giả: Barry Chiswell and Guy Rauchle
Năm: 1990
24. Barbara A.Bowman, Robert M.Russell (2001), “ Present knowledge in nutrition”, ILSI Press Washington, DC, eight edition Sách, tạp chí
Tiêu đề: Present knowledge in nutrition"”, ILSI Press Washington, DC
Tác giả: Barbara A.Bowman, Robert M.Russell
Năm: 2001
26. E.B. Sandell, “Photometric determination of trace of element”, Wiley Interscience Sách, tạp chí
Tiêu đề: Photometric determination of trace of element
27. G.A.Shar and G.A.Soomro (2004), “Spectrophotometric determination of cobalt(II), nickel(II) and copper(II) with 1-(2 pyridylazo)-2 naphthol in micellar medium”, The Nucleus, 41 (1-4) 2004: 77 – 82 Sách, tạp chí
Tiêu đề: Spectrophotometric determination of cobalt(II), nickel(II) and copper(II) with 1-(2 pyridylazo)-2 naphthol in micellar medium”, "The Nucleus
Tác giả: G.A.Shar and G.A.Soomro
Năm: 2004
28. G. Bagherian, M. Arab Chammjangali (2007), “Simultaneous determination of cobalt and palladium in micellar media using H- point standard addition method and partial least square regression”, Spectrochimica Acta Part A, 67, pp. 378 - 384 Sách, tạp chí
Tiêu đề: Simultaneous determination of cobalt and palladium in micellar media using H- point standard addition method and partial least square regression"”, Spectrochimica Acta Part A
Tác giả: G. Bagherian, M. Arab Chammjangali
Năm: 2007

HÌNH ẢNH LIÊN QUAN

Bảng ký hiệu các từ viết tắt - Khảo sát điều kiện tối ưu xác định Cu(II), Zn(II), Co(II)
Bảng k ý hiệu các từ viết tắt (Trang 3)
Bảng ký hiệu các từ viết tắt - Khảo sát điều kiện tối ưu xác định Cu(II), Zn(II), Co(II)
Bảng k ý hiệu các từ viết tắt (Trang 3)
Bảng 1. Sự hình thành phức Cu(II) trong một số thuốc thử hữu cơ - Khảo sát điều kiện tối ưu xác định Cu(II), Zn(II), Co(II)
Bảng 1. Sự hình thành phức Cu(II) trong một số thuốc thử hữu cơ (Trang 20)
Bảng 2. Các tính chất của một số phức kim loại – PAN - Khảo sát điều kiện tối ưu xác định Cu(II), Zn(II), Co(II)
Bảng 2. Các tính chất của một số phức kim loại – PAN (Trang 29)
Bảng 2.  Các tính chất của một số phức kim loại – PAN - Khảo sát điều kiện tối ưu xác định Cu(II), Zn(II), Co(II)
Bảng 2. Các tính chất của một số phức kim loại – PAN (Trang 29)
Hình 1. Đặc trưng của phổ hấp thụ các phức màu trong môi trường Tween 80 - Khảo sát điều kiện tối ưu xác định Cu(II), Zn(II), Co(II)
Hình 1. Đặc trưng của phổ hấp thụ các phức màu trong môi trường Tween 80 (Trang 41)
Hình 1. Đặc trưng của phổ hấp thụ các phức màu trong môi trường Tween 80 - Khảo sát điều kiện tối ưu xác định Cu(II), Zn(II), Co(II)
Hình 1. Đặc trưng của phổ hấp thụ các phức màu trong môi trường Tween 80 (Trang 41)
Hình 2. Đặc trưng của phổ hấp thụ các phức trong môi trường Triton X-100 - Khảo sát điều kiện tối ưu xác định Cu(II), Zn(II), Co(II)
Hình 2. Đặc trưng của phổ hấp thụ các phức trong môi trường Triton X-100 (Trang 42)
Hình 2. Đặc trưng của phổ hấp thụ các phức trong môi trường Triton X-100 - Khảo sát điều kiện tối ưu xác định Cu(II), Zn(II), Co(II)
Hình 2. Đặc trưng của phổ hấp thụ các phức trong môi trường Triton X-100 (Trang 42)
Bảng 3. Đặc trưng phổ hấp thụ Cu(II)-PAN, Zn(II )– PAN, Co(II )– PAN λmax (nm) - Khảo sát điều kiện tối ưu xác định Cu(II), Zn(II), Co(II)
Bảng 3. Đặc trưng phổ hấp thụ Cu(II)-PAN, Zn(II )– PAN, Co(II )– PAN λmax (nm) (Trang 43)
Bảng 3. Đặc trưng phổ hấp thụ Cu(II) - PAN, Zn(II) – PAN, Co(II) – PAN λ max (nm) - Khảo sát điều kiện tối ưu xác định Cu(II), Zn(II), Co(II)
Bảng 3. Đặc trưng phổ hấp thụ Cu(II) - PAN, Zn(II) – PAN, Co(II) – PAN λ max (nm) (Trang 43)
Hình 3. Ảnh hưởng của pH đến độ hấp thụ quang của các phức màu - Khảo sát điều kiện tối ưu xác định Cu(II), Zn(II), Co(II)
Hình 3. Ảnh hưởng của pH đến độ hấp thụ quang của các phức màu (Trang 44)
Hình 3. Ảnh hưởng của pH  đến độ hấp thụ quang của các phức màu - Khảo sát điều kiện tối ưu xác định Cu(II), Zn(II), Co(II)
Hình 3. Ảnh hưởng của pH đến độ hấp thụ quang của các phức màu (Trang 44)
Tiến hành đo quang khi thay đổi nồng độ đệm axetat, thu được kết quả ở bảng 6. - Khảo sát điều kiện tối ưu xác định Cu(II), Zn(II), Co(II)
i ến hành đo quang khi thay đổi nồng độ đệm axetat, thu được kết quả ở bảng 6 (Trang 45)
Bảng 6: Sự phụ thuộc của độ hấp thụ quang vào nồng độ của đệm axetat - Khảo sát điều kiện tối ưu xác định Cu(II), Zn(II), Co(II)
Bảng 6 Sự phụ thuộc của độ hấp thụ quang vào nồng độ của đệm axetat (Trang 45)
Bảng 8: Kết quả khảo sát ảnh hưởng của thuốc thử PAN - Khảo sát điều kiện tối ưu xác định Cu(II), Zn(II), Co(II)
Bảng 8 Kết quả khảo sát ảnh hưởng của thuốc thử PAN (Trang 46)
Hình 4. Ảnh hưởng của nồng độ Triton X-100 đến độ hấp thụ quang của các phức - Khảo sát điều kiện tối ưu xác định Cu(II), Zn(II), Co(II)
Hình 4. Ảnh hưởng của nồng độ Triton X-100 đến độ hấp thụ quang của các phức (Trang 46)
Hình 4. Ảnh hưởng của nồng độ Triton X- 100 đến độ hấp thụ quang của các phức - Khảo sát điều kiện tối ưu xác định Cu(II), Zn(II), Co(II)
Hình 4. Ảnh hưởng của nồng độ Triton X- 100 đến độ hấp thụ quang của các phức (Trang 46)
Hình 5: Ảnh hưởng của nồng độ thuốc thử đến độ hấp thụ quang của các phức - Khảo sát điều kiện tối ưu xác định Cu(II), Zn(II), Co(II)
Hình 5 Ảnh hưởng của nồng độ thuốc thử đến độ hấp thụ quang của các phức (Trang 47)
Hình 5: Ảnh hưởng của nồng độ  thuốc thử  đến độ hấp thụ quang của các phức - Khảo sát điều kiện tối ưu xác định Cu(II), Zn(II), Co(II)
Hình 5 Ảnh hưởng của nồng độ thuốc thử đến độ hấp thụ quang của các phức (Trang 47)
Hình 6,7,8: Khảo sát độ bền của các phức màu theo thời gian - Khảo sát điều kiện tối ưu xác định Cu(II), Zn(II), Co(II)
Hình 6 7,8: Khảo sát độ bền của các phức màu theo thời gian (Trang 48)
Bảng 9: Kết quả sự phụ thuộc của A vào nồng độ Cu(II) - Khảo sát điều kiện tối ưu xác định Cu(II), Zn(II), Co(II)
Bảng 9 Kết quả sự phụ thuộc của A vào nồng độ Cu(II) (Trang 48)
Hình 9: Khảo sát khoảng tuyến tính xác định Cu(II) - Khảo sát điều kiện tối ưu xác định Cu(II), Zn(II), Co(II)
Hình 9 Khảo sát khoảng tuyến tính xác định Cu(II) (Trang 49)
Hình 9: Khảo sát khoảng tuyến tính xác định Cu(II) - Khảo sát điều kiện tối ưu xác định Cu(II), Zn(II), Co(II)
Hình 9 Khảo sát khoảng tuyến tính xác định Cu(II) (Trang 49)
Hình 10: Đường chuẩn xác định Cu(II) - Khảo sát điều kiện tối ưu xác định Cu(II), Zn(II), Co(II)
Hình 10 Đường chuẩn xác định Cu(II) (Trang 50)
Hình 10: Đường chuẩn xác định Cu(II) - Khảo sát điều kiện tối ưu xác định Cu(II), Zn(II), Co(II)
Hình 10 Đường chuẩn xác định Cu(II) (Trang 50)
Từ hình 11, nhận thấy khi nồng độ Zn(II) tăng thì độ hấp thụ quang cũng tăng tuyến tính - Khảo sát điều kiện tối ưu xác định Cu(II), Zn(II), Co(II)
h ình 11, nhận thấy khi nồng độ Zn(II) tăng thì độ hấp thụ quang cũng tăng tuyến tính (Trang 52)
Hình 11: Khảo sát khoảng tuyến tính xác định Zn(II) - Khảo sát điều kiện tối ưu xác định Cu(II), Zn(II), Co(II)
Hình 11 Khảo sát khoảng tuyến tính xác định Zn(II) (Trang 52)
Bảng 15: Kết quả xây dựng đường chuẩn xác định Zn(II) - Khảo sát điều kiện tối ưu xác định Cu(II), Zn(II), Co(II)
Bảng 15 Kết quả xây dựng đường chuẩn xác định Zn(II) (Trang 52)
Hình 12: Đường chuẩn xác định Zn(II) - Khảo sát điều kiện tối ưu xác định Cu(II), Zn(II), Co(II)
Hình 12 Đường chuẩn xác định Zn(II) (Trang 53)
Hình 12: Đường chuẩn xác định Zn(II) - Khảo sát điều kiện tối ưu xác định Cu(II), Zn(II), Co(II)
Hình 12 Đường chuẩn xác định Zn(II) (Trang 53)
Bảng 17: Độ hấp thụ quang của phức Zn-PAN ở3 nồng độ khác nhau - Khảo sát điều kiện tối ưu xác định Cu(II), Zn(II), Co(II)
Bảng 17 Độ hấp thụ quang của phức Zn-PAN ở3 nồng độ khác nhau (Trang 54)
Bảng 18: Kết quả đánh giá phương pháp xác định Zn(II) - Khảo sát điều kiện tối ưu xác định Cu(II), Zn(II), Co(II)
Bảng 18 Kết quả đánh giá phương pháp xác định Zn(II) (Trang 54)
Bảng 17: Độ hấp thụ quang của phức Zn-PAN ở 3 nồng độ khác nhau - Khảo sát điều kiện tối ưu xác định Cu(II), Zn(II), Co(II)
Bảng 17 Độ hấp thụ quang của phức Zn-PAN ở 3 nồng độ khác nhau (Trang 54)
Hình 13: Khảo sát khoảng tuyến tính xác định Co(II) - Khảo sát điều kiện tối ưu xác định Cu(II), Zn(II), Co(II)
Hình 13 Khảo sát khoảng tuyến tính xác định Co(II) (Trang 55)
Hình 13: Khảo sát khoảng tuyến tính xác định Co(II) - Khảo sát điều kiện tối ưu xác định Cu(II), Zn(II), Co(II)
Hình 13 Khảo sát khoảng tuyến tính xác định Co(II) (Trang 55)
Hình 14: Đường chuẩn xác định Co(II) - Khảo sát điều kiện tối ưu xác định Cu(II), Zn(II), Co(II)
Hình 14 Đường chuẩn xác định Co(II) (Trang 56)
Hình 14: Đường chuẩn xác định Co(II) - Khảo sát điều kiện tối ưu xác định Cu(II), Zn(II), Co(II)
Hình 14 Đường chuẩn xác định Co(II) (Trang 56)
Bảng 22: Độ hấp thụ quang của phức Co-PAN ở3 nồng độ khác nhau - Khảo sát điều kiện tối ưu xác định Cu(II), Zn(II), Co(II)
Bảng 22 Độ hấp thụ quang của phức Co-PAN ở3 nồng độ khác nhau (Trang 57)
Bảng 2 4: Ảnh hưởng của Mn(II) đến độ hấp thụ quang trong đệm axetat - Khảo sát điều kiện tối ưu xác định Cu(II), Zn(II), Co(II)
Bảng 2 4: Ảnh hưởng của Mn(II) đến độ hấp thụ quang trong đệm axetat (Trang 58)
Bảng 24 : Ảnh hưởng của Mn(II) đến độ hấp thụ quang trong đệm axetat - Khảo sát điều kiện tối ưu xác định Cu(II), Zn(II), Co(II)
Bảng 24 Ảnh hưởng của Mn(II) đến độ hấp thụ quang trong đệm axetat (Trang 58)
Bảng 2 6: Ảnh hưởng của Fe(II) đến độ hấp thụ quang trong đệm axetat - Khảo sát điều kiện tối ưu xác định Cu(II), Zn(II), Co(II)
Bảng 2 6: Ảnh hưởng của Fe(II) đến độ hấp thụ quang trong đệm axetat (Trang 59)
Từ bảng trên, nhận thấy khi dùng hỗn hợp đệm axetat 4.10-2M và citrat 1.10-3M sẽ loại trừ được ảnh hưởng của Fe(II) - Khảo sát điều kiện tối ưu xác định Cu(II), Zn(II), Co(II)
b ảng trên, nhận thấy khi dùng hỗn hợp đệm axetat 4.10-2M và citrat 1.10-3M sẽ loại trừ được ảnh hưởng của Fe(II) (Trang 60)
Bảng 29 : Ảnh  hưởng của Fe(III) đến độ hấp thụ quang trong hỗn hợp đệm - Khảo sát điều kiện tối ưu xác định Cu(II), Zn(II), Co(II)
Bảng 29 Ảnh hưởng của Fe(III) đến độ hấp thụ quang trong hỗn hợp đệm (Trang 60)
Hình 15: Phổ hấp thụ của các phức Cu-PAN, Zn -PAN, Co-PAN và phổ hỗn hợp củ a3 phức theo lý thuyết và theo thực tế - Khảo sát điều kiện tối ưu xác định Cu(II), Zn(II), Co(II)
Hình 15 Phổ hấp thụ của các phức Cu-PAN, Zn -PAN, Co-PAN và phổ hỗn hợp củ a3 phức theo lý thuyết và theo thực tế (Trang 62)
Hình 15: Phổ hấp thụ của các phức Cu-PAN, Zn -PAN, Co-PAN và phổ hỗn hợp của 3  phức theo lý thuyết và theo thực tế - Khảo sát điều kiện tối ưu xác định Cu(II), Zn(II), Co(II)
Hình 15 Phổ hấp thụ của các phức Cu-PAN, Zn -PAN, Co-PAN và phổ hỗn hợp của 3 phức theo lý thuyết và theo thực tế (Trang 62)
Bảng 32: Hiệu suất thu hồi theo phương pháp tách dựa vào đường thêm chuẩn - Khảo sát điều kiện tối ưu xác định Cu(II), Zn(II), Co(II)
Bảng 32 Hiệu suất thu hồi theo phương pháp tách dựa vào đường thêm chuẩn (Trang 64)
Bảng 35: Sai số giữa nồng độ mẫu chuẩn và nồng độ xác định được từ phương pháp ILS  - Khảo sát điều kiện tối ưu xác định Cu(II), Zn(II), Co(II)
Bảng 35 Sai số giữa nồng độ mẫu chuẩn và nồng độ xác định được từ phương pháp ILS (Trang 70)
Bảng 35: Sai số giữa nồng độ mẫu chuẩn và nồng độ xác định được từ  phương  pháp ILS - Khảo sát điều kiện tối ưu xác định Cu(II), Zn(II), Co(II)
Bảng 35 Sai số giữa nồng độ mẫu chuẩn và nồng độ xác định được từ phương pháp ILS (Trang 70)
3.2.2.3. Thuật toán PLS Dữ liệu đầu vào  - Khảo sát điều kiện tối ưu xác định Cu(II), Zn(II), Co(II)
3.2.2.3. Thuật toán PLS Dữ liệu đầu vào (Trang 71)
Bảng 36: Sai số giữa nồng độ mẫu chuẩn và nồng độ xác định được từ phương pháp PLS - Khảo sát điều kiện tối ưu xác định Cu(II), Zn(II), Co(II)
Bảng 36 Sai số giữa nồng độ mẫu chuẩn và nồng độ xác định được từ phương pháp PLS (Trang 72)
Bảng 37: Sai số giữa nồng độ mẫu chuẩn và nồng độ xác định được từ phương pháp PCR - Khảo sát điều kiện tối ưu xác định Cu(II), Zn(II), Co(II)
Bảng 37 Sai số giữa nồng độ mẫu chuẩn và nồng độ xác định được từ phương pháp PCR (Trang 74)
Bảng 37:  Sai số giữa nồng độ mẫu chuẩn và nồng độ xác định được từ phương  pháp PCR - Khảo sát điều kiện tối ưu xác định Cu(II), Zn(II), Co(II)
Bảng 37 Sai số giữa nồng độ mẫu chuẩn và nồng độ xác định được từ phương pháp PCR (Trang 74)
Bảng 38: Hàm lượng Cu(II), Zn(II), Co(II) trên nhãn một số mẫu phân vi lượng - Khảo sát điều kiện tối ưu xác định Cu(II), Zn(II), Co(II)
Bảng 38 Hàm lượng Cu(II), Zn(II), Co(II) trên nhãn một số mẫu phân vi lượng (Trang 75)
Bảng 39: Hàm lượng Cu(II), Zn(II), Co(II) trong mẫu đo bằng phương pháp AAS - Khảo sát điều kiện tối ưu xác định Cu(II), Zn(II), Co(II)
Bảng 39 Hàm lượng Cu(II), Zn(II), Co(II) trong mẫu đo bằng phương pháp AAS (Trang 76)
Bảng 40:  Xác định đồng thời hàm lượng Cu(II), Zn(II), Co(II) - Khảo sát điều kiện tối ưu xác định Cu(II), Zn(II), Co(II)
Bảng 40 Xác định đồng thời hàm lượng Cu(II), Zn(II), Co(II) (Trang 76)
Bảng 41: Hàm lượng Cu(II), Zn(II), Co(II) trong mẫu đo bằng phương pháp  tách - Khảo sát điều kiện tối ưu xác định Cu(II), Zn(II), Co(II)
Bảng 41 Hàm lượng Cu(II), Zn(II), Co(II) trong mẫu đo bằng phương pháp tách (Trang 77)
Bảng 44: Kết quả phân tích hàm lượng Zn(II) (ppm) - Khảo sát điều kiện tối ưu xác định Cu(II), Zn(II), Co(II)
Bảng 44 Kết quả phân tích hàm lượng Zn(II) (ppm) (Trang 78)
Bảng 44: Kết quả phân tích hàm lượng Zn(II) (ppm) - Khảo sát điều kiện tối ưu xác định Cu(II), Zn(II), Co(II)
Bảng 44 Kết quả phân tích hàm lượng Zn(II) (ppm) (Trang 78)
Bảng 45: Kết quả phân tích hàm lượng Co(II) (ppm) - Khảo sát điều kiện tối ưu xác định Cu(II), Zn(II), Co(II)
Bảng 45 Kết quả phân tích hàm lượng Co(II) (ppm) (Trang 78)

TRÍCH ĐOẠN

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN

w