Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống
1
/ 251 trang
THÔNG TIN TÀI LIỆU
Thông tin cơ bản
Định dạng
Số trang
251
Dung lượng
5,33 MB
Nội dung
- 1 - BỘ GIÁO DỤC VÀ ĐÀO TẠO ĐỀ ÔN THI ĐẠI HỌC MÔN TOÁN – ĐỀ 1 (ĐỀ THAM KHẢO) Thời gian làm bài: 180 phút I. PHẦN BẮT BUỘC DÀNH CHO TẤT CẢ THÍ SINH (7,0 điểm) Câu I . (2 điểm) Cho hàm số y = x 3 3x 2 + mx + 4, trong đó m là tham số thực. 1. Khảo sát sự biến thiên và vẽ đồ thị của hàm số đã cho, với m = 0. 2. Tìm tất cả các giá trị của tham số m để hàm số đã cho nghịch biến trên khoảng (0 ; + ). Câu II. (2 điểm) 1. Giải phương trình: 3 (2cos 2 x + cosx – 2) + (3 – 2cosx)sinx = 0 2. Giải phương trình: 2 24 1 2 log (x 2) log (x 5) log 8 0 Câu III. (1 điểm) Tính diện tích hình phẳng giới hạn bởi đồ thị hàm số y = x e1 , trục hoành và hai đường thẳng x = ln3, x = ln8. Câu VI. (1 điểm) Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a, SA = SB = a, mặt phẳng (SAB) vuông góc với mặt phẳng (ABCD). Tính bán kính mặt cầu ngoại tiếp hình chóp S.ABCD. Câu V. (1 điểm) Xét các số thực dương x, y, z thỏa mãn điều kiện x + y + z = 1. Tìm giá trị nhỏ nhất của biểu thức: 222 x(y z) y(z x) z(x y) P yz zx xy II. PHẦN TỰ CHỌN (3,0 điểm). Tất cả thí sinh chỉ được làm một trong hai phần: A hoặc B. A.Theo chương trình Chuẩn: Câu VIa. (2 điểm) 1.Trong mặt phẳng với hệ tọa độ Oxy, cho đường tròn (C) có phương trình: x 2 + y 2 – 6x + 5 = 0. Tìm điểm M thuộc trục tung sao cho qua M kẻ được hai tiếp tuyến với (C) mà góc giữa hai tiếp tuyến đó bằng 60 0 . 2.Trong không gian với hệ tọa độ Oxyz, cho điểm M(2 ; 1 ; 0) và đường thẳng d có phương trình: x12t y1t zt Viết phương trình tham số của đường thẳng đi qua điểm M, cắt và vuông góc với đường thẳng d. Câu VIIa . (1 điểm) Tìm hệ số của x 2 trong khai triển thành đa thức của biểu thức P = (x 2 + x – 1) 6 B.Theo chương trình Nâng cao Câu VIb . (2 điểm) 1.Trong mặt phẳng với hệ tọa độ Oxy, cho đường tròn (C) có phương trình: x 2 + y 2 – 6x + 5 = 0. Tìm điểm M thuộc trục tung sao cho qua M kẻ được hai tiếp tuyến với (C) mà góc giữa hai tiếp tuyến đó bằng 60 0 . 2.Trong không gian với hệ tọa độ Oxyz, cho điểm M(2 ; 1 ; 0) và đường thẳng d có phương trình: x1 y1 z 211 . Viết phương trình chính tắc của đường thẳng đi qua điểm M, cắt và vuông góc với đường thẳng d. Câu VIIb . (1 điểm) Tìm hệ số của x 3 trong khai triển thành đa thức của biểu thức P = (x 2 + x – 1) 5 Hết 63 Đề thi thử Đại học 2011 -1- http://www.VNMATH.com - 2 - BỘ GIÁO DỤC VÀ ĐÀO TẠO ĐỀ ÔN THI ĐẠI HỌC MÔN TOÁN – ĐỀ 2 (ĐỀ THAM KHẢO) Thời gian làm bài: 180 phút . I. PHẦN BẮT BUỘC CHO TẤT CẢ CÁC THÍ SINH (7,0 điểm) Câu I. (2,0 điểm) Cho hàm số 2 2 x y x , có đồ thị là (C) 1. Khảo sát và vẽ (C) 2. Viết phương trình tiếp tuyến của (C), biết tiếp tuyến đi qua điểm A(– 6 ; 5) Câu II. (2,0 điểm) 1. Giải phương trình: cos x cos3x 1 2 sin 2x 4 . 2. Giải hệ phương trình: 33 223 xy1 xy 2xy y 2 Câu III. (1,0 điểm) Tính tích phân 2x ln 3 xx ln 2 edx I e1 e2 Câu VI. (1,0 điểm) Hình chóp tứ giác đều SABCD có khoảng cách từ A đến mặt phẳng SBC bằng 2. Với giá trị nào của góc giữa mặt bên và mặt đáy của chóp thì thể tích của chóp nhỏ nhất? Câu V. (1,0 điểm) Cho a,b,c 0 : abc 1. Chứng minh rằng: 111 1 ab1bc1ca1 II . PHẦN TỰ CHỌN (3,0 điểm). Tất cả thí sinh chỉ được làm một trong hai phần: A hoặc B. A. Theo chương trình Chuẩn: Câu VIa. (2,0 điểm) 1. Trong mặt phẳng Oxy cho các điểm A(1;0) ; B(–2;4) ;C(–1; 4) ; D(3 ; 5) và đường thẳng d: 3x – y – 5 = 0. Tìm điểm M trên d sao cho hai tam giác MAB, MCD có diện tích bằng nhau. 2. Viết phương trình đường vuông góc chung của hai đường thẳng sau: 12 x12t xy1z2 d : ; d : y 1 t 211 z3 Câu VIIa. (1,0 điểm) Tìm số thực x, y thỏa mãn đẳng thức : x(3 + 5i) + y(1 – 2i) 3 = 7 + 32i B. Theo chương trình Nâng cao Câu VIb. (2,0 điểm) 1.Trong mặt phẳng với hệ toạ độ Oxy cho đường thẳng d: x - 2y -2 = 0 và điểm A(0;1) ; B(3; 4). Tìm toạ độ điểm M trên đường thẳng d sao cho 2MA 2 + MB 2 là nhỏ nhất. 2.Trong không gian với hệ toạ độ Oxyz cho hai điểm A(1;7;-1), B(4;2;0) và mặt phẳng (P): x + 2y - 2z + 1 = 0. Viêt phương trình hình chiếu của đường thẳng AB trên mặt phẳng (P) Câu VIIb. (1,0 điểm) Cho số phức z = 1 + 3 i. Hãy viết dạng lượng giác của số phức z 5 . Hết 63 Đề thi thử Đại học 2011 -2- http://www.VNMATH.com - 3 - BỘ GIÁO DỤC VÀ ĐÀO TẠO ĐỀ ÔN THI ĐẠI HỌC MÔN TOÁN – ĐỀ 3 (ĐỀ THAM KHẢO) Thời gian làm bài: 180 phút . I. PHẦN BẮT BUỘC DÀNH CHO TẤT CẢ THÍ SINH (7,0 điểm) Câu I (2 điểm) Cho hàm số 32 y=x -3x +4 1. Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số. 2. Gọi d là đường thẳng đi qua điểm A(3; 4) và có hệ số góc là m. Tìm m để d cắt (C) tại 3 điểm phân biệt A, M, N sao cho hai tiếp tuyến của (C) tại M và N vuông góc với nhau. Câu II (2điểm) 1. Giải hệ phương trình: 2 2 x+1+y(x+y)=4y (x +1)(x + y - 2) = y ( x, y R ) 2. Giải phương trình: 2 2 sin(x ).cos x 1 12 Câu III (1 điểm) Tính tích phân 1 2 0 I = xln(x + x +1)dx Câu IV (1 điểm) Cho hình lăng trụ ABC.A’B’C’ có đáy là tam giác đều cạnh a, hình chiếu vuông góc của A’ lên mặt phẳng ( ABC) trùng với tâm O của tam giác ABC. Một mặt phẳng (P) chứa BC và vuông góc với AA’, cắt lăng trụ theo một thiết diện có diện tích bằng 2 a3 8 . Tính thể tích khối lăng trụ ABC.A’B’C’. CâuV (1 điểm) Cho a, b, c là ba số thực dương thỏa mãn abc = 1. Tìm GTLN của biểu thức 22 22 22 111 P= + + a + 2b + 3 b + 2c + 3 c + 2a + 3 . II. PHẦN TỰ CHỌN (3,0 điểm). Tất cả thí sinh chỉ được làm một trong hai phần: A hoặc B. A. Theo chương trình Chuẩn: Câu VIa (2 điểm): 1. Trong mp với hệ trục tọa độ Oxy cho parabol (P): 2 y = x - 2x và elip (E): 2 2 x +y =1 9 .Chứng minh rằng ( P) giao ( E) tại 4 điểm phân biệt cùng nằm trên một đường tròn. Viết phương trình đường tròn đi qua 4 điểm đó. 2. Trong không gian với hệ trục tọa độ Oxyz cho mặt cầu (S) có phương trình 222 x + y + z - 2x + 4y - 6z -11 = 0 và mặt phẳng ( ) có phương trình 2x + 2y – z + 17 = 0. Viết phương trình mặt phẳng ( ) song song với ( ) và cắt (S) theo giao tuyến là đường tròn có chu vi bằng 6 . Câu VIIa (1 điểm): Tìm hệ số của số hạng chứa x 2 trong khai triển nhị thức Niutơn của n 4 1 x+ 2x , biết rằng n là số nguyên dương thỏa mãn: 23 n+1 01 2 n nnn n 2 2 2 6560 2C + C + C + + C = 23 n+1n+1 B. Theo chương trình Nâng cao : Câu VIb (2 điểm): 1. Trong mặt phẳng Oxy cho hai đường thẳng d 1 : x + y + 5 = 0, d 2 : x + 2y – 7 = 0 và tam giác ABC có A(2 ; 3), trọng tâm là điểm G(2; 0), điểm B thuộc d 1 và điểm C thuộc d 2 . Viết phương trình đường tròn ngoại tiếp tam giác ABC. 2. Trong không gian với hệ trục tọa độ Oxyz cho tam giác ABC với A(1; 2; 5), B(1; 4; 3), C(5; 2; 1) và mặt phẳng (P): x – y – z – 3 = 0. Gọi M là một điểm thay đổi trên mặt phẳng (P). Tìm giá trị nhỏ nhất của biểu thức 222 MA + MB + MC . Câu VIIb (1 điểm): Tìm các giá trị của tham số thực m sao cho phương trình (m - 3) x + ( 2- m)x + 3 - m = 0 có nghiệm thực 63 Đề thi thử Đại học 2011 -3- http://www.VNMATH.com - 4 - BỘ GIÁO DỤC VÀ ĐÀO TẠO ĐỀ ÔN THI ĐẠI HỌC MÔN TOÁN – ĐỀ 4 (ĐỀ THAM KHẢO) Thời gian làm bài: 180 phút I. PHẦN BẮT BUỘC DÀNH CHO TẤT CẢ THÍ SINH (7,0 điểm) Câu I (2 điểm): Cho hàm số y = 23 2 x x có đồ thị là (C) 1. Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số trên. 2. Tìm trên (C) những điểm M sao cho tiếp tuyến tại M của (C) cắt 2 tiệm cận của (C) tại A, B sao cho AB ngắn nhất. Câu II (2 điểm): 1. Giải phương trình: 33 sin x.sin3x + cos xcos3x 1 =- ππ 8 tan x - tan x + 63 2. Giải hệ phương trình: 33 3 22 8x y 27 18y (1) 4x y 6x y (2) Câu III (1 điểm): Tính tích phân I = 2 2 6 1 sin x sin x dx 2 Câu IV (1 điểm): Cho hình chóp S. ABC có góc ((SBC), (ACB)) =60 0 , ABC và SBC là các tam giác đều cạnh a. Tính theo a khoảng cách từ B đến mặt phẳng (SAC). Câu V (1 điểm): Cho x, y, z là các số thực dương .Tìm giá trị lớn nhất của biểu thức A = xyz x (x y)(x z) y (y x)(y z) z (z x)(z y) II. PHẦN TỰ CHỌN (3,0 điểm). Tất cả thí sinh chỉ được làm một trong hai phần: A hoặc B. A. Theo chương trình Chuẩn: Câu VIa (2 điểm): 1. Cho ABC có B(1; 2), phân giác trong góc A có phương trình (): 2x + y – 1 = 0; khoảng cách từ C đến () bằng 2 lần khoảng cách từ B đến (). Tìm A, C biết C thuộc trục tung. 2. Trong không gian Oxyz cho mp (P): x – 2y + z – 2 = 0 và hai đường thẳng : (d 1 ) x1 3y z2 112 ; (d 2 ) x12t y2t(t ) z1t . Viết phương trình tham số của đường thẳng nằm trong mp (P) và cắt cả 2 đường thẳng (d 1 ), (d 2 ). Câu VIIa (1điểm): Từ các số 0 , 1 , 2 , 3, 4, 5, 6. Lập được bao nhiêu số có 5 chữ số khác nhau mà nhất thiết phải có chữ số 5 B. Theo chương trình Nâng cao: Câu Vb (2điểm): 1. Cho ABC có diện tích bằng 3/2; A(2;–3), B(3;–2), trọng tâm G (d) 3x – y –8 =0. Tìm bán kính đường tròn nội tiếp ABC. 2. Trong không gian Oxyz cho đường thẳng (d) là giao tuyến của 2 mặt phẳng: (P): 2x – 2y – z +1 = 0, (Q): x + 2y – 2z – 4 = 0 và mặt cầu (S): x 2 + y 2 + z 2 + 4x – 6y +m = 0. Tìm tất cả các giá trị của m để (S) cắt (d) tại 2 điểm MN sao cho MN = 8. Câu VIIb (1 điểm): Giải hệ phương trình x-y x+y x+y e + e = 2(x +1) e=x-y+1 ( x, y R ) Hết 63 Đề thi thử Đại học 2011 -4- http://www.VNMATH.com - 5 - BỘ GIÁO DỤC VÀ ĐÀO TẠO ĐỀ ÔN THI ĐẠI HỌC MÔN TOÁN – ĐỀ 5 (ĐỀ THAM KHẢO) Thời gian làm bài: 180 phút . I. PHẦN BẮT BUỘC DÀNH CHO TẤT CẢ THÍ SINH (7,0 điểm) Câu I (2 điểm): Cho hàm số 21 1 x y x (C) 1. Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số. 2. Tìm m để đường thẳng d: y = x + m cắt (C) tại hai điểm phân biệt A, B sao cho OAB vuông tại O. Câu II (2 điểm) 1. Giải phương trình: x xx xx sin12 cossin 1cos.cos 2 2. Giải hệ phương trình: 411 3 22 22 yx xyyx Câu III (1 điểm): Tính tích phân: 2 0 cos 2sin.sin xdxxe x Câu IV (1điểm): Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a. SA (ABCD) và SA = a. Gọi M, N lần lượt là trung điểm AD, SC. 1. Tính thể tích tứ diện BDMN và khoảng cách từ D đến mp (BMN). 2. Tính góc giữa hai đường thẳng MN và BD Câu V (1 điểm): Chứng minh rằng: 2 x x ecosx2x ,xR 2 II. PHẦN TỰ CHỌN (3,0 điểm). Tất cả thí sinh chỉ được làm một trong hai phần: A hoặc B. A. Theo chương trình Chuẩn: Câu VIa (2 điểm): 1. Lập phương trình đường thẳng d đi qua điểm A(1; 2) và cắt đường tròn (C) có phương trình 2512 22 yx theo một dây cung có độ dài bằng 8. 2. Chứng tỏ rằng phương trình 222 2 2os . 2sin . 4 4 4sin 0xyz c x yz luôn là phương trình của một mặt cầu. Tìm để bán kính mặt cầu là lớn nhất. Câu VIIa (1 điểm): Lập số tự nhiên có 5 chữ số khác nhau từ các chữ số {0; 1; 2; 3; 4; 5; 6; 7}. Hãy tính xác suất để lập được số tự nhiên chia hết cho 5. B. Theo chương trình Nâng cao: Câu VIb (2 điểm): 1. Cho ABC biết: B(2; -1), đường cao qua A có phương trình d 1 : 3x - 4y + 27 = 0, phân giác trong góc C có phương trình d 2 : x + 2y - 5 = 0. Tìm toạ độ điểm A. 2. Trong không gian Oxyz , cho điểm A( 3 ; 4 ; 2) ; (d) yz-1 x= = 23 và m.phẳng (P): 4x +2y + z – 1 = 0 a) Tìm tọa độ điểm H là hình chiếu vuông góc của điểm A lên mặt phẳng (P) . b) Viết phương trình mặt phẳng () chứa (d) và vuông góc với mặt phẳng (P) . Câu VIIb (1 điểm): Tính tổng: 1004 2009 2 2009 1 2009 0 2009 CCCCS . Hết 63 Đề thi thử Đại học 2011 -5- http://www.VNMATH.com - 6 - BỘ GIÁO DỤC VÀ ĐÀO TẠO ĐỀ ÔN THI ĐẠI HỌC MÔN TOÁN – ĐỀ 6 (ĐỀ THAM KHẢO) Thời gian làm bài: 180 phút . I. PHẦN BẮT BUỘC DÀNH CHO TẤT CẢ THÍ SINH (7,0 điểm) Câu I. (2,0 điểm) Cho hàm số mxxmxy 9)1(3 23 , với m là tham số thực. 1. Khảo sát sự biến thiên và vẽ đồ thị của hàm số đã cho ứng với 1 m . 2. Xác định m để hàm số đã cho đạt cực trị tại 21 , xx sao cho 2 21 xx . Câu II. (2,0 điểm) 1. Giải phương trình: ) 2 sin(2 cossin 2sin cot 2 1 x xx x x . 2. Giải phương trình: )12(log1)13(log2 3 5 5 xx . Câu III. (1,0 điểm) Tính tích phân 5 1 2 13 1 dx xx x I . Câu IV. (1,0 điểm) Cho hình lăng trụ tam giác đều '''. CBAABC có ).0(',1 mmCCAB Tìm m biết rằng góc giữa hai đường thẳng ' A B và 'BC bằng 0 60 . Câu V. (1,0 điểm) Cho các số thực không âm z y x ,, thoả mãn 3 222 zyx . Tìm giá trị lớn nhất của biểu thức zyx zxyzxyA 5 . II. PHẦN TỰ CHỌN (3,0 điểm). Tất cả thí sinh chỉ được làm một trong hai phần: A hoặc B. A. Theo chương trình Chuẩn: Câu VIa. (2,0 điểm) 1. Trong mặt phẳng với hệ toạ độ ,Oxy cho tam giác ABC có )6;4(A , phương trình các đường thẳng chứa đường cao và trung tuyến kẻ từ đỉnh C lần lượt là 0132 yx và 029136 yx . Viết phương trình đường tròn ngoại tiếp tam giác ABC . 2. Trong không gian với hệ toạ độ , Oxyz cho hình vuông MNPQ có )4;3;2(),1;3;5( PM . Tìm toạ độ đỉnh Q biết rằng đỉnh N nằm trong mặt phẳng .06:)( zyx Câu VIIa. (1,0 điểm) Cho tập 6,5,4,3,2,1,0E . Từ các chữ số của tập E lập được bao nhiêu số tự nhiên chẵn gồm 4 chữ số đôi một khác nhau? B. Theo chương trình Nâng cao: Câu VIb. (2,0 điểm) 1. Trong mặt phẳng với hệ toạ độ ,Oxy xét elíp )(E đi qua điểm )3;2( M và có phương trình một đường chuẩn là .08 x Viết phương trình chính tắc của ).(E 2. Trong không gian với hệ toạ độ , Oxyz cho các điểm )2;3;0(),0;1;0(),0;0;1( CBA và mặt phẳng .022:)( yx Tìm toạ độ của điểm M biết rằng M cách đều các điểm CBA ,, và mặt phẳng ).( Câu VIIb. (1,0 điểm) Khai triển và rút gọn biểu thức n xnxx )1( )1(21 2 thu được đa thức n n xaxaaxP )( 10 . Tính hệ số 8 a biết rằng n là số nguyên dương thoả mãn n CC nn 171 32 . Hết 63 Đề thi thử Đại học 2011 -6- http://www.VNMATH.com - 7 - BỘ GIÁO DỤC VÀ ĐÀO TẠO ĐỀ ÔN THI ĐẠI HỌC MÔN TOÁN – ĐỀ 7 (ĐỀ THAM KHẢO) Thời gian làm bài: 180 phút . I. PHẦN BẮT BUỘC DÀNH CHO TẤT CẢ THÍ SINH (7,0 điểm) Câu I (2 điểm). 1. Khảo sát và vẽ đồ thị hàm số y = x 4 – 4x 2 + 3 2. Tìm m để phương trình 42 2 43log x xm có đúng 4 nghiệm. Câu II (2 điểm). 1. Giải bất phương trình: 3 2 51 51 2 0 xx x 2. Giải phương trình: 2 (2) 1 2 x xxx Câu III (1 điểm) Tính giới hạn sau: 12 3 1 tan( 1) 1 lim 1 x x ex x Câu IV (1 điểm). Cho hình chóp S.ABCD có đáy là hình thoi , B AD = . Hai mặt bên (SAB) và (SAD) cùng vuông góc với mặt đáy, hai mặt bên còn lại hợp với đáy một góc . Cạnh SA = a. Tính diện tích xung quanh và thể tích khối chóp S.ABCD. Câu V (1 điểm). Cho tam giác ABC với các cạnh là a, b, c. Chứng minh rằng: 333 22 22 22 3()()()abc abcabc bca cab II. PHẦN TỰ CHỌN (3,0 điểm). Tất cả thí sinh chỉ được làm một trong hai phần: A hoặc B. A. Theo chương trình Chuẩn Câu VIa.( 2 điểm) 1. Trong mặt phẳng tọa độ Oxy cho đường thẳng : 2 3 0xy và hai điểm A(1; 0), B(3; - 4). Hãy tìm trên đường thẳng một điểm M sao cho 3 M AMB nhỏ nhất. 2.Trong không gian với hệ tọa độ Oxyz cho hai đường thẳng: 1 1 :2 2 x t dyt zt và 2 :13 1 xt dy t zt . Lập phương trình đường thẳng đi qua M(1; 0; 1) và cắt cả hai đường thẳng d 1 và d 2 . Câu VIIa. (1 điểm) Tìm số phức z thỏa mãn: 2 20zz B. Theo chương trình Nâng cao Câu VIb.(2điểm) 1.Trong mặt phẳng tọa độ cho hai đường tròn (C 1 ): x 2 + y 2 = 13 và (C 2 ): (x - 6) 2 + y 2 = 25 cắt nhau tại A(2; 3). Viết phương trình đường thẳng đi qua A và cắt (C 1 ), (C 2 ) theo hai dây cung có độ dài bằng nhau. 2.Trong không gian với hệ tọa độ Oxyz cho hai đường thẳng: 1 1 :2 2 x t dyt zt và 2 :13 1 xt dy t zt . Lập phương trình mặt cầu có đường kính là đoạn vuông góc chung của d 1 và d 2 . Câu VIIb. (1 điểm) Trong các số phức z thỏa mãn điều kiện 12 1zi , tìm số phức z có modun nhỏ nhất. Hết 63 Đề thi thử Đại học 2011 -7- http://www.VNMATH.com - 8 - BỘ GIÁO DỤC VÀ ĐÀO TẠO ĐỀ ÔN THI ĐẠI HỌC MÔN TOÁN – ĐỀ 8 (ĐỀ THAM KHẢO) Thời gian làm bài: 180 phút . I. PHẦN BẮT BUỘC DÀNH CHO TẤT CẢ THÍ SINH (7,0 điểm) Câu I (2 điểm): Cho hàm số y = - 3 x 3 + x 2 + 3x - 3 11 1. Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số đã cho. 2. Tìm trên đồ thị (C) hai điểm phân biệt M, N đối xứng nhau qua trục tung Câu II (2 điểm): 1. Giải phương trình: 2cos3x + 3 sinx + cosx = 0 2. Giải hệ phương trình 22 22 91 2 (1) 91 2 (2) xyy yxx Câu III (1 điểm): Cho số thực b ln2. Tính J = x ln10 b 3 x edx e2 và tìm bln2 lim J. Câu IV (1 điểm): Cho hình lăng trụ đứng ABCD.A’B’C’D’ có đáy ABCD là một hình thoi cạnh a, góc B AD = 60 0 . Gọi M là trung điểm AA’ và N là trung điểm của CC’. Chứng minh rằng bốn điểm B’, M, N, D đồng phẳng. Hãy tính độ dài cạnh AA’ theo a để tứ giác B’MDN là hình vuông. Câu V (1 điểm) Cho x, y, z là các số dương thoả mãn 111 2010 xyz . Tìm giá trị lớn nhất của biểu thức: P = 111 222 x yz x yz xy z . II. PHẦN TỰ CHỌN (3,0 điểm). Tất cả thí sinh chỉ được làm một trong hai phần: A hoặc B. A. Theo chương trình Chuẩn: Câu VIa (2 điểm): 1. Phương trình hai cạnh của một tam giác trong mp tọa độ là 5x - 2y + 6 = 0; 4x + 7y – 21 = 0. Viết phương trình cạnh thứ ba của tam giác đó, biết rằng trực tâm của nó trùng với gốc tọa độ O. 2. Trong không gian Oxyz, tìm trên Ox điểm cách đều đ.thẳng (d) : x1y z2 12 2 và mp (P): 2x – y – 2z = 0. Câu VIIa(1 điểm): Cho tập hợp X = 0,1,2,3,4,5,6,7 . Có thể lập được bao nhiêu số tự nhiên gồm 5 chữ số khác nhau đôi một từ X sao cho 1 trong 3 chữ số đầu tiên phải bằng 1. B. Theo chương trình Nâng cao: Câu VIb(2 điểm): 1. Trong mặt phẳng tọa độ cho hai đường tròn (C 1 ): x 2 + y 2 = 13 và (C 2 ): (x - 6) 2 + y 2 = 25 cắt nhau tại A(2; 3). Viết phương trình đường thẳng đi qua A và cắt (C 1 ), (C 2 ) theo hai dây cung có độ dài bằng nhau. 2. Trong không gian Oxyz cho hai đường thẳng: (d 1 ): 4z ty t2x ; (d 2 ) : x3t yt z0 . Chứng minh (d 1 ) và (d 2 ) chéo nhau. Viết pt mặt cầu (S) có đường kính là đoạn vuông góc chung của (d 1 ) và (d 2 ). Câu VIIb (1 điểm): Giải pt sau trong C: z 4 – z 3 + 6z 2 – 8z – 16 = 0. Hết 63 Đề thi thử Đại học 2011 -8- http://www.VNMATH.com - 9 - BỘ GIÁO DỤC VÀ ĐÀO TẠO ĐỀ ÔN THI ĐẠI HỌC MÔN TOÁN – ĐỀ 9 (ĐỀ THAM KHẢO) Thời gian làm bài: 180 phút . I. PHẦN BẮT BUỘC DÀNH CHO TẤT CẢ THÍ SINH (7,0 điểm) Câu I (2 điểm): Cho hàm số: 42 yx 4x m (C) 1. Khảo sát hàm số với m = 3. 2. Giả sử đồ thị (C) cắt trục hoành tại 4 điểm phân biệt. Tìm m để hình phẳng giới hạn bởi đồ thị (C) và trục hoành có diện tích phần phía trên và phần phía dưới trục hoành bằng nhau. Câu II (2 điểm): 1. Giải bất phương trình: 22 x3x2 2x3x1x1 2. Giải phương trình: 3 3 2 cos x cos3x sin x sin 3x 4 Câu III (1 điểm): Tính tích phân: I = 2 3 0 7sinx 5cosx dx (sin x cosx) Câu IV (1 điểm): Cho hình chóp đều S.ABCD có độ dài cạnh đáy bằng a, mặt bên tạo với mặt đáy góc 60 o . Mặt phẳng (P) chứa AB và đi qua trọng tâm tam giác SAC cắt SC, SD lần lượt tại M, N. Tính thể tích hình chóp S.ABMN theo a. Câu V (1 điểm) Cho 4 số thực a, b, c, d thoả mãn: a 2 + b 2 = 1;c – d = 3. Cmr: 962 Facbdcd 4 . II. PHẦN TỰ CHỌN (3,0 điểm). Tất cả thí sinh chỉ được làm một trong hai phần: A hoặc B. A. Theo chương trình Chuẩn: Câu VIa (2 điểm): 1. Tìm phương trình chính tắc của elip (E), biết tiêu cự là 8 và (E) qua điểm M(– 15 ; 1). 2. Trong không gian với hệ toạ độ Oxyz cho 2 đường thẳng 1 xyz d: 112 và 2 x12t d:y t z1t . Xét vị trí tương đối của d 1 và d 2 . Viết phương trình đường thẳng qua O, cắt d 2 và vuông góc với d 1 . Câu VIIa (1 điểm): Một hộp đựng 5 viên bi đỏ, 6 viên bi trắng và 7 viên bi vàng. Người ta chọn ra 4 viên bi. Hỏi có bao nhiêu cách chọn để trong số bi lấy ra không có đủ cả 3 màu? B. Theo chương trình Nâng cao: Câu VIb (2 điểm): 1.Trong mặt phẳng với hệ trục toạ độ Oxy cho Hypebol (H) có phương trình: 1 916 22 yx . Viết phương trình chính tắc của elip ( E) có tiêu điểm trùng với tiêu điểm của (H) và ngoại tiếp hình chữ nhật cơ sở của (H). 2. Trong không gian với hệ trục toạ độ Oxyz cho 052: zyxP và 31 2 3 :)( zy x d , điểm A( -2; 3; 4). Gọi là đường thẳng nằm trên (P) đi qua giao điểm của ( d) và (P) đồng thời vuông góc với d Tìm trên điểm M sao cho khoảng cách AM ngắn nhất. Câu VIIb (1 điểm): Tìm hệ số của x 3 trong khai triển n 2 2 x x biết n thoả mãn: 13 2n123 2n 2n 2n C C C 2 . Hết 63 Đề thi thử Đại học 2011 -9- http://www.VNMATH.com - 10 - BỘ GIÁO DỤC VÀ ĐÀO TẠO ĐỀ ÔN THI ĐẠI HỌC MÔN TOÁN – ĐỀ 10 (ĐỀ THAM KHẢO) Thời gian làm bài: 180 phút . I. PHẦN BẮT BUỘC DÀNH CHO TẤT CẢ THÍ SINH (7,0 điểm) Câu I (2 điểm) Cho hàm số 1 12 x x y có đồ thị (C). 1. Khảo sát sự biến thiên và vẽ đồ thị hàm số . 2. Với điểm M bất kỳ thuộc đồ thị (C) tiếp tuyến tại M cắt 2 tiệm cận tại Avà B . Gọi I là giao hai tiệm cận , tìm vị trí của M để chu vi tam giác IAB đạt giá trị nhỏ nhất. Câu II (2 điểm) 1. Giải phương trình: 2 cos.2sin 2sin x -2x 3sin xx 2. Giải hệ phương trình : 0222 0964 22 224 yxyx yyxx . Câu III (1 điểm) Tính tích phân sau: I= dx. .cos.sin. 3 2 0 sin 2 xxe x Câu IV (1 điểm) Cho hình chóp tứ giác đều S.ABCD có cạnh bên bằng a , mặt bên hợp với đáy góc . Tìm để thể tích của hình chóp đạt giá trị lớn nhất. Câu V (1 điểm) Cho 3 số dương x, y, z thoả mãn : x +3y+5z 3 .Chứng minh rằng: 46253 4 zxy + 415 4 xyz + 4815 4 yzx 45 5 xyz. II. PHẦN TỰ CHỌN (3,0 điểm). Tất cả thí sinh chỉ được làm một trong hai phần: A hoặc B. A.Theo chương trình Chuẩn: Câu VIa (2 điểm) 1. Trong mặt phẳng với hệ toạ độ Oxy cho hình chữ nhật ABCD có tâm I( 2 1 ; 0) . Đường thẳng chứa cạnh AB có phương trình x – 2y + 2 = 0 , AB = 2AD. Tìm toạ độ các đỉnh A, B, C, D, biết A có hoành độ âm . 2.Trong không gian với hệ toạ độ Oxyz cho 2 đường thẳng )( 1 d và )( 2 d có phương trình . Lập phương trình mặt phẳng chứa (d 1 ) và )( 2 d . Câu VIIa (1 điểm) Tìm m để phương trình x10 1).12(48 22 xxmx .có 2 nghiệm phân biệt B.Theo chương trình Nâng cao Câu VIb (2 điểm) 1. Trong mặt phẳng với hệ toạ độ Oxy cho hình vuông ABCD biết M(2;1); N(4; -2); P(2;0); Q(1;2) lần lượt thuộc cạnh AB, BC, CD, AD. Hãy lập phương trình các cạnh của hình vuông. 2. Trong không gian với hệ toạ độ Oxyz cho 2 đường thẳng ( ) và ( )' có phương trình . 4t'2 t'2y t'2-2x : ; 4 2t-1y t3x : ' zz Viết phương trình đường vuông góc chung của ( ) và ( )' Câu VIIb (1 điểm) Giải và biện luận phương trình : 1mx (.243)22 2322 xxxmxxm 3 3 9 1 6 4-x :)(d ; 1 2-z 3 1y 2 1 );( 21 zyx d 63 Đề thi thử Đại học 2011 -10- http://www.VNMATH.com [...]... DÀNH CHO TẤT CẢ THÍ SINH (7 ,0 điểm) Câu I (2 điểm): Gọi (Cm) là đồ thị của hàm số y x3 (2 m 1) x 2 m 1 (1 ) m là tham số 1.Khảo sát sự biến thi n và vẽ đồ thị của hàm số (1 ) khi m = 1 2.Tìm để đồ thị (Cm) tiếp xúc với đường thẳng y 2mx m 1 Câu II (2 điểm): 1 Tìm nghiệm x 0; của phương trình: (1 cos x) (sin x 1 )(1 cos x) (1 cos x) (sin x 1 )(1 cos x) sin x 2... http://www.VNMATH.com 63 Đề thi thử Đại học 2011 BỘ GIÁO DỤC VÀ ĐÀO TẠO ( Ề THAM KHẢO) ĐỀ ÔN THI ĐẠI HỌC MÔN TOÁN – ĐỀ 15 Thời gian làm bài: 180 phút I PHẦN BẮT BUỘC DÀNH CHO TẤT CẢ THÍ SINH (7 ,0 điểm) Câu I (2 điểm) x3 Cho hàm số y = x 1 1 Khảo sát sự biến thi n và vẽ đồ thị (C) của hàm số đã cho 2 Cho điểm Mo(xo;yo) thu c đồ thị (C) Tiếp tuyến của (C) tại Mo cắt các tiệm cận của (C) tại các điểm A... http://www.VNMATH.com 63 Đề thi thử Đại học 2011 BỘ GIÁO DỤC VÀ ĐÀO TẠO ( Ề THAM KHẢO) ĐỀ ÔN THI ĐẠI HỌC MÔN TOÁN – ĐỀ 20 Thời gian làm bài: 180 phút I PHẦN BẮT BUỘC DÀNH CHO TẤT CẢ THÍ SINH (7 ,0 điểm) Câu I (2 điểm) Cho hàm số y = x3 + (1 – 2m)x2 + (2 – m)x + m + 2 (m là tham số) (1 ) 1 Khảo sát sự biến thi n và vẽ đồ thị của hàm số (1 ) khi m = 2 2 Tìm các giá trị của m để đồ thị hàm số (1 ) có điểm cực... gian Oxyz, cho các điểm A(1;0;0); B(0;2;0); C(0;0;-2) tìm tọa độ điểm O’ đối xứng với O qua (ABC) Câu VIIa (1 điểm) Giải phương trình: ( z 2 z )( z 3 )( z 2) 10 , z C B Theo chương trình Nâng cao Câu VIb (2 điểm) 1 Trong mp(Oxy) ,cho điểm A(-1 ;0), B(1 ;2) và đường thẳng (d): x - y - 1 = 0 Lập phương trình đường tròn đi qua 2 điểm A, B và tiếp xúc với đường thẳng (d) 2 Trong không gian với... CẢ THÍ SINH (7 ,0 điểm) Câu I (2 điểm): 1 Cho hàm số y = x3 – mx2 +(m2 – 1)x + 1 ( có đồ thị (Cm) ) 3 1 Khảo sát sự biến thi n và vẽ đồ thị (C) của hàm số khi m = 2 2 Tìm m, để hàm số (Cm) có cực đại, cực tiểu và yCĐ+ yCT > 2 Câu II (2 điểm): 1 Giải bất phương trình: 15.2 x 1 1 2 x 1 2 x 1 2 Tìm m để phương trình: 4(log 2 x )2 log 0,5 x m 0 có nghiệm thu c (0 , 1) 3 Câu III (2 điểm):Tính... http://www.VNMATH.com 63 Đề thi thử Đại học 2011 BỘ GIÁO DỤC VÀ ĐÀO TẠO ( Ề THAM KHẢO) ĐỀ ÔN THI ĐẠI HỌC MÔN TOÁN – ĐỀ 27 Thời gian làm bài: 180 phút I PHẦN BẮT BUỘC DÀNH CHO TẤT CẢ THÍ SINH (7 ,0 điểm) 2x 1 Câu I (2 ,0 điểm) Cho hàm số y (C) x 1 1.Khảo sát sự biến thi n và vẽ đồ thị (C) của hàm số đã cho 2.Tìm trên đồ thị (C) những điểm có tổng khoảng cách đến hai tiệm cận của (C) nhỏ nhất Câu II (2 ,0 điểm)... http://www.VNMATH.com 63 Đề thi thử Đại học 2011 BỘ GIÁO DỤC VÀ ĐÀO TẠO ( Ề THAM KHẢO) ĐỀ ÔN THI ĐẠI HỌC MÔN TOÁN – ĐỀ 14 Thời gian làm bài: 180 phút I PHẦN BẮT BUỘC DÀNH CHO TẤT CẢ THÍ SINH (7 ,0 điểm) Câu I (2 điểm): Cho hàm số y x 3 2 mx 2 (m 3) x 4 có đồ thị là (Cm) 1.Khảo sát sự biến thi n và vẽ đồ thị (C1) của hàm số trên khi m = 1 2 Cho (d) là đường thẳng có phương trình y = x + 4 và điểm K(1; 3)... http://www.VNMATH.com 63 Đề thi thử Đại học 2011 BỘ GIÁO DỤC VÀ ĐÀO TẠO ( Ề THAM KHẢO) ĐỀ ÔN THI ĐẠI HỌC MÔN TOÁN – ĐỀ 19 Thời gian làm bài: 180 phút I PHẦN BẮT BUỘC DÀNH CHO TẤT CẢ THÍ SINH (7 ,0 điểm) Câu I (2 điểm): Cho hàm số y x 4 mx 3 2x 2 3mx 1 (1 ) 1 Khảo sát sự biến thi n và vẽ đồ thị (C) của hàm số (1 ) khi m = 0 2 Định m để hàm số (1 ) có hai cực tiểu Câu II (2 điểm): 23 2 8 1 Giải... Câu VIa (2 điểm): 1 Trong mặt phẳng với hệ tọa độ Oxy, cho điểm M ( 2 ; 5) và hai đường thẳng (d1) : 4x – 2y –1 = 0 ; x = -2 + 3t (d2) : y = t a) Tính góc giữa (d1) và (d2) b) Tìm điểm N trên (d2) cách điểm M một khoảng là 5 2 Trong không gian với hệ trục tọa độ Oxyz, cho 3 điểm A(3;1;1), B(0;1;4), C(-1;-3;1) Lập phương trình của mặt cầu (S) đi qua A, B, C và có tâm nằm trên mặt phẳng (P): x +y... Tính thể tích khối chóp OAHK Câu V (1 điểm): Cho ba số thực dương a, b, c thỏa mãn abc = 1 Chứng minh rằng: 4 a3 4b3 4c 3 3 (1 b )(1 c) (1 c )(1 a) (1 a )(1 b) II PHẦN TỰ CHỌN (3 ,0 điểm) Tất cả thí sinh chỉ được làm một trong hai phần: A hoặc B A.Theo chương trình Chuẩn: Câu VIa (2 điểm): 1 Trong mặt phẳng với hệ tọa độ Oxy, cho ba điểm I(2; 4) ; B(1;1) ; C(5;5) Tìm điểm A sao cho I là tâm . phẳng (SAC). Câu V (1 điểm): Cho x, y, z là các số thực dương .Tìm giá trị lớn nhất của biểu thức A = xyz x (x y)(x z) y (y x)(y z) z (z x)(z y) II. PHẦN TỰ CHỌN (3 ,0 điểm) hơn 1. Câu II (2 điểm) 1. Giải phương trình: cos2x + (1 + 2cosx)(sinx – cosx) = 0 2. Giải hệ phương trình: 25)yx)(yx( 13)yx)(yx( 22 22 (x, y ) Câu III (1 điểm) Tính. chóp OAHK. Câu V (1 điểm): Cho ba số thực dương a, b, c thỏa mãn abc = 1. Chứng minh rằng: 333 444 3 (1 )(1 ) (1 )(1 ) (1 )(1 ) abc bc ca ab II. PHẦN TỰ CHỌN (3 ,0 điểm). Tất