1. Trang chủ
  2. » Giáo án - Bài giảng

Nguyễn Thị Thu Hiền

17 264 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 17
Dung lượng 260 KB

Nội dung

Trờng THCS Chuyên Ngoại Phòng GD - ĐT huyện Duy Tiên TRờng THCS chuyên ngoại Sáng kiến kinh nghiệm Tên đề tài: rèn kỹ phân tích đa thức thành nhân tử môn toán Họ tên: Nguyễn Thị Thu Hiền Ngày sinh: 15 01 1984 Đơn vị công tác: Trờng THCS Chuyên Ngoại Trình độ chuyên môn: CĐSP Toán - Lý Chuyên Ngoại , tháng năm 2011 Nguyễn Thị Thu Hiền Trờng THCS Chuyên Ngo¹i A/ MỞ ĐẦU I.Lý chọn đề tài: Toán học môn khoa học coi chủ lực, trước hết Toán học hình thành cho em tính xác, tính hệ thống, tính khoa học tính logic,… chất lượng dạy học toán nâng cao có nghóa tiếp cận với kinh tế tri thức khoa học đại, giàu tính nhân văn nhân loại Cùng với đổi chương trình sách giáo khoa, tăng cường sử dụng thiết bị, đổi phương pháp dạy học nói chung đổi phương pháp dạy học toán nói riêng trường THCS tích cực hoá hoạt động học tập, hoạt động tư duy, độc lập sáng tạo học sinh, khơi dậy phát triển khả tự học, nhằm nâng cao lực phát giải vấn đề, rèn luyện hình thành kó vận dụng kiến thức cách khoa học, sáng tạo vào thực tiễn Trong chương trình Đại số lớp 8, dạng toán phân tích đa thức thành nhân tử nội dung quan trọng, việc áp dụng dạng toán phong phú, đa dạng cho việc học sau rút gọn phân thức, quy đồng mẫu thức nhiều phân thức, giải phương trình, Qua thực tế giảng dạy nhiều năm, qua việc theo dõi kết kiểm tra, thi học sinh lớp (các lớp giảng dạy), việc phân tích đa thức thành nhân tử không khó, nhiều học sinh làm sai chưa thực được, chưa nắm vững phương pháp giải, chưa vận dụng kó biến đổi cách linh hoạt, sáng tạo vào toán cụ thể Nhằm đáp ứng yêu cầu đổi phương pháp giảng dạy, giúp học sinh tháo gỡ giải tốt khó khăn, vướng mắc học tập đồng thời nâng cao chất lượng môn nên thân chọn đề tài: “ Rèn kó giải toán phân tích đa thức thành nhân tử học sinh - môn đại số ” Cơ sở lý luận Trước phát triển mạnh mẽ kinh tế tri thức khoa học, công nghệ thông tin nay, xã hội thông tin hình thành phát triển thời kỳ đổi nước ta đặt giáo dục đào tạo trước thời thách thức Để hòa nhập tiến độ phát triển giáo dục đào tạo đảm nhận vai trò quan trọng vieọc ủaứo Nguyễn Thị Thu Hiền Trờng THCS Chuyên Ngo¹i tạo nhân lực, nâng cao dân trí, bồi dưỡng nhân tài” mà Đảng, Nhà nước đề Nhằm đáp ứng mục tiêu giáo dục toàn diện cho học sinh, đường nâng cao chất lượng học tập học sinh từ nhà trường phổ thông Là giáo viên mong muốn học sinh tiến bộ, lónh hội kiến thức dễ dàng, phát huy tư sáng tạo, rèn tính tự học, môn toán môn học đáp ứng đầy đủ yêu cầu Việc học toán học SGK, không làm tập Thầy, Cô mà phải nghiên cứu đào sâu suy nghó, tìm tòi vấn đề, tổng quát hoá vấn đề rút điều bổ ích Dạng toán phân tích đa thức thành nhân tử dạng toán quan trọng môn đại số đáp ứng yêu cầu này, tảng, làm sở để học sinh học tiếp chương sau này, học rút gọn phân thức đại số, quy đồng mẫu thức nhiều phân thức việc giải phương trình, … Tuy nhiên, lý sư phạm khả nhận thức học sinh đại trà mà chương trình đề cập đến bốn phương pháp trình phân tích đa thức thành nhân tử thông qua ví dụ cụ thể, việc phân tích không phức tạp không ba nhân tử Vấn đề đặt làm để học sinh giải toán phân tích đa thức thành nhân tử cách xác, nhanh chóng đạt hiệu cao Để thực tốt điều này, đòi hỏi giáo viên cần xây dựng cho học sinh kó quan sát, nhận xét, đánh giá toán, đặc biệt kó giải toán, kó vận dụng toán, tuỳ theo đối tượng học sinh, mà ta xây dựng cách giải cho phù hợp sở phương pháp học cách giải khác, để giúp học sinh học tập tốt môn Cơ sở thực tiễn Tồn nhiều học sinh yếu tính toán, kó quan sát nhận xét, biến đổi thực hành giải toán, phần lớn kiến thức lớp dưới, chưa chủ động học tập từ đầu chương trình lớp 8, chay lười học tập, ỷ lại, nhờ vào kết người khác, chưa nỗ lực tự học, tự rèn, ý thức học tập yếu Đa số em sử dụng loại sách tập có đáp án để tham khảo, nên gặp tập, em thường lúng túng, chưa tìm hướng giải thích hợp, áp dụng phương pháp trước, phương pháp sau, phương pháp phù hợp nhất, hướng giải tốt Giáo viên chưa thật đổi phương pháp dạy học đổi chưa triệt để, ngại sử dụng đồ dùng dạy học, phương tiện dạy học, tồn theo lối giảng dạy cũ xưa, xác định dạy học phương pháp mơ hồ Ngun ThÞ Thu HiỊn Trờng THCS Chuyên Ngoại II.ẹoỏi tửụùng nghieõn cửựu: Reứn kú phân tích đa thức thành nhân tử III.Phạm vi nghiên cứu: Đề tài nghiên cứu phạm vi học sinh lụựp 8C, 8A cuỷa trửụứng THCS Chuyên Ngoại, naờm học 2010- 2011 Ý tưởng đề tài phong phú, đa dạng, phạm vi nghiên cứu rộng, nên thân nghiên cứu qua bốn phương pháp phân tích đa thức thành nhân tử chương trình SGK, SBT toán hành IV Phương pháp nghiên cứu: Nghiên cứu qua tài liệu: SGK, SGV, SBT toán 8, tài liệu có liên quan Nghiên cứu qua thực hành giải tập học sinh Nghiên cứu qua theo dõi kiểm tra Nghiên cứu từ thực tế giảng dạy, học tập đối tượng học sinh B/ NỘI DUNG Những giải pháp đề tài Đề tài đưa giải pháp sau: - Sắp xếp toán theo mức độ, dạng toán - Xây dựng phương pháp giải phân tích đa thức thành nhân tử  Đối với học sinh yếu, kém: Cđng cè kiÕn thức + Phửụng phaựp ẹaởt nhaõn tửỷ chung + Phương pháp Dùng đẳng thức + Phương pháp Nhóm nhiều hạng tử  Đối với học sinh đại traứ: Vận dụng phát triển kỹ + Phoỏi hợp nhiều phương pháp (các phương pháp trên) - Chữa sai lầm thường gặp học sinh giải toán - Củng cố phép biến đổi hoàn thiện kó thực hành - Tìm tòi cách giải hay, khai thác toán - Giới thiệu hai phương pháp phân tích đa thức thành nhân tử (Nâng cao)  Đối với học sinh khá, giỏi: Ph¸t triĨn t (giới thiệu hai phương pháp) + Phương pháp tách hạng tử thành nhiều hạng tử khác + Phương pháp thêm bớt hạng tử Các phương pháp thường gặp a) Cđng cố kiến thức Nguyễn Thị Thu Hiền Trờng THCS Chuyên Ngoại Caực phửụng phaựp cụ baỷn: a.1.Phửụng pháp chung: Ta thường làm sau: - Tìm nhân tử chung hệ số (ƯCLN hệ số) - Tìm nhân tử chung biến (mỗi biến chung lấy số mũ nhỏ ) Nhằm đưa dạng: A.B + A.C + A.D = A.(B + C + D)  Chú ý: Nhiều để làm xuất nhân tử ta cần đổi dấu hạng tử Ví dụ 1: Phân tích đa thức 14x2 y – 21xy2 + 28x2y2 thành nhân tử (BT-39c)-SGK-tr19) Giáo viên gợi ý: - Tìm nhân tử chung hệ số 14, 21, 28 hạng tử ? (Học sinh trả lời là: 7, ƯCLN(14, 21, 28 ) = ) - Tìm nhân tử chung biến x2 y, xy2, x2y2 ? (Học sinh trả lời xy ) - Nhân tử chung hạng tử đa thức cho 7xy Giải: 14x2 y – 21xy2 + 28x2y2 = 7xy.2x – 7xy.3y + 7xy.4xy = 7xy.(2x – 3y + 4xy) Ví dụ 2: Phân tích đa thức 10x(x – y) – 8y(y – x) thành nhân tử (BT-39e)-SGK-tr19) Giáo viên gợi ý: - Tìm nhân tử chung hệ số 10 ? (Học sinh trả lời là: 2) - Tìm nhân tử chung x(x – y) y(y – x) ? (Học sinh trả lời là: (x – y) (y – x) ) - Hãy thực đổi dấu tích 10x(x – y) tích – 8y(y – x) để có nhân tử chung (y – x) (x – y)? Cách 1: Đổi dấu tích – 8y(y – x) = 8y(x – y) Cách 2: Đổi dấu tích 10x(x – y) = –10x(y – x) (Học sinh tự giải ) Giải: 10x(x – y) – 8y(y – x) = 10x(x – y) + 8y(x – y) = 2(x – y).5x + 2(x – y).4y = 2(x – y)(5x + 4y) Ví dụ 3: Phân tích đa thức 9x(x – y) – 10(y – x)2 thành nhân tử Lời giải sai: 9x(x – y) – 10(y – x)2 = 9x(x – y) + 10(x – y)2 = (x – y)[9x + 10(x – y)] = (x – y)(19x – 10y) (đổi dấu sai ) (sai từ trên) (kết sai ) Sai lầm học laứ: Nguyễn Thị Thu Hiền Trờng THCS Chuyên Ngoại Thực đổi dấu sai: 9x(x – y) – 10(y – x)2 = 9x(x – y) + 10(x – y)2 Sai lầm đổi dấu ba nhân tử ø: –10 (y – x)2 tích –10(y – x)2 (vì –10(y – x)2 = –10(y – x)(y – x)) Lời giải đúng: 9x(x – y) – 10(y – x)2 = 9x(x – y) – 10(x – y)2 = (x – y)[9x – 10(x – y)] = (x – y)(10y – x) Qua ví dụ trên, giáo viên củng cố cho học sinh: Cách tìm nhân tử chung hạng tử (tìm nhân tử chung hệ số nhân tử chung biến, biến chung lấy số mũ nhỏ nhất) Quy tắc đổi dấu cách đổi dấu nhân tử tích  Chú ý: Tích không đổi ta đổi dấu hai nhân tử tích (một cách tổng quát, tích không đổi ta đổi dấu số chẵn nhân tử tích đó) a.2 Phương pháp dùng đẳng thức Phương pháp chung: Sử dụng bảy đẳng thức đáng nhớ “dạng tổng hiệu” đưa “dạng tích” A2 + 2AB + B2 = (A + B)2 A2 – 2AB + B2 = (A – B)2 A2 – B2 = (A – B)(A + B) A3 + 3A2 B + 3AB2 + B3 = (A + B)3 A3 – 3A2 B + 3AB2 – B3 = (A – B)3 A3 + B3 = (A + B)(A2 – AB + B2) A3 – B3 = (A – B)(A2 + AB + B2) Ví dụ 4: Phân tích đa thức (x + y)2 – (x – y)2 thành nhân tử (BT- 28a)-SBT-tr6) Gợi ý: Đa thức có dạng đẳng thức ? (HS: có dạng A2 – B2 ) Lời giải sai: (x + y)2 – (x – y)2 = (x + y – x – y)(x + y + x – y) (thiếu dấu ngoặc) = 0.(2x) = (kết sai) Sai lầm học sinh là: Thực thiếu dấu ngoặc Lời giải ñuùng: (x + y)2 – (x – y)2 = [(x + y) – (x – y)].[(x + y) + (x – y)] = (x + y – x + y)(x + y + x – y) = 2y.2x = 4xy Các sai lầm học sinh dễ mắc phải: Ngun ThÞ Thu Hiền Trờng THCS Chuyên Ngoại - Quy taộc bỏ dấu ngoặc, lấy dấu ngoặc quy tắc dấu - Phép biến đổi, kó nhận dạng đẳng thức hiệu hai bình phương, bình phương hiệu  Khai thác toán: Đối với học sinh giỏi, giáo viên cho em làm tập dạng phức tạp * Nếu thay mũ “2” mũ “3” ta có toán Phân tích (x + y)3 – (x – y)3 thành nhân tử (BT-44b)-SGK-tr20) * Đặt x + y = a, x – y = b, thay mũ “3” mũ “6” ta có toán Phân tích a6 – b6 thành nhân tử (BT-26c)-SBT-tr6) 3 a6 – b6 = ( a ) − ( b ) = (a3 – b3 )( a3 + b3 ) 2 Ví dụ 5: Phân tích a6 – b6 thành nhân tử (BT-26c)-SBT-tr6) 3 Giaûi: a6 – b6 = ( a ) − ( b ) = (a3 – b3 )( a3 + b3 ) 2 = (a – b)(a2 + ab + b2)(a + b)(a2 – ab + b2) Giáo viên củng cố cho học sinh: Các đẳng thức đáng nhớ, kó nhận dạng đẳng thức qua toán, dựa vào hạng tử, số mũ hạng tử mà sử dụng đẳng thức cho thích hợp a.3 Phương pháp nhóm nhiều hạng tử Phương pháp chung Lựa chọn hạng tử “thích hợp” để thành lập nhóm nhằm làm xuất hai dạng sau đặt nhân tử chung, dùng đẳng thức Thông thường ta dựa vào mối quan hệ sau: - Quan hệ hệ số, biến hạng tử toán - Thành lập nhóm dựa theo mối quan hệ đó, phải thoả mãn: + Mỗi nhóm phân tích + Sau phân tích đa thức thành nhân tử nhóm trình phân tích thành nhân tử phải tiếp tục thực 1) Nhóm nhằm xuất phương pháp đặt nhân tử chung: Ví dụ 6: Phân tích đa thức x2 – xy + x – y thành nhân tử (Bài tập 47a)-SGK-tr22) Cách 1: nhóm (x2 – xy) (x – y) Cách 2: nhóm (x2 + x) (– xy – y ) Lời giải sai: x2 – xy + x – y = (x2 – xy) + (x – y) = x(x – y) + (x – y) = (x – y)(x + 0) (kết dấu sai bỏ sót số 1) Nguyễn Thị Thu Hiền Trờng THCS Chuyên Ngoại Sai lầm học sinh là: bỏ sót hạng tử sau đặt nhân tử chung (HS cho ngoặc thứ hai đặt nhân tử chung (x – y) lại số 0) Lời giải đúng: x2 – xy + x – y = (x2 – xy) + (x – y) = x(x – y) + 1.(x – y) = (x – y)(x + 1) 2) Nhóm nhằm xuất phương pháp dùng đẳng thức: Ví dụ 7: Phân tích đa thức x2 – 2x + – 4y2 thành nhân tử Giải: x2 – 2x + – 4y2 = (x2 – 2x + 1) – (2y)2 = (x – 1)2 – (2y)2 = (x – – 2y)(x – + 2y) 3) Nhóm nhằm sử dụng hai phương pháp trên: Ví dụ 8: Phân tích đa thức x2 – 2x – 4y2 – 4y thành nhân tử Lời giải sai: x2 – 2x – 4y2 – 4y = (x2 – 4y2 ) – (2x – 4y ) (đặt dấu sai) = (x + 2y)(x – 2y) – 2(x – 2y) (sai từ trên) = (x – 2y)(x + 2y – 2) (kết dấu sai) Sai lầm học sinh là: Nhóm x2 – 2x – 4y2 – 4y = (x2 – 4y2 ) – (2x – 4y ) (đặt dấu sai ngoặc thứ hai) Lời giải đúng: x2 – 2x – 4y2 – 4y = (x2 – 4y2 ) + (– 2x – 4y ) = (x + 2y)(x – 2y) – 2(x + 2y) = (x + 2y)(x – 2y – 2) Qua ví dụ trên, giáo viên lưu ý cho học sinh: Cách nhóm hạng tử đặt dấu trừ “ – ” dấu cộng “ + ” trước dấu ngoặc, phải kiểm tra lại cách đặt dấu thực nhóm Trong phương pháp nhóm thường dẫn đến sai dấu, học sinh cần ý cách nhóm kiểm tra lại kết sau nhóm Lưu ý: Sau phân tích đa thức thành nhân tử nhóm trình phân tích thành nhân tử không thực nữa, cách nhóm sai, phải thực lại b Vận dụng phát triển kỹ b.1 Phối hợp phương pháp thông thường Phương phaựp chung Nguyễn Thị Thu Hiền Trờng THCS Chuyên Ngo¹i Là kết hợp nhuần nhuyễn phương pháp nhóm nhiều hạng tử, đặt nhân tử chung, dùng đẳng thức Vì học sinh cần nhận xét toán cách cụ thể, mối quan hệ hạng tử tìm hướng giải thích hợp Ta thường xét phương pháp: Đặt nhân tử chung ? Dùng đẳng thức ? Nhóm nhiều hạng tử ? Ví dụ 9: Phân tích đa thức x4 – 9x3 + x2 – 9x thành nhân tử Gợi ý phân tích: Xét phương pháp: (BT- ?2 -SGK-tr22) Đặt nhân tử chung ? Dùng đẳng thức ? Nhóm nhiều hạng tử ? Các sai lầm học sinh thường mắc phải Lời giải chưa hoàn chỉnh: a) x4 – 9x3 + x2 – 9x = x(x3 – 9x2 + x – 9) (phân tích chưa triệt để) b) x4 – 9x3 + x2 – 9x = (x4 – 9x3 ) + (x2 – 9x) = x3(x – 9) + x(x – ) = (x – 9)(x3 + x ) (phân tích chưa triệt để) Lời giải đúng: x4 – 9x3 + x2 – 9x = x(x3 – 9x2 + x – 9) = x[(x3 – 9x2 ) + (x – 9)] = x[x2 (x – 9) + 1.(x – 9)] = x(x – 9)(x2 + 1) Ví dụ 10: Phân tích đa thức A = (x + y + z)3 – x3 – y3 – z3 thành nhân tử mTrong ví dụ có nhiều cách giải, học sinh cần phải linh hoạt lựa chọn cách giải phù hợp nhất, gọn Áp dụng đẳng thức: (A + B)3 = A3 + B3 + 3AB(A + B) Suy hệ sau: A3 + B3 = (A + B)3 – 3AB(A + B) Giaûi: A = (x + y + z)3 – x3 – y3 – z3 = [(x + y) + z]3 – x3 – y3 – z3 = (x + y)3 + z3 + 3z(x + y)(x + y + z) – x3 – y3 – z3 = [(x + y)3 – x3 – y3 ] + 3z(x + y)(x + y + z) = 3xy(x + y) + 3(x + y)(xz + yz + z2 ) = 3(x + y)( xy + xz + yz + z2) = 3(x + y)(y + z)(x + z)  Khai thác toán: Ngun ThÞ Thu HiỊn Trờng THCS Chuyên Ngoại 1) Chửựng minh raống A chia hết cho với x, y, z nguyên 2) Cho x + y + z = Chứng minh x3 + y3 + z3 = 3xyz (Bài tập 38-SBT-tr7)  Hướng dẫn: Dùng x3 + y3 = (x + y)3 – 3xy(x + y) vaø x + y + z = ⇔ x + y = – z 3) Phân tích đa thức x3 + y3 + z3 – 3xyz thành nhân tử (Bài tập 28c)-SBT-tr6)  Hướng dẫn: Dùng x3 + y3 = (x + y)3 – 3xy(x + y) Trong chương trình sách giáo khoa Toán hành giới ba phương pháp phân tích đa thức thành nhân tử là: Đặt nhân tử chung, dùng đẳng thức, nhóm nhiều hạng tử Tuy nhiên phần tập lại có áp dụng ba phương pháp để giải, (Chẳng hạn tập 53, 57 sgk/tr 24-25) Sách giáo khoa có gợi ý cách “ tách ” hạng tử thành hai hạng tử khác “ thêm bớt hạng tử ” thích hợp áp dụng phương pháp để giải Xin giới thiệu thêm hai phương pháp này, để học sinh vận dụng rộng rãi thực hành giải toán c Phát triển tư Giới thiệu hai phương pháp phân tích khác: (Nâng cao) c.1 Phương pháp tách hạng tử thành nhiều hạng tử khác Ví dụ 11: Phân tích đa thức f(x) = 3x2 – 8x + thành nhân tử Gợi ý ba cách phân tích: (chú ý có nhiều cách phân tích) Giải: Cách (tách hạng tử : 3x2) Cách (tách hạng tử : – 8x) Cách (tách hạng tử : 4) Ngun ThÞ Thu HiỊn 10 3x2 – 8x + = 4x2 – 8x + – x2 = (2x – 2)2 – x2 = (2x – – x)( 2x – + x) = (x – 2)(3x – 2) 3x2 – 8x + = 3x2 – 6x – 2x + = 3x(x – 2) – 2(x – 2) = (x – 2)(3x – 2) 3x2 – 8x + = 3x2 – 12 – 8x + 16 = 3(x2 – 22 ) – 8(x – 2) = 3(x – 2)(x + 2) – 8(x – 2) = (x – 2)(3x + – 8) = (x 2)(3x 2) Trờng THCS Chuyên Ngoại Nhaọn xeựt: Từ ví dụ trên, ta thấy việc tách hạng tử thành nhiều hạng tử nhằm: - Làm xuất đẳng thức hiệu hai bình phương (cách 1) - Làm xuất hệ số hạng tử tỷ lệ với nhau, nhờ làm xuất nhân tử chung x – (cách 2) - Làm xuất đẳng thức nhân tử chung (cách 3) Vì vậy, việc tách hạng tử thành nhiều hạng tử khác nhằm làm xuất phương pháp học như: Đặt nhân tử chung, dùng đẳng thức, nhóm nhiều hạng tử việc làm cần thiết học sinh giải toán  Khai thác cách giải: Tách hạng tử: – 8x (Cách 2) Nhận xét: Trong đa thức 3x2 – 6x – 2x + ta thấy hệ số số hạng là: −6 3, – 6, –2, tỷ lệ = −2 hay (– 6).( – 2)= 3.4 vaø (– 6) + ( – 2)= – Khai thác: Trong đa thức 3x2 – 8x + ñaët a = 3, b = – 8, c = Tính tích a.c phân tích a.c = b1.b2 cho b1 + b2 = b (ac = b1.b2 = 3.4 = (– 6).( – 2) = 12; b1 + b2 = b = (– 6) + ( – 2)= – 8) Tổng quát: Để phân tích đa thức dạng ax2 + bx + c thành nhân tử, ta tách hạng tử bx thành b1x + b2x cho b1b2 = ac Trong thực hành ta làm sau: Bước 1: Tìm tích ac Bước 2: Phân tích ac thành tích hai thừa số nguyên cách Bước 3: Chọn hai thừa số mà tổng b Áp dụng: Phân tích đa thức – 6x2 + 7x – thành nhân tử (Bài tập 35c)-SBT-tr7) Ta coù: a = – ; b = ; c = – Bước 1: ac = (–6).(–2) = 12 Bước 2: ac = (–6).(–2) = (–4).(–3) =(–12).(–1) = 6.2 = 4.3 = 12.1 Bước 3: b = = + Khi ta có lời giải: – 6x2 + 7x – = – 6x2 + 4x + 3x – = (– 6x2 + 4x) + (3x – 2) = –2x(3x – 2) + (3x – 2) = (3x – 2)(–2x + 1) Lưu ý: Đối với đa thức f(x) có bậc từ ba trở lên, để làm xuất hệ số tỉ lệ, tuỳ theo đặc điểm hệ số mà ta có cách tách riêng cho phù hợp nhằm để vận dụng phương pháp nhóm đẳng thức đặt nhân tử chung Ngun ThÞ Thu HiỊn 11 Trêng THCS Chuyên Ngoại Vớ duù 12: Phaõn tớch thửực sau thừa số : n3 – 7n + Giải: n3 – 7n + = n3 – n – 6n + = n(n2 – 1) – 6(n – 1) = n(n – 1)(n + 1) – 6(n – 1) = (n – 1)[n(n + 1) – 6] = (n – 1)(n2 + n – 6) = (n – 1)(n2 – 2n + 3n – 6) = (n – 1)(n(n – 2) + 3(n – 2)) = (n – 1)(n – 2)(n + 3) Ví dụ 13: Phân tích đa thức x4 – 30x2 + 31x – 30 thành nhân tử Ta có cách tách sau: x4 – 30x2 + 31x – 30 = x4 + x – 30x2 + 30x – 30 Giaûi: x4 – 30x2 + 31x – 30 = x4 + x – 30x2 + 30x – 30 = x(x3 + 1) – 30(x2 – x + 1) = x(x + 1)(x2 – x + 1) – 30(x2 – x + 1) = (x2 – x + 1)(x2 + x – 30) = (x2 – x + 1)(x – 5)(x + 6) c.2 Phương pháp thêm bớt hạng tử Phương pháp thêm bớt hạng tử nhằm sử dụng phương pháp nhóm để xuất dạng đặt nhân tử chung dạng đẳng thức Ví dụ 14: Phân tích đa thức x4 + x2 + thành nhân tử Ta có phân tích: - Tách x2 thành 2x2 – x2 : (làm xuất đẳng thức) Ta có x4 + x2 + = x4 + 2x2 + – x2 = (x4 + 2x2 + 1) – x2 - Thêm x bớt x: (làm xuất đẳng thức đặt nhân tử chung) Ta có x4 + x2 + = x4 – x + x2 + x + = (x4 – x) + (x2 + x + 1) Giaûi: x4 + x2 + = x4 – x + x2 + x + = (x4 – x) + (x2 + x + 1) = x(x – 1)(x2 + x + 1) + (x2 + x + 1) = (x2 + x + 1)(x2 – x + 1) Ngun ThÞ Thu HiỊn 12 Trờng THCS Chuyên Ngoại Vớ duù 15: Phaõn tớch thức x5 + x4 + thành nhân tử Cách 1: Thêm x3 bớt x3 chung) (làm xuất đẳng thức đặt nhân tử Giải: x5 + x4 + = x5 + x4 + x3 – x3 + = (x5 + x4 + x3 )+ (1 – x3 ) = x3(x2+ x + 1)+ (1 – x )(x2+ x + 1) = (x2+ x + 1)(x3 – x + ) Cách 2: Thêm x3, x2, x bớt x3, x2, x (làm xuất đặt nhân tử chung) Giải: x5 + x4 + = x5 + x4 + x3 – x3 + x2 – x2 + x – x + = (x5 + x4 + x3) + (– x3 – x2 – x ) + (x2 + x + 1) = x3(x2 + x + 1) – x(x2 + x + 1) + (x2 + x + 1) = (x2 + x + 1)(x3 – x + )  Chú ý: Các đa thức có dạng x4 + x2 + 1, x5 + x + 1, x5 + x4 + 1, x7 + x5 + 1,….; tổng quát đa thức dạng x3m+2 + x3n+1 + x3 – 1, x6 – có chứa nhân tử x2 + x + Ví dụ 16: Phân tích đa thức x4 + thành nhân tử (Bài tập 57d)-SGK-tr 25) Gợi ý: Thêm 2x2 bớt 2x2 : (làm xuất đẳng thức) Giải: x4 + = x4 + 4x2 + – 4x2 = (x2 + 2)2 – (2x)2 = (x2 + – 2x)( x2 + + 2x)  Khai thác toán: * Thay “4” thành “ 64y4 ”, ta có toán: x4 + 64y4 Hướng dẫn giải: Thêm 16x2y2 bớt 16x2y2 : (làm xuất đẳng thức) x4 + 64y4 = (x4 + 16x2y2 + 64y4 ) – 16x2y2 = (x2 + 8y2)2 – (4xy)2 = (x2 + 8y2 – 4xy)(x2 + 8y2 + 4xy) Trên vài ví dụ điển hình giúp em học sinh giải mắc mứu trình giải toán phân tích đa thức thành nhân tử BiƯn pháp Biện pháp Nguyễn Thị Thu Hiền 13 Trờng THCS Chuyên Ngoại ẹeồ thửùc hieọn toỏt kú naờng phaõn tích đa thức thành nhân tử nêu thành thạo thực hành giải toán, giáo viên cần cung cấp cho học sinh kiến thức sau: Củng cố lại phép tính, phép biến đổi, quy tắc dấu quy tắc dấu ngoặc lớp 6, Ngay từ đầu chương trình Đại số giáo viên cần ý dạy tốt cho học sinh nắm vững kiến thức nhân đơn thức với đa thức, đa thức với đa thức, thức đáng nhớ, việc vận dụng thành thạo hai chiều đẳng thức Khi gặp toán phân tích đa thức thành nhân tử, học sinh cần nhận xét:  Quan sát đặc điểm toán: Nhận xét quan hệ hạng tử toán (về hệ số, biến)  Nhận dạng toán: Xét xem toán cho thuộc dạng nào?, áp dụng phương pháp trước, phương pháp sau (đặt nhân tử chung dùng đẳng thức nhóm nhiều hạng tử, hay dạng phối hợp phương pháp)  Chọn lựa phương pháp giải thích hợp: Từ sở mà ta chọn lựa phương pháp cho phù hợp với toán  Lưu ý: Kinh nghiệm phân tích toán thành nhân tử  Trong toán phân tích đa thức thành nhân tử - Nếu bước 1, sử dụng phương pháp đặt nhân tử chung bước biểu thức lại ngoặc, thường thu gọn, sử dụng phương pháp nhóm dùng phương pháp đẳng thức - Nếu bước 1, sử dụng phương pháp nhóm hạng tử bước biểu thức nhóm thường sử dụng phương pháp đặt nhân tử chung dùng phương pháp đẳng thức - Nếu bước 1, sử dụng phương pháp dùng đẳng thức bước toán thường sử dụng phương pháp đặt nhân tử chung dùng đẳng thức  Chý ý: Phương pháp đặt nhân tử chung sử dụng liên tiếp hai bước liền Phương pháp nhóm sử dụng liên tiếp hai bước liền Ngun ThÞ Thu HiỊn 14 Trờng THCS Chuyên Ngoại Phửụng phaựp duứng haống ủaỳng thửực sử dụng liên tiếp hai bước liền * Trong phương pháp đặt nhân tử chung học sinh thường hay bỏ sót hạng tử * Trong phương pháp nhóm học sinh thường đặt dấu sai Vì vậy, giáo viên nhắc nhở học sinh cẩn thận thực phép biến đổi, cách đặt nhân tử chung, cách nhóm hạng tử, sau bước giải phải có kiểm tra Phải có đánh giá toán xác theo lộ trình định, từ lựa chọn sử dụng phương pháp phân tích cho phù hợp Xây dựng học sinh thói quen học tập, biết quan sát, nhận dạng toán, nhận xét đánh giá toán theo quy trình định, biết lựa chọn phương pháp thích hợp vận dụng vào toán, sử dụng thành thạo kỹ giải toán thực hành, rèn luyện khả tự học, tự tìm tòi sáng tạo Khuyến khích học sinh tham gia học tổ, nhóm, học sáng tạo, tìm cách giải hay, cách giải khác C/ KÕt qu¶ Kết áp dụng kó góp phần nâng cao chất lượng học tập môn học sinh đại trà Cụ thể kết kiểm tra dạng toán phân tích đa thức thành nhân tử thông kê qua giai đoạn hai lớp 8A, 8C năm học 2010 – 2011 sau: a) Chưa áp dụng giải pháp Thời gian Chưa áp dụng giải pháp TS HS 64 Trung bình trở lên Số lượng Tỉ lệ (%) 28 43,75% * Nhận xét: Đa số học sinh chưa nắm kỹ phân tích toán, đẳng thức đáng nhớ, quy tắc dấu, quy tắc dấu ngoặc, cách trình bày giải lung tung b) Áp dụng giải pháp Lần 1: Kiểm tra tiết Thời gian Kết áp dụng giải pháp (lần 1) Ngun ThÞ Thu HiỊn 15 TS HS 64 Trung bình trở lên Số lượng Tỉ lệ (%) 39 60,94% Trờng THCS Chuyên Ngoại Lan 2: Kieồm tra tiết Thời gian Kết áp dụng giải pháp (lần 2) TS HS 64 Trung bình trở lên Số lượng Tỉ lệ (%) 44 68,75% * Nhận xét: Học sinh hệ thống, nắm kiến thức đẳng thức đáng nhớ, quy tắc dấu, quy tắc dấu ngoặc vận dụng tốt phương pháp phân tích đa thức thành nhân tử giải toán, biết nhận xét D/ KẾT LUẬN Khai thác cách giải, khai thác toán khác nhằm phát triển tư cách toàn diện cho trình tự nghiên cứu em Đối với giáo viên: Giáo viên thường xuyên kiểm tra mức độ tiếp thu vận dụng học sinh trình cung cấp thông tin có liên quan chương trình đại số đề cập Giáo viên phải định hướng vạch dạng toán mà học sinh phải liên hệ nghó đến để tìm hướng giải hợp lý đề cập, giúp học sinh nắm vững dạng toán rèn luyện kó phân tích cách tường minh dạng tập để tìm hướng giải sau biết áp dụng phát triển nhanh tập tổng hợp, kó vận dụng phương pháp phân tích đa thức thành nhân tử cách đa dạng giải điều kiện để học sinh phát triển tư cách toàn diện, gợi suy mê hứng thú học tập, tìm tòi sáng tạo, kích thích khơi dậy khả tự học học sinh, chủ động học tập học toán Nếu thực tốt phương pháp trình giảng dạy học tập chất lượng học tập môn học sinh nâng cao hơn, đào tạo nhiều học sinh giỏi, đồng thời tuyển chọn nhiều học sinh giỏi cấp trường, cấp huyện, tỉnh, I Hướng phổ biến áp dụng Đề tài triển khai phổ biến áp dụng rộng rãi chương trình đại số lớp 8, cho năm học sau, cho trường loại hình II Hướng nghiên cứu phát triển Đề tài nghiên cứu tiếp tục phương pháp phân tích đa thức thành nhân tử khác (nâng cao) Nguyễn Thị Thu Hiền 16 Trờng THCS Chuyên Ngoại Đề tài nghiên cứu cho đa thức phức tạp hơn, sâu vào việc nghiên cứu đa thức ủaởc bieọt Chuyên Ngoại , ngày 28 tháng năm 2011 Tác giả Nguyễn Thị Thu Hiền Mục lục Trang A : Mở đầu: I Lý chọn đề tài 1.C¬ së lý ln C¬ së thùc tiƠn II Đối tợng nghiên cứu III phạm vi nghiên cứu IV Phơng pháp nghiên cứu 1.Những giải pháp đề tài Các phơng pháp thờng gặp a: Củng cố kiến thức B: Nội dung a.1: Phơng pháp đặt nhân tử chung a.2:Phơng pháp dùng đẳng thức a.3: Phơng pháp nhóm nhiều hạng tử b: Vận dụng phát triển kỹ b.1: Phối hợp phơng pháp thông thờng c: Phát triển t c.1: Phơng pháp tách hạng tử thành nhiều hạng tử c.2: Phơng pháp thêm bớt hạng Nguyễn Thị Thu HiÒn 17 1 2 3 3 3 7 10 Trờng THCS Chuyên Ngoại tử Biện pháp 12 C/ Kết QUả 13 d/ kết luận 14 Nguyễn Thị Thu HiÒn 18 ... hạng tử c.2: Phơng pháp thêm bớt hạng Nguyễn Thị Thu Hiền 17 1 2 3 3 3 7 10 Trờng THCS Chuyên Ngoại tử Biện pháp 12 C/ Kết QUả 13 d/ kết luận 14 Ngun ThÞ Thu HiỊn 18 ... – y)] = (x + y – x + y)(x + y + x – y) = 2y.2x = 4xy Các sai lầm học sinh dễ mắc phaỷi: Nguyễn Thị Thu Hiền Trờng THCS Chuyên Ngoại - Quy tắc bỏ dấu ngoặc, lấy dấu ngoặc quy tắc dấu - Phép biến... sinh giải mắc mứu trình giải toán phân tích đa thức thành nhân tửỷ Biện pháp Biện pháp Nguyễn Thị Thu Hiền 13 Trờng THCS Chuyên Ngoại ẹeồ thửùc hieọn toỏt kó phân tích đa thức thành nhân tử

Ngày đăng: 05/06/2015, 19:00

TỪ KHÓA LIÊN QUAN

w