1. Trang chủ
  2. » Giáo án - Bài giảng

333 Bài tích phân luyện thi đại học

13 238 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 13
Dung lượng 126,22 KB

Nội dung

333 BÀI TOÁN TÍCH PHÂN LUYỆN THI ĐẠI HỌC 1/ Cho hàm số : f(x)= x.sinx+x 2 . Tìm nguyên hàm của hàm số g(x)= x.cosx biết rằng nguyên hàm này triệt tiêu khi x=k π 2/Định m để hàm số: F(x) = mx 3 +(3m+2)x 2 -4x+3 là một nguyên hàm của hàm số: f(x) = 3x 2 +10x-4. 3/Tìm họ nguyên hàm của hàm số: f(x)= cos 3 x.sin8x. TÍNH : 4/I = 3 2 4 3tg x dx π π ∫ 5/I = 4 2 6 (2cotg x 5)dx π π + ∫ 6/I = 2 0 1 cosx dx 1 cos x π − + ∫ 7/ I = ∫ 2 0 π sin 2 x.cos 2 xdx 8/I = ∫ 3 0 π (2cos 2 x-3sin 2 x)dx 9 / I = 2 2 s i n ( x ) 4 d x s i n ( x ) 4 π − π π − π + ∫ 10 / I = ∫ − 3 6 π π (tgx-cotgx) 2 dx 11/ I = 4 4 0 cos xdx π ∫ 12 / I = 2 3 0 sin x dx π ∫ 13*/ I = 3 3 2 3 sin x sin x cotgx dx sin x π π − ∫ 14/I = 2 4 0 sin x dx π ∫ 15/I = ∫ 3 4 22 2 cos 2 sin 1 π π xx dx 16/I = ∫ 4 6 π π cotg2x dx 17/I = 2 2 sin x 4 e sin 2x dx π π ∫ 18/ I = ∫ + 4 0 2 2 cos π x e tgx . 34/I = 1 2 2 3 1 dx x 4 x − ∫ 19/ I = ∫ 2 4 4 sin 1 π π x dx 20/ I = ∫ 4 0 6 cos 1 π x dx 21/I = dxxxnsix )cos(2cos 44 2 0 + ∫ π 22/ I = 2 3 0 cos xdx π ∫ 23/ I = 3 2 0 4sin x dx 1 cosx π + ∫ 24/ I = 1 3 2 0 x 1 x dx − ∫ 25/I = 1 5 2 0 x 1 x dx + ∫ 26/I = 1 0 x dx 2x 1 + ∫ 27/I = 1 x 0 1 dx e 4 + ∫ 28/I = 2 x 1 1 dx 1 e − − ∫ 29/I = 2x 2 x 0 e dx e 1 + ∫ 30/I = x 1 x 0 e dx e 1 − − + ∫ 31/I = e 2 1 ln x dx x(ln x 1) + ∫ 32/I = 7 3 3 0 x 1 dx 3x 1 + + ∫ 33/I = 2 3 2 0 (x 3) x 6x 8dx − − + ∫ . 35/I = 4 2 2 1 dx x 16 x − ∫ 36*/I = 6 2 2 3 1 dx x x 9 − ∫ 37/I = 2 2 2 1 x 4 x dx − − ∫ 38/I = 2 2 3 0 x (x 4) dx + ∫ 39/I = 2 4 4 3 3 x 4 dx x − ∫ 40*/I = 2 2 2 2 x 1 dx x x 1 − − + + ∫ 41/I = ln 2 x 0 e 1dx − ∫ 42/I = 1 0 1 dx 3 2x − ∫ 43/I = 2 5 0 sin xdx π ∫ 44*/I = 3 0 1 dx cos x π ∫ 45/I = 2x 1 x 0 e dx e 1 − − + ∫ 46/I = ln3 x 0 1 dx e 1 + ∫ 47/I = 4 2 6 1 dx sin x cot gx π π ∫ 48/I = 3 2 e 1 ln x 2 ln x dx x + ∫ . 49/I = e 1 sin(ln x) dx x ∫ 50/I = 1 3 4 5 0 x (x 1) dx − ∫ 51/I = 1 2 3 0 (1 2x)(1 3x 3x ) dx + + + ∫ 52/I = 2 3 1 1 dx x 1 x + ∫ 53/I = 3 2 2 6 tg x cot g x 2dx π π + − ∫ 54/I = 1 2 3 0 (1 x ) dx − ∫ 55*/I = 1 2x 0 1 dx e 3 + ∫ 56/I = x ln3 x 3 0 e dx (e 1)+ ∫ 57/I = 0 2x 3 1 x(e x 1)dx − + + ∫ 58/I = 2 6 3 5 0 1 cos x sin x.cos xdx π − ∫ 59*/I = 2 3 2 5 1 dx x x 4 + ∫ 60/I = 4 0 x dx 1 cos2x π + ∫ 61/I = 2x ln5 x ln 2 e dx e 1 − ∫ 62/I = 2 e 1 x 1 .ln xdx x + ∫ 63/I = 2 1 0 x dx (x 1) x 1 + + ∫ 64/I = 2 0 sin x.sin 2x.sin3xdx π ∫ 65/I = 2 4 4 0 cos2x(sin x cos x)dx π + ∫ 66*/I = 2 3 3 0 ( cosx sin x)dx π − ∫ 67/I = 7 3 8 4 2 x dx 1 x 2x+ − ∫ 68*/I = 2 0 4cos x 3sin x 1 dx 4sin x 3cosx 5 π − + + + ∫ 69/I = 9 3 1 x. 1 xdx − ∫ 70/I = 2 3 0 x 1 dx 3x 2 + + ∫ 71*/I = 6 0 x sin dx 2 π ∫ 72*/I = 2 0 x dx 2 x 2 x + + − ∫ 73/I = 3 3 2 0 x . 1 x dx + ∫ 74**/I = 1 2 0 ln(1 x) dx x 1 + + ∫ 75/I = 2 0 sin x dx sin x cos x π + ∫ 76/I = e 1 cos(ln x)dx π ∫ 77*/I = 2 2 0 4 x dx + ∫ 78/I = 2 1 x dx 1 x 1 + − ∫ . 79/I = e 1 1 3ln x ln x dx x + ∫ 80/I = 3 2 2 ln(x x)dx − ∫ 81/I = e 2 1 (ln x) dx ∫ 82/I = 2 e e ln x dx x ∫ 83/I = 2 e 1 ln x dx ln x ∫ 84/I = 2 2 1 x ln(x 1)dx + ∫ 85/I = 3 2 3 1 dx x 3 + ∫ 86/I = 1 2 0 1 dx 4 x − ∫ 87/I = 2 4 0 sin xdx π ∫ 88/I = 3 2 6 ln(sin x) dx cos x π π ∫ 89/I = 2 1 cos(ln x)dx ∫ 90*/I = 2 2 0 ln( 1 x x)dx + − ∫ 91*/I = 3 2 2 1 dx x 1 − ∫ 92/I = 3 8 1 x 1 dx x + ∫ 93/I = 3 3 2 1 x dx x 16 − ∫ . 94/I = 6 2 0 cosx dx 6 5sin x sin x π − + ∫ 95*/I = 2 e 2 e 1 1 ( )dx ln x ln x − ∫ 96/I = 3 2 4 x 4 dx − − ∫ 97/I = 2 3 2 1 x 2x x 2 dx − − − + ∫ 98/I = 3 4 4 cos2x 1dx π π + ∫ 99/I = 0 cos x sin xdx π ∫ 100/I = 2 0 1 sin xdx π + ∫ 101/I = 3 4 4 sin 2x dx π π ∫ 102/I = 0 1 sin xdx π − ∫ 103/I = 1 3 2 1 ln(x x 1) dx −   + +     ∫ 104*/I = 2 0 xsin x dx 1 cos x π + ∫ 105*/I = 1 2 x 1 1 dx (x 1)(4 1) − + + ∫ 106*/I = 4 1 x 1 x dx 1 2 − + ∫ 107/I = 2 4 0 xsin xdx π ∫ 108/I = 2 4 0 x cos xdx π ∫ 109/I = 6 2 0 x.sin x cos xdx π ∫ 110*/I = 2 x 1 2 0 x e dx (x 2) + ∫ 111/I = 2x 2 0 e sin xdx π ∫ 112/I = 2 2 1 1 x ln(1 )dx x + ∫ 113/I = e 2 1 e ln x dx (x 1) + ∫ 114/I = 1 2 0 1 x x.ln dx 1 x + − ∫ 115/I = 2 t 1 ln x dx I 2 x   ⇒ <     ∫ 116/I = 3 0 sin x.ln(cos x)dx π ∫ 117/I = 2 e 2 1 cos (ln x)dx π ∫ 118/I = 4 0 1 dx cos x π ∫ 119*/I = 4 3 0 1 dx cos x π ∫ 120/I = 2 1 3 x 0 x e dx ∫ 121/I = 2 2 sin x 3 0 e .sin x cos xdx π ∫ 122/I = 2 4 0 sin 2x dx 1 cos x π + ∫ 123/I = 1 2 0 3 dx x 4x 5 − − ∫ 124/I = 2 2 1 5 dx x 6x 9 − + ∫ 125/I = 1 2 5 1 dx 2x 8x 26 − + + ∫ 126/I = 1 0 2x 9 dx x 3 + + ∫ 127/I = 4 2 1 1 dx x (x 1) + ∫ 128*/I = 0 2 2 sin 2x dx (2 sin x) −π + ∫ 129/I = 1 2 0 x 3 dx (x 1)(x 3x 2) − + + + ∫ 130/I = 1 3 0 4x dx (x 1) + ∫ 131/I = 1 4 2 0 1 dx (x 4x 3) + + ∫ 132/I = 3 3 2 0 sin x dx (sin x 3) π + ∫ 133/I = 3 3 6 4sin x dx 1 cos x π π − ∫ 134/I = 3 2 6 1 dx cos x.sin x π π ∫ 135/I = 3 0 sin x.tgxdx π ∫ 136/I = 3 4 1 dx sin 2x π π ∫ . 137/I = 3 4 2 2 5 0 sin x dx (tg x 1) .cos x π + ∫ 138/I = 3 2 2 3 1 dx sin x 9cos x π π − + ∫ 139/I = 2 2 cos x 1 dx cos x 2 π π − − + ∫ 140/I = 2 0 1 sin x dx 1 3cosx π + + ∫ 141/I = 2 0 cos x dx sin x cos x 1 π + + ∫ 142/I = 4 2 1 1 dx x (x 1) + ∫ 143/I = 1 3 3 1 dx x 4 (x 4) − + + + ∫ 144/I = 3 3 0 sin x dx cos x π ∫ 145/I = 1 0 x 1 xdx − ∫ 146/I = 6 4 x 4 1 . dx x 2 x 2 − + + ∫ 147/I = 0 2 1 1 dx x 2x 9 − + + ∫ 148/I = 3 2 1 1 dx 4x x − ∫ 149/I = 2 2 1 4x x 5 dx − − + ∫ 150/I = 2 2 2 2x 5 dx x 4x 13 − − + + ∫ 151/I = 1 x 0 1 dx 3 e + ∫ 152/I = 1 4x 2x 2 2x 0 3e e dx 1 e + + ∫ 153/I = 4 2 7 1 dx x 9 x + ∫ 154/I = 2 x 2 0 e sin xdx π ∫ 155/I = 4 2 4 4 0 cos x dx cos x sin x π + ∫ 156/I = 1 0 3 dx x 9 x + − ∫ 157/I = 0 xsin xdx π ∫ 158/I = 2 2 0 x cos xdx π ∫ 159/I = 1 0 cos x dx ∫ 160/I = 1 0 sin x dx ∫ 161/I = 2 4 0 xsin x dx π ∫ 162/I = 2 4 0 x cos x dx π ∫ 163/I = 2 0 x cos xsin xdx π ∫ 164/I = 6 2 0 xcos xsin x dx π ∫ 165/I = 4 x 1 e dx ∫ 166/I = 4 3x 0 e sin 4xdx π ∫ 167/I = 2x 2 0 e sin xdx π ∫ 168/I = 2 x 1 2 0 x e dx (x 2) + ∫ 169/I = e 1 (1 x)ln x dx + ∫ 170/I = e 2 1 xln xdx ∫ 171/I = 1 e 2 1 ln xdx ∫ 172/I = e 1 x(2 ln x)dx − ∫ 173/I = 2 e 2 e 1 1 ( )dx ln x ln x − ∫ 174/I = 2 2 1 (x x)ln x dx + ∫ 175/I = 2 2 1 1 x ln(1 )dx x + ∫ 176/I = 2 5 1 ln x dx x ∫ 177/I = e 2 1 e ln x dx (x 1) + ∫ 178/I = 1 2 0 1 x x ln dx 1 x + − ∫ 179/I = 2 3 cosx.ln(1 cosx)dx π π − ∫ 180/ 2 2 sin x 3 0 e sin xcos x dx π ∫ 181/I= 2 4 0 sin 2x dx 1 sin x π + ∫ . 182/I = 2 4 0 sin 2x dx 1 cos x π + ∫ 183/I = 2 2 1 5 dx x 6x 9 − + ∫ 184/I = 2 1 0 x 3x 2 dx x 3 + + + ∫ 185/I = 4 2 1 1 dx x (x 1) + ∫ 186/I = 1 2 0 ln(1 x) dx x 1 + + ∫ 187/I 4 1 6 0 1 x dx 1 x + + ∫ 188/I = 1 15 8 0 x 1 x dx + ∫ 189/I = x 1 x x 0 e dx e e − + ∫ 190/I= e 1 e ln x dx ∫ 191/I = 2 sin x 0 (e cosx)cosxdx π + ∫ 192/I = 2 0 sin 2x.cosx dx 1 cos x π + ∫ 193/I = 2 0 sin 2x sin x dx 1 3cos x π + + ∫ 194/I = 2 4 0 1 2sin x dx 1 sin 2x π − + ∫ 195/I = 5 3 3 2 0 x 2x dx x 1 + + ∫ 196/I = 3 2 4 tgx dx cosx 1 cos x π π + ∫ 197/I = 2 2 1 x 1 ( ) dx x 2 − − + ∫ 198/I = 4 2 0 x.tg x dx π ∫ 199/I = 5 3 ( x 2 x 2 )dx − + − − ∫ 200/I = 4 1 2 dx x 5 4 − + + ∫ 201/I = 2 1 x dx x 2 2 x + + − ∫ 202/I = 2 2 1 ln(1 x) dx x + ∫ 203/I = 2 0 sin 2x dx 1 cos x π + ∫ 204/I = 2008 2 2008 2008 0 sin x dx sin x cos x π + ∫ 205/I = 2 0 sin x.ln(1 cos x)dx π + ∫ 206/I = 2 3 2 1 x 1 dx x + ∫ 207/I = 3 4 2 0 sin x dx cos x π ∫ 208/I = 2 2 0 cos x.cos4x dx π ∫ 209/I = 1 2x x 0 1 dx e e + ∫ 210/I = e 2 1 e ln x dx (x 1) + ∫ 211/I = 1 0 1 dx x 1 x + + ∫ 212/I = 2 1 2 0 x dx 4 x − ∫ 213/I = 1 2 0 x dx 4 x − ∫ 214/I = 1 4 2 2 0 x dx x 1 − ∫ 215/I = 2 0 sin3x dx cosx 1 π + ∫ 216/I = 2 2 2 2 0 x dx 1 x − ∫ 217/I = 2 2 4 1 1 x dx 1 x − + ∫ 218/I = 3 7 3 2 0 x dx 1 x + ∫ 219/I = x ln 2 x 0 1 e dx 1 e − + ∫ 220/I = 1 0 x 1 x dx − ∫ 221/I = 1 2 0 x 1dx + ∫ 222/I = 2 3 3 0 (cos x sin x)dx π + ∫ 223/I = 2 3 0 x 1 dx x 1 + + ∫ 224/I = 1 2 2x 0 (1 x) .e dx + ∫ 225/I = 2 2 0 cosx dx cos x 1 π + ∫ 226/I = 7 3 3 0 x 1 dx 3x 1 + + ∫ . 227/I = 2 6 1 sin 2x cos2x dx cosx sin x π π + + + ∫ 228/I = x 2 1 2x 0 (1 e ) dx 1 e + + ∫ 229/I = 3 2 3 0 x (1 x) dx − ∫ 230/I = 3 2 2 0 sin x.cos x dx cos x 1 π + ∫ 231/I = 1 2 2 0 4x 1 dx x 3x 2 − − + ∫ 232*/I = 2 0 xsin x.cos xdx π ∫ 233/I = 2 0 cosx dx cos2x 7 π + ∫ 234/I = 4 2 1 1 dx x (x 1) + ∫ 235/I = 2 2 3 0 sin 2x(1 sin x) dx π + ∫ 236/I = 2 3 0 x 1 dx 3x 2 + + ∫ 237/I = 4 2 7 1 dx x x 9 + ∫ 238/I = 3 4 0 xsin x cos xdx π ∫ 239/I = 2 3 2 cosx cos x cos xdx π π − − ∫ 240*/I = 1 2 1 ln( x a x)dx − + + ∫ 241/I = 2 x 0 1 sin x dx (1 cos x)e π − + ∫ 242/I = 2 0 sin 2x sin x dx cos3x 1 π + + ∫ 243/I = 4 2 2 0 sin 2x dx sin x 2cos x π + ∫ 244/I = 2 3 2 2 0 x dx 1 x − ∫ 245/I = 2 3 2 2 0 x dx 1 x − ∫ 246/I = 2 1 2 2 2 1 x dx x − ∫ 247/I = 2 1 2 0 x dx 4 x − ∫ 248/I = 2 2 2 3 1 dx x x 1 − ∫ 249/I = 1 5 3 6 0 x (1 x ) dx − ∫ 250/I = 2 0 sin x dx 1 sin x π + ∫ 251/I = 2 0 cosx dx 7 cos2x π + ∫ 252/I = 4 2 1 1 dx (1 x)x+ ∫ 253/I = 2 3 0 x 1 dx 3x 2 + + ∫ 254*/I = 3 4 cosx sin x dx 3 sin 2x π π + + ∫ . 255/I = 2 3 2 cosx cos x cos xdx π π − − ∫ 256/I = 3 4 4 tg xdx π π ∫ 257*/I = 2 x 0 1 sin x e dx 1 cos x π + + ∫ 258/I = 1 2 3 0 (1 x ) dx − ∫ 259/I = 4 2 0 x.tg xdx π ∫ 260/I= 2 2 2 0 1 dx (4 x )+ ∫ 261/I = 2 1 3 0 3x dx x 2 + ∫ 262*/I = 5 2 5 1 1 x dx x(1 x ) − + ∫ 263/I = 3 2 0 cosx dx 1 sin x π − ∫ 264/I = 2 3 6 0 sin x dx cos x π ∫ 265/I = 3 6 0 sin x sin x dx cos2x π + ∫ 265/I = 2 3 1 dx sin x 1 cosx π π + ∫ 266/I = 3 6 2 1 1 dx x (1 x ) + ∫ . 267/I = 2 2 0 sin x dx cos x 3 π + ∫ 268/I = 2 0 sin x dx x π ∫ 269/I = 2 2 0 sin x cosx(1 cos x) dx π + ∫ 270/I = 4 4 4 0 sin x cos x dx sin x cosx 1 π − + + ∫ 271/I = 4 4 4 0 sin x cos x dx sin x cosx 1 π − + + ∫ 272/I = 2 0 sin x cos x cosx dx sin x 2 π + + ∫ 273/I = 1 1 x 3 a e dx x ∫ 274/I = 3 2 1 2 0 x 2x 10x 1 dx x 2x 9 + + + + + ∫ 275/I = 3 1 2 3 0 x dx (x 1)+ ∫ 276/I = 1 3 0 3 dx x 1 + ∫ 277*/I = 4 1 6 0 x 1 dx x 1 + + ∫ 278/I = 1 3 0 x dx (2x 1)+ ∫ 279/I = 7 2 1 dx 2 x 1 + + ∫ 280/I = 3 2 2 1 2 1 dx x 1 x− ∫ . [...]... 1 1 314*/I = ∫ x dx (e + 1)(x 2 + 1) −1 3x +1 π 4 324*/I = 313*/I = ∫ 1 4 ∫ tg x dx π 4 π 2 315*/I = ∫ e π 6 π 3 1 2 2 3 x − x3 329*/I = ∫ dx x4 1 ln 3 ex 330/I = ∫ 0 dx 320*/I = ∫ −3x 2 + 6x + 1dx 1 333* /I = ∫ ln(1 + tgx)dx 0 dx dx ∫ 2 1 x cos (ln x + 1) e π 4 0 x (e + 1) e − 1 π −1 e4 331/I = x . 333 BÀI TOÁN TÍCH PHÂN LUYỆN THI ĐẠI HỌC 1/ Cho hàm số : f(x)= x.sinx+x 2 . Tìm nguyên hàm của hàm số g(x)=. x dx x − ∫ 330/I = x ln3 x x 0 e dx (e 1) e 1 + − ∫ 331/I = 1 4 e 2 1 e 1 dx x cos (ln x 1) π − + ∫ 333* /I = 4 0 ln(1 tgx)dx π + ∫

Ngày đăng: 05/06/2015, 01:00

TỪ KHÓA LIÊN QUAN

w