Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống
1
/ 23 trang
THÔNG TIN TÀI LIỆU
Thông tin cơ bản
Định dạng
Số trang
23
Dung lượng
0,91 MB
Nội dung
ÔN THI TỐT NGHIỆP THPT 2011- MÔN TOÁN Nguyễn Thanh Lam ĐỀ ÔN THI TỐT NGHIỆP TRUNG HỌC PHỔ THÔNG NĂM 2011 MÔN TOÁN ( Thời gian làm bài 150 phút) PHẦN CHUNG CHO TẤT CẢ THÍ SINH ( 7 điểm ) Câu I (3,0 điểm ) Cho hàm số : 3 2 6 9y x x x= − + (1) 1/ Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số (1) 2/ Tính diện tích hình phẳng giới hạn bởi đồ thị (C), trục hoành và hai đường thẳng 1; 2x x= = Câu II ( 3,0 điểm ) 1/ Tính tích phân I ( ) 4 0 2 1 x x e dx= + ∫ 2/ Giải phương trình : ( ) ( ) 2 2 log 3 log 1 3x x− + − = 3/ Tìm GTLN, GTNN của hàm số 3 2 ( ) 2 5f x x x= + − trên đoạn [ ] 2;2− Câu III ( 1,0 điểm ) Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a , SB 3a= và SA vuông góc với mặt phẳng (ABCD). Tính thể tích khối chóp S.ABCD theo a . PHẦN RIÊNG ( 3,0 điểm ) -Thí sinh chỉ được làm một trong hai phần ( phần A hoặc phần B) A. Theo chương trình Chuẩn Câu IV.a ( 2,0 điểm ) Trong không gian với hệ tọa độ Oxyz , cho tam giác có ( ) ( ) ( ) 1;1;2 , 0;1;1 , 1;0;4A B C− 1/ Chứng minh tam giác ABC là tam giác vuông. 2/ Gọi M là điểm thỏa 2MB MC= uuur uuuur , Viết phương trình mặt phẳng (P) qua điểm M và vuông góc với đường thẳng BC. Câu V.a (1,0 điểm ) Tìm nghiệm phức của phương trình : 2 2 5 4 0z z− + = B. Theo chương trình Nâng cao Câu IV.b ( 2,0 điểm ) Trong không gian với hệ tọa độ Oxyz , cho điểm I ( ) 3;4;2 và mặt phẳng (P) có phương trình 4 2 1 0x y z+ + − = 1/ Viết phương trình mặt cầu (S) tâm I và tiếp xúc với mặt phẳng (P). 2/ Cho đường thẳng d có phương trình 1 1 3 3 x y z − = = . Viết phương trình đường thẳng ∆ vuông góc với đường thẳng d , qua điểm I và song song với mặt phẳng (P). Câu V.b (1,0 điểm ) Cho hàm số : 2 1 1 x mx y x − + = − có đồ thị (C). Tìm m để đồ thị (C) có hai điểm cực đại và cực tiểu thỏa y CĐ .y CT = 5 Hết Đề số 1 ÔN THI TỐT NGHIỆP THPT 2011- MÔN TOÁN Nguyễn Thanh Lam ĐỀ ÔN THI TỐT NGHIỆP TRUNG HỌC PHỔ THÔNG NĂM 2011 MÔN TOÁN ( Thời gian làm bài 150 phút) PHẦN CHUNG CHO TẤT CẢ THÍ SINH ( 7 điểm ) Câu I (3,0 điểm ) Cho hàm số : 3 2 2 3 1y x x= + − (1) 1/ Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số (1) 2/ Tìm m để phương trình : 3 2 2 3 0x x m+ − = có ba nghiệm thực phân biệt Câu II ( 2,0 điểm ) 1/ Giải phương trình : 2 1 3 9.3 6 0 x x+ − + = 2/ Tính giá trị của biểu thức : P ( ) ( ) 2 2 1 3 1 3i i= + + − Câu III ( 2,0 điểm ) Cho hình chóp tam giác đều S.ABC có cạnh đáy bằng a , cạnh bên bằng 2a . Gọi I là trung điểm của cạnh BC. 1/ Chứng minh : SA vuông góc với BC 2/ Tính thể tích khối chóp S.ABI theo a . PHẦN RIÊNG ( 3,0 điểm ) -Thí sinh chỉ được làm một trong hai phần ( phần A hoặc phần B) A. Theo chương trình Chuẩn Câu IV.a (1,0 điểm ) Tính tích phân I ( ) 2 0 2 1 cosx xdx π = − ∫ Câu V.a ( 2,0 điểm ) Trong không gian với hệ tọa độ Oxyz , cho tam giác có ( ) 3; 2; 2A − − và mặt phẳng (P) có phương trình 2 2 1 0x y z− + − = 1/ Viết phương trình đường thẳng d đi qua điểm A và vuông góc với mặt phẳng (P). 2/ Tính khoảng cách từ điểm A đến mặt phẳng (P). Viết phương trình mặt phẳng (Q) sao cho (Q) song song với (P) và khoảng cách giữa (P) và (Q) bằng khoảng cách từ điểm A đến mặt phẳng (P). B. Theo chương trình Nâng cao Câu IV.b (1,0 điểm ) Tính tích phân I ( ) 1 4 2 3 1 1x x dx − = − ∫ Câu V.b ( 2,0 điểm ) Trong không gian với hệ tọa độ Oxyz , cho bốn điểm ( ) ( ) ( ) ( ) 0;2;4 , 4;0;4 , 4;2;0 , 4;2;4A B C D 1/ Chứng minh : ABCD là một tứ diện. Tính thể tích tứ diện ABCD 2/ Viết phương trình mặt cầu (S) ngoại tiếp tứ diện ABCD. Tìm tọa độ điểm H là chân đường cao của tứ diện ABCD kẻ từ đỉnh A. Hết Đề số 2 ÔN THI TỐT NGHIỆP THPT 2011- MÔN TOÁN Nguyễn Thanh Lam ĐỀ ÔN THI TỐT NGHIỆP TRUNG HỌC PHỔ THÔNG NĂM 2011 MÔN TOÁN ( Thời gian làm bài 150 phút) PHẦN CHUNG CHO TẤT CẢ THÍ SINH ( 7 điểm ) Câu I (3,0 điểm ) Cho hàm số : 2 1 1 x y x + = − (1) 1/ Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số (1) 2/ Tìm tất cả các giá trị tham số m để đường thẳng 1y mx= + cắt đồ thị (C) tại 2 điểm phân biệt. Câu II ( 3,0 điểm ) 1/ Tính tích phân I 2 2 0 4 x dx= − ∫ 2/ Giải phương trình : 1 3 5 5 26 x x− − + = 3/ Tìm giá trị lớn nhất, giá trị nhỏ nhất của hàm số ( ) 2 cosf x x x= + trên đoạn 0; 2 π Câu III ( 1,0 điểm ) Cho hình chóp S.ABC có đáy ABC là tam giác vuông cân tại đỉnh B, SA vuông góc với mặt phẳng (ABC); AC 2a= và SB 3a= . Tính thể tích khối chóp S.ABC theo a . PHẦN RIÊNG ( 3,0 điểm ) -Thí sinh chỉ được làm một trong hai phần ( phần A hoặc phần B) A. Theo chương trình Chuẩn Câu IV.a ( 2,0 điểm ) Trong không gian với hệ tọa độ Oxyz , cho tam giác có ( ) ( ) ( ) 6;4; 2 , 6;2;0 , 4;2; 2A B C− − 1/ Viết phương trình mặt phẳng đi qua ba điểm A,B,C. 2/ Viết phương trình đường thẳng chứa cạnh BC, phương trình đường cao AH của tam giác ABC Câu V.a (1,0 điểm ) Cho số phức : z x yi= + . Tìm ;x y sao cho : ( ) 2 8 6x yi i+ = + B. Theo chương trình Nâng cao Câu IV.b ( 2,0 điểm ) Trong không gian với hệ tọa độ Oxyz , cho điểm A ( ) 1;2; 1− − và mặt phẳng (P) có phương trình 2 3 2 0x y z− − + = 1/ Viết phương trình mặt phẳng (Q) đi qua điểm A và song song với mặt phẳng (P) 2/ Tìm tọa độ điểm H là hình chiếu vuông góc của điểm A trên mặt phẳng (P). Tìm tọa độ điểm A’ đối xứng với điểm A qua mặt phẳng (P) Câu V.b (1,0 điểm ) Giải phương trình : ( ) 2 2 1 4 0ix i x− − − = trên tập số phức Hết Đề số 3 ÔN THI TỐT NGHIỆP THPT 2011- MÔN TOÁN Nguyễn Thanh Lam ĐỀ ÔN THI TỐT NGHIỆP TRUNG HỌC PHỔ THÔNG NĂM 2011 MÔN TOÁN ( Thời gian làm bài 150 phút) PHẦN CHUNG CHO TẤT CẢ THÍ SINH ( 7 điểm ) Câu I (3,0 điểm ) Cho hàm số : 1 1 x y x + = − (1) 1/ Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số (1) 2/ Viết phương trình tiếp tuyến của đồ thị (C) tại giao điểm của đồ thị (C) với trục hoành. 3/ Tìm m để đường thẳng 1y mx= + cắt đồ thị (C) tại 2 điểm phân biệt. Câu II ( 3,0 điểm ) 1/ Tính tích phân I ( ) 1 cos 2 0 1 sin ln 1 cos x x dx x π + + = + ∫ 2/ Giải phương trình : 1 1 3 3 4 x x− − + = 3/ Tìm giá trị lớn nhất, giá trị nhỏ nhất của hàm số: ( ) cos 2 cosy f x x x= = + Câu III ( 1,0 điểm ) Cho hình chóp tam giác S.ABC có đáy ABC là một tam giác vuông tại A , AB a = ; 3;AC a= mặt bên (SBC) là một tam giác đều và vuông góc với mặt phẳng đáy. Tính thể tích khối chóp S.ABC theo a PHẦN RIÊNG ( 3,0 điểm ) -Thí sinh chỉ được làm một trong hai phần ( phần A hoặc phần B) A. Theo chương trình Chuẩn Câu IV.a ( 2,0 điểm ) Trong không gian với hệ tọa độ Oxyz , cho điểm ( ) 3;2; 5M − và đường thẳng 3 4 : 4 2 4 5 x t y t t z t = + ∆ = − − ∈ = + ¡ 1/ Viết phương trình đường thẳng d đi qua M và song song với đường thẳng ∆ . 2/ Viết phương trình mặt phẳng (P) đi qua M và vuông góc với đường thẳng ∆ . Tìm tọa độ điểm H là hình chiếu vuông góc của điểm M trên đường thẳng ∆ . Câu V.a (1,0 điểm ) Giải phương trình : 2 4 5 0x x− + = trên tập số phức B. Theo chương trình Nâng cao Câu IV.b ( 2,0 điểm ) Cho tứ diện OABC có OA,OB,OC đôi một vuông góc với nhau và 3 ; 4 ; 5 .OA cm OB cm OC cm= = = 1/ Tính độ dài đường cao của tứ diện OABC kẻ từ đĩnh O 2/ Tính diện tích tam giác ABC Câu V.b (1,0 điểm ) Giải phương trình : ( ) 2 2 2 7 4 0x i x i− + + + = trên tập số phức Hết Đề số 4 ÔN THI TỐT NGHIỆP THPT 2011- MÔN TOÁN Nguyễn Thanh Lam ĐỀ ÔN THI TỐT NGHIỆP TRUNG HỌC PHỔ THÔNG NĂM 2011 MÔN TOÁN ( Thời gian làm bài 150 phút) PHẦN CHUNG CHO TẤT CẢ THÍ SINH ( 7 điểm ) Câu I (3,0 điểm ) Cho hàm số : 3 1 x y x + = + (1) 1/ Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số (1) 2/ Chứng minh rằng với mọi giá trị của m đường thẳng 2y x m= + luôn cắt đồ thị (C) tại 2 điểm phân biệt M ; N .Tìm m để độ dài MN nhỏ nhất Câu II ( 3,0 điểm ) 1/ Tính tích phân I 1 0 x x x e dx e e − = + ∫ 2/ Giải bất phương trình : 2 1 3 3 28 x x+ − + ≤ 3/ Tìm ,a b để các cực trị của hàm số : 2 3 2 1 2 5 3 y a x ax x b= + − + đều là những số dương và 0 1 5 x = − là điểm cực đại. Câu III ( 1,0 điểm ) Cho hình chóp tứ giác đều S.ABCD có cạnh đáy bằng a , góc giữa mặt bên và mặt đáy bằng 60 0 . Tính thể tích khối chóp S.ABCD theo a . PHẦN RIÊNG ( 3,0 điểm ) -Thí sinh chỉ được làm một trong hai phần ( phần A hoặc phần B) A. Theo chương trình Chuẩn Câu IV.a ( 2,0 điểm ) Trong không gian với hệ tọa độ Oxyz , cho bốn điểm ( ) ( ) ( ) ( ) 4;0;2 , 2;0;4 , 0;2;0 , 6; 2; 4A B C D − − 1/ Chứng minh ABCD là một tứ diện. Tính thể tích tứ diện ABCD. 2/ Viết phương trình đường thẳng d là hình chiếu vuông góc của đường thẳng AB trên mặt phẳng (P) có phương trình : 1 0x y z+ + − = Câu V.a (1,0 điểm ) Tính giá trị của biểu thức P 4 4 1 5 1 5 2 2 i i + − = + ÷ ÷ ÷ ÷ B. Theo chương trình Nâng cao Câu IV.b ( 2,0 điểm ) Trong không gian với hệ tọa độ Oxyz , cho ba điểm ( ) ( ) 1 1 1 1;0;0 , 1;1;1 , ; ; 3 3 3 A B C ÷ 1/ Viết phương trình mặt phẳng (P) vuông góc với đường thẳng OC tại điểm C 2/ Viết phương trình đường thẳng ∆ là hình chiếu vuông góc của đường thẳng AB trên mặt phẳng (P) Câu V.b (1,0 điểm ) Gọi 1 2 ;z z là hai nghiệm của phương trình: 2 2 1 0z iz− + = . Tính giá trị của thức P 2 2 1 2 z z= + Hết Đề số 5 ÔN THI TỐT NGHIỆP THPT 2011- MÔN TOÁN Nguyễn Thanh Lam ĐỀ ÔN THI TỐT NGHIỆP TRUNG HỌC PHỔ THÔNG NĂM 2011 MÔN TOÁN ( Thời gian làm bài 150 phút) PHẦN CHUNG CHO TẤT CẢ THÍ SINH ( 7 điểm ) Câu I (3,0 điểm ) Cho hàm số : 2 3 x y x + = − (1) 1/ Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số (1) 2/ Tìm điểm M trên đồ thị (C) sao cho khoảng cách từ điểm M đế tiệm cận đứng của (C) bằng khoảng cách từ điểm M đến tiệm cận ngang của (C) Câu II ( 3,0 điểm ) 1/ Tính tích phân I ln5 ln3 2 3 x x dx e e − = + − ∫ 2/ Giải bất phương trình : 4 12.2 32 0 x x − + ≤ 3/ Tìm giá trị lớn nhất, giá trị nhỏ nhất của hàm số ( ) 2 3 1y x x= − + trên đoạn [ ] 0;2 Câu III ( 1,0 điểm ) Cho hình chóp S.ABC có đáy là tam giác vuông cân tại B ; AC 2a = , SA vuông góc với mặt đáy; góc giữa SB và mặt đáy bằng 60 0 . Tính thể tích khối chóp S.ABC theo a . PHẦN RIÊNG ( 3,0 điểm ) -Thí sinh chỉ được làm một trong hai phần ( phần A hoặc phần B) A. Theo chương trình Chuẩn Câu IV.a ( 2,0 điểm ) Trong không gian với hệ tọa độ Oxyz , cho hai điểm A (1; 4;5)− và B (3;2;7) 1/ Viết phương trình mặt cầu tâm A và đi qua điểm B. 2/Viết phương trình mặt phẳng trung trực của đoạn thẳng AB Câu V.a (1,0 điểm ) Xác định phần thực, phần ảo và môđun của số phức sau : ( ) ( ) ( ) 2 1 2 8 1 2i i z i i z+ − = + + + B. Theo chương trình Nâng cao Câu IV.b ( 2,0 điểm ) Trong không gian với hệ tọa độ Oxyz , cho đường thẳng d có phương trình : 1 1 1 1 x y z − = = − và mặt phẳng (P) có phương trình : 1 0x y z+ + − = 1/ Viết phương trình tham số của các đường thẳng là giao tuyến của mặt phẳng (P) với các mặt phẳng tọa độ.Tính thể tích khối tứ diện ABCD, biết A,B,C là giao điểm tương ứng của mặt phẳng (P)với trục tọa độ ; ;Ox Oy Oz , còn D là giao điểm của đường thẳng d với mặt phẳng tọa độ Oxy . 2/ Viết phương trình mặt cầu (S) đi qua 4 điểm A,B,C,D. Xác định tâm và bán kính đường tròn giao tuyến của mặt cầu (S) với mặt phẳng (ACD). Câu V.b (1,0 điểm ) Giải phương trình trên tập số phức : ( ) ( ) 2 3 4 1 5 0z i z i− + + − + = Hết Đề số 6 ÔN THI TỐT NGHIỆP THPT 2011- MÔN TOÁN Nguyễn Thanh Lam ĐỀ ÔN THI TỐT NGHIỆP TRUNG HỌC PHỔ THÔNG NĂM 2011 MÔN TOÁN ( Thời gian làm bài 150 phút) PHẦN CHUNG CHO TẤT CẢ THÍ SINH ( 7 điểm ) Câu I (3,0 điểm ) Cho hàm số : ( ) ( ) 3 2 1 1 3 4 3 y x m x m x= − + − + + − (1) m là tham số. 1/ Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số (1) khi 0m = 2/ Tính diện tích hình phẳng giới hạn bởi đồ thị (C), trục hoành và hai đường thẳng 1; 1x x= − = 3/ Tìm m để hàm số (1) đồng biến trên khoảng ( ) 0;3 Câu II ( 3,0 điểm ) 1/ Tính tích phân I 5 2 3 1 3 2 x dx x x + = − + ∫ 2/ Giải bất phương trình : 2.2 6 1 2 2 x x − > − 3/ Tìm giá trị lớn nhất, giá trị nhỏ nhất của hàm số 2x y x e= − trên đoạn [ ] 1;0− Câu III ( 1,0 điểm ) Cho hình chóp S.ABC có đáy là tam giác vuông tại B; SA vuông góc với mặt phẳng (ABC). Biết 2SB a= ; · · 0 45ASB BSC= = . Tính thể tích khối chóp S.ABC theo a . Xác định tâm và bán kính mặt cầu ngoại tiếp hình chóp S.ABC PHẦN RIÊNG ( 3,0 điểm ) -Thí sinh chỉ được làm một trong hai phần ( phần A hoặc phần B) A. Theo chương trình Chuẩn Câu IV.a ( 2,0 điểm ) Trong không gian với hệ tọa độ Oxyz , cho điểm A ( ) 1;4;2 và mặt phẳng (P) có phương trình 2 1 0x y z+ + − = 1/ Tìm tọa độ điểm H là hình chiếu vuông góc của điểm A trên mặt phẳng (P) 2/ Viết phương trình mặt cầu (S) tâm A và tiếp xúc với mặt phẳng (P). Câu V.a (1,0 điểm ) Xác định phần thực, phần ảo và môđun của số phức sau : ( ) 3 4 3 1z i i= − + − B. Theo chương trình Nâng cao Câu IV.b ( 2,0 điểm ) Trong không gian với hệ tọa độ Oxyz , cho điểm A ( ) 1;2;3− và đường thẳng d có phương trình 2 1 1 2 1 x y z− − = = 1/ Tìm tọa độ điểm H là hình chiếu vuông góc của điểm A trên đường thẳng d 2/ Viết phương trình mặt cầu (S) tâm A và tiếp xúc với đường thẳng d. Câu V.b (1,0 điểm ) Viết dạng lượng giác của số phức 1 3z i= − Hết Đề số 7 ÔN THI TỐT NGHIỆP THPT 2011- MÔN TOÁN Nguyễn Thanh Lam ĐỀ ÔN THI TỐT NGHIỆP TRUNG HỌC PHỔ THÔNG NĂM 2011 MÔN TOÁN ( Thời gian làm bài 150 phút) PHẦN CHUNG CHO TẤT CẢ THÍ SINH ( 7 điểm ) Câu I (3,0 điểm ) Cho hàm số : 3 2 1 2 3 3 y x x x= − + (1) 1/ Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số (1) 2/ Viết phương trình đường thẳng ∆ đi qua điểm cực đại của đồ thị (C) và vuông góc với tiếp tuyến của đồ thị (C) tại gốc tọa độ. Câu II ( 3,0 điểm ) 1/ Tính tích phân I 1 1 2 2 x x dx − − = − ∫ 2/ Giải phương trình : ( ) ( ) 2 2 1 2 log 2 8 1 log 2x x x− − = − + 3/ Tìm giá trị lớn nhất, giá trị nhỏ nhất của hàm số 2 4y x x= − trên đoạn 1 ;3 3 Câu III ( 1,0 điểm ) Cho hình chóp S.ABC có SA vuông góc với mặt phẳng (ABC). Mặt phẳng (SBC) tạo với đáy góc 60 0. Biết SB = SC = BC a= . Tính thể tích khối chóp S.ABC theo a . PHẦN RIÊNG ( 3,0 điểm ) -Thí sinh chỉ được làm một trong hai phần ( phần A hoặc phần B) A. Theo chương trình Chuẩn Câu IV.a ( 2,0 điểm ) Trong không gian với hệ tọa độ Oxyz , cho mặt cầu (S): 2 2 2 4 2 4 7 0x y z x y z+ + − + + − = và mặt phẳng (P) có phương trình 2 2 3 0x y z− + + = 1/ Tính khoảng cách từ tâm I của mặt cầu (S) đến mặt phẳng (P) 2/ Viết phương trình mặt phẳng (Q) song song với mặt phẳng (P) và tiếp xúc với mặt cầu (S) Câu V.a (1,0 điểm ) Gọi 1 2 ;z z là hai nghiệm của phương trình: 2 3 4 6 0z z− + = . Tính giá trị của biểu thức P 2 2 1 2 z z= + B. Theo chương trình Nâng cao Câu IV.b ( 2,0 điểm ) Trong không gian với hệ tọa độ Oxyz , cho mặt cầu (S) : 2 2 2 4 2 4 7 0x y z x y z+ + − + + − = và đường thẳng d có phương trình 1 2 1 2 1 x y z− − = = − 1/ Viết phương trình mặt phẳng (P) vuông góc với đường thẳng d và tiếp xúc với mặt cầu (S) 2/ Viết phương trình đường thẳng ∆ đi qua tâm I của mặt cầu (S), cắt và vuông góc với đường thẳng d Câu V.b (1,0 điểm ) Cho z ∈£ , biết 1 3z z − + = . Tính giá trị biểu thức A 2009 2009 z z − = + Hết Đề số 8 ÔN THI TỐT NGHIỆP THPT 2011- MÔN TOÁN Nguyễn Thanh Lam ĐỀ ÔN THI TỐT NGHIỆP TRUNG HỌC PHỔ THÔNG NĂM 2011 MÔN TOÁN ( Thời gian làm bài 150 phút) PHẦN CHUNG CHO TẤT CẢ THÍ SINH ( 7 điểm ) Câu I (3,0 điểm ) Cho hàm số : 3 3y x x= − + (1) 1/ Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số (1) 2/ Tính diện tích hình phẳng giới hạn bởi đồ thị (C) và đường thẳng y x= − Câu II ( 3,0 điểm ) 1/ Tính tích phân I 2 0 sin 2 sin 1 3cos x x dx x π + = + ∫ 2/ Giải phương trình : ( ) ( ) 2 3 2 3 4 x x + + − = 3/ Tìm giá trị lớn nhất, giá trị nhỏ nhất của hàm số 2 6y x x= + − Câu III ( 1,0 điểm ) Cho hình chóp S.ABC có đáy là tam giác ABC cân tại A; SA vuông góc với mặt phẳng (ABC); SB tạo với đáy góc 45 0 . SBC là tam giác đều cạnh a . Tính thể tích khối chóp S.ABC theo a . PHẦN RIÊNG ( 3,0 điểm ) -Thí sinh chỉ được làm một trong hai phần ( phần A hoặc phần B) A. Theo chương trình Chuẩn Câu IV.a ( 2,0 điểm ) Trong không gian với hệ tọa độ Oxyz , Cho bốn điểm ( ) ( ) ( ) ( ) 2;3;4 , 1;4; 2 , 3;3;0 , 4;3;2A B C D− 1/ Viết phương tình mặt phẳng ( ) α đi qua ba điểm B,C,D. Viết phương trình đường thẳng ∆ đi qua điểm A và vuông góc với mặt phẳng ( ) α 2/ Viết phươmg trình mặt cầu (S) tâm A và tiếp xúc với mặt phẳng ( ) α . Tìm tọa độ tiếp điểm của mặt cầu (S) và mặt phẳng ( ) α Câu V.a (1,0 điểm ) Tính giá trị của biểu thức : P ( ) ( ) 4 4 1 2 3 1 2 3i i= + + − B. Theo chương trình Nâng cao Câu IV.b ( 2,0 điểm ) Trong không gian với hệ tọa độ Oxyz , Cho bốn điểm ( ) ( ) ( ) ( ) 2;4; 1 , 1;4; 1 , 2;4;3 , 2;2; 1A B C D− − − 1/ Chứng minh rằng AB; AC; AD vuông góc với nhau đôi một. Tính thể tích tứ diện ABCD. 2/ Viết phương trình mặt cầu (S) đi qua 4 điểm A,B,C,D. Viết phương trình mặt phẳng (P) tiếp xúc với mặt cầu (S) và song song với mặt phẳng (ABD) Câu V.b (1,0 điểm ) Tìm căn bậc hai của số phức 1 4z i= − + Hết Đề số 9 ÔN THI TỐT NGHIỆP THPT 2011- MÔN TOÁN Nguyễn Thanh Lam ĐỀ ÔN THI TỐT NGHIỆP TRUNG HỌC PHỔ THÔNG NĂM 2011 MÔN TOÁN ( Thời gian làm bài 150 phút) PHẦN CHUNG CHO TẤT CẢ THÍ SINH ( 7 điểm ) Câu I (3,0 điểm ) Cho hàm số : 4 2 1y x mx m= + − − (1) m là tham số 1/ Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số (1) khi 1m = − 2/ Chứng minh rằng đồ thị hàm số (1) luôn đi qua hai điểm cố định A,B khi m thay đổi. 3/ Tìm các giá trị của m để các tiếp tuyến của đồ thị hàm số (1) lần lượt tại A, B vuông góc với nhau. Câu II ( 3,0 điểm ) 1/ Tính tích phân I 1 5 2 0 1x x dx= − ∫ 2/ Giải phương trình : 2 log 2 3x − = 3/ Tìm giá trị lớn nhất, giá trị nhỏ nhất của hàm số 2 6 8y x x= − + − Câu III ( 1,0 điểm ) Cho hình chóp S.ABC có đáy là tam giác ABC vuông tại B; hai mặt bên (SAB) và (SAC) cùng vuông góc với đáy. Biết ; 2AB a SA a= = . Tính khoảng cách từ diểm A đến mặt phẳng (SBC) PHẦN RIÊNG ( 3,0 điểm ) -Thí sinh chỉ được làm một trong hai phần ( phần A hoặc phần B) A. Theo chương trình Chuẩn Câu IV.a ( 2,0 điểm ) Trong không gian với hệ tọa độ Oxyz , Cho hai đường thẳng d 1 và d 2 có phương trình : 1 3 : 3 3 3 x t d y t t z t = + = + ∈ = + ¡ ; 2 2 ' : 2 ' ' 8 ' x t d y t t z t = − = ∈ = + ¡ 1/ Chứng minh d 1 và d 2 chéo nhau. Tính khoảng cách giữa d 1 và d 2 2/ Viết phương trình đường vuông góc chung giữa d 1 và d 2 Câu V.a (1,0 điểm ) Tìm các số thực ;x y sao cho : ( ) 2 1 2yi xi+ = − + B. Theo chương trình Nâng cao Câu IV.b ( 2,0 điểm ) Trong không gian với hệ tọa độ Oxyz , Cho hai đường thẳng d 1 và d 2 có phương trình : 1 1 2 2 : 1 2 3 x y z d + − + = = − ; 2 3 1 2 : 1 1 2 x y z d − + − = = và mặt phẳng (P) : 4 3 11 14 0x y z− + − = 1/ Chứng minh d 1 và d 2 chéo nhau. Tính khoảng cách giữa d 1 và d 2 2/ Viết phương trình đường thẳng ∆ nằm trên mặt phẳng (P)và cắt cả d 1 và d 2 Câu V.b (1,0 điểm ) Cho số phức ( ) 3 4z m i= + − . Tìm m để 5z > Hết Đề số 10 [...]... phức HẾT ÔN THI TỐT NGHIỆP THPT 2011- MÔN TOÁN BỘ GIÁO DỤC VÀ ĐÀO TẠO Nguyễn Thanh Lam KỲ THI TỐT NGHIỆP TRUNG HỌCC PHỔ THÔNG NĂM 2010 ĐỀ THI CHÍNH THỨC Môn thi : TOÁN - Giáo dục trung học phổ thông Thời gian làm bài : 150 phút, không kể thời gian phát đề I PHẦN CHUNG DÀNH CHO TẤT CẢ THI SINH ( 7,0 điểm) 1 4 3 2 Câu 1... diễn các số phức z thỏa mãn : z − i ≤ 2 Hết ÔN THI TỐT NGHIỆP THPT 2011- MÔN TOÁN Nguyễn Thanh Lam ĐỀ ÔN THI TỐT NGHIỆP TRUNG HỌC PHỔ THÔNG NĂM 2011 MÔN TOÁN ( Thời gian làm bài 150 phút) Đề số 12 PHẦN CHUNG CHO TẤT CẢ THÍ SINH ( 7 điểm ) Câu I (3,0 điểm ) Cho hàm số : y = −x + 2 2x +1 (1) 1/ Khảo sát sự biến thi n và vẽ đồ thị (C) của hàm số (1) 2/ Tính diện tích... mặt phẳng (P) 2/ Viết phương trình đường thẳng ∆ đi qua điểm I, ∆ chứa trong (P) và ∆ vuông góc với d Câu V.b (1,0 điểm ) 100 98 96 Chứng minh rằng : 3 ( 1 + i ) = 4i ( 1 + i ) − 4 ( 1 + i ) Hết ÔN THI TỐT NGHIỆP THPT 2011- MÔN TOÁN Nguyễn Thanh Lam ĐỀ ÔN THI TỐT NGHIỆP TRUNG HỌC PHỔ THÔNG NĂM 2011 MÔN TOÁN ( Thời gian làm bài 150 phút) Đề số 14 PHẦN CHUNG CHO TẤT CẢ... − 2 ( 1 + 2i ) z + 8i = 0 trên tập số phức Hết ÔN THI TỐT NGHIỆP THPT 2011- MÔN TOÁN Nguyễn Thanh Lam ĐỀ ÔN THI TỐT NGHIỆP TRUNG HỌC PHỔ THÔNG NĂM 2011 MÔN TOÁN ( Thời gian làm bài 150 phút) Đề số 15 PHẦN CHUNG CHO TẤT CẢ THÍ SINH ( 7 điểm ) Câu I (3,0 điểm ) Cho hàm số y = 2x +1 (1) 1− x 1/ Khảo sát sự biến thi n và vẽ đồ thị (C) của hàm số (1) 2/ Tìm tất cả các giá... rằng : 3 ( 1 + i ) = 4i ( 1 + i ) − 4 ( 1 + i ) Hết ÔN THI TỐT NGHIỆP THPT 2011- MÔN TOÁN Nguyễn Thanh Lam ĐỀ ÔN THI TỐT NGHIỆP TRUNG HỌC PHỔ THÔNG NĂM 2011 MÔN TOÁN ( Thời gian làm bài 150 phút) Đề số 17 PHẦN CHUNG CHO TẤT CẢ THÍ SINH ( 7 điểm ) Câu I (3,0 điểm ) Cho hàm số y = x 1− 2x (1) 1/ Khảo sát sự biến thi n và vẽ đồ thị (C) của hàm số (1) 2/ Viết phương trình... thẳng d 2 Viết phương trình đường thẳng ∆ đi qua M, cắt và vuông góc với đường thẳng d Câu V.b (1,0 điểm) Biết z1 và z2 là hai nghiệm của phương trình 2 z 2 + 3 z + 3 = 0 Hãy tính : 2 a/ z12 + z2 z z 1 2 b/ z + z 2 1 Hết ÔN THI TỐT NGHIỆP THPT 2011- MÔN TOÁN Nguyễn Thanh Lam ĐỀ ÔN THI TỐT NGHIỆP TRUNG HỌC PHỔ THÔNG NĂM 2011 MÔN TOÁN ( Thời gian làm bài 150 phút) Đề.. .ÔN THI TỐT NGHIỆP THPT 2011- MÔN TOÁN Nguyễn Thanh Lam ĐỀ ÔN THI TỐT NGHIỆP TRUNG HỌC PHỔ THÔNG NĂM 2011 MÔN TOÁN ( Thời gian làm bài 150 phút) Đề số 11 PHẦN CHUNG CHO TẤT CẢ THÍ SINH ( 7 điểm ) Câu I (3,0 điểm ) 4 2 2 Cho hàm số : y = x + 2 ( m − 1) x + m − 3m + 1 (1) m là tham số 1/ Khảo sát sự biến thi n và vẽ đồ thị (C) của hàm số (1)... trên tập số phức : z 2 − 3 z + 4 − 6i = 0 Hết ÔN THI TỐT NGHIỆP THPT 2011- MÔN TOÁN Nguyễn Thanh Lam ĐỀ ÔN THI TỐT NGHIỆP TRUNG HỌC PHỔ THÔNG NĂM 2011 MÔN TOÁN ( Thời gian làm bài 150 phút) Đề số 18 PHẦN CHUNG CHO TẤT CẢ THÍ SINH ( 7 điểm ) Câu I (3,0 điểm ) Cho hàm số y = x4 - 2x2 - 3 1/ Khảo sát sự biến thi n và vẽ đồ thị (C) của hàm số 2/ Dựa vào đồ thị (C) tìm... trên tập xác định của nó Hết ÔN THI TỐT NGHIỆP THPT 2011- MÔN TOÁN Nguyễn Thanh Lam ĐỀ ÔN THI TỐT NGHIỆP TRUNG HỌC PHỔ THÔNG NĂM 2011 MÔN TOÁN ( Thời gian làm bài 150 phút) Đề số 13 PHẦN CHUNG CHO TẤT CẢ THÍ SINH ( 7 điểm ) Câu I (3,0 điểm ) Cho hàm số : y = x4 5 − 3x 2 + 2 2 (1) 1/ Khảo sát sự biến thi n và vẽ đồ thị (C) của hàm số (1) 2/ Dựa vào đồ thị (C) biện luận... thẳng MN và tiếp xúc với mặt cầu (S) Câu V.b (1,0 điểm) log 2 (2 x + 2 y ) = 1 x y 2 − 2.2 = 2 2 − 1 Giải hệ phương trình: Hết ÔN THI TỐT NGHIỆP THPT 2011- MÔN TOÁN Nguyễn Thanh Lam ĐỀ ÔN THI TỐT NGHIỆP TRUNG HỌC PHỔ THÔNG NĂM 2011 MÔN TOÁN ( Thời gian làm bài 150 phút) Đề số 19 PHẦN CHUNG CHO TẤT CẢ THÍ SINH ( 7 điểm ) Câu I (3,0 điểm ) Cho hàm số y = x4 - 2x2 . ÔN THI TỐT NGHIỆP THPT 2011- MÔN TOÁN Nguyễn Thanh Lam ĐỀ ÔN THI TỐT NGHIỆP TRUNG HỌC PHỔ THÔNG NĂM 2011 MÔN TOÁN ( Thời gian làm bài 150 phút) PHẦN. tiểu thỏa y CĐ .y CT = 5 Hết Đề số 1 ÔN THI TỐT NGHIỆP THPT 2011- MÔN TOÁN Nguyễn Thanh Lam ĐỀ ÔN THI TỐT NGHIỆP TRUNG HỌC PHỔ THÔNG NĂM 2011 MÔN TOÁN ( Thời gian làm bài 150 phút) PHẦN. tứ diện ABCD kẻ từ đỉnh A. Hết Đề số 2 ÔN THI TỐT NGHIỆP THPT 2011- MÔN TOÁN Nguyễn Thanh Lam ĐỀ ÔN THI TỐT NGHIỆP TRUNG HỌC PHỔ THÔNG NĂM 2011 MÔN TOÁN ( Thời gian làm bài 150 phút) PHẦN