SỞ GD & ĐT THANH HÓA TRƯỜNG THPT BỈM SƠN KỲ THI THỬ ĐẠI HỌC LẦN 2 NĂM 2011 HƯỚNG DẪN CHẤM MÔN: TOÁN; KHỐI: A (Thời gian làm bài 180’ không kể thời gian phát đề) Câu Nội dung Điểm I (2điểm) 1.(1,0 điểm) Hàm số (C 1 ) có dạng 3 3 2y x x= − + • Tập xác định: ¡ • Sự biến thiên - lim , lim x x y y →−∞ →+∞ = −∞ = −∞ 0,25 - Chiều biến thiên: 2 ' 3 3 0 1y x x= − = ⇔ = ± Bảng biến thiên X −∞ -1 1 +∞ y’ + 0 - 0 + Y 4 +∞ −∞ 0 0,25 Hàm số đồng biến trên các khoảng ( ) ( ) ; 1 , 1;−∞ − +∞ , nghịch biến trên khoảng (-1;1) Hàm số đạt cực đại tại 1, 4 CD x y= − = . Hàm số đạt cực tiểu tại 1, 0 CT x y= = 0,25 • Đồ thị: Đồ thị hàm số đi qua các điểm (0; 2), (1; 0) và nhận I(0; 2) làm điểm uốn f(x )=x^3- 3x+2 -2 -1 1 2 -1 1 2 3 4 x y 0,25 2.(1,0 điểm) Ta có 2 ' 3 3y x m= − Để hàm số có cực đại, cực tiểu thì phương trình ' 0y = có hai nghiệm phân biệt 0m ⇔ > 0,25 Vì 1 . ' 2 2 3 y x y mx= − + nên đường thẳng ∆ đi qua cực đại, cực tiểu của đồ thị hàm số có phương trình là 2 2y mx= − + 0,25 Ta có ( ) 2 2 1 , 1 4 1 m d I R m − ∆ = < = + (vì m > 0), chứng tỏ đường thẳng ∆ luôn cắt đường tròn tâm I(1; 1), bán kính R = 1 tại 2 điểm A, B phân biệt Với 1 2 m ≠ , đường thẳng ∆ không đi qua I, ta có: 2 1 1 1 . .sin 2 2 2 ABI S IA IB AIB R ∆ = ≤ = 0,25 Nên IAB S ∆ đạt giá trị lớn nhất bằng ½ khi sinAIB = 1 hay tam giác AIB vuông cân tại I 1 2 2 R IH⇔ = = (H là trung điểm của AB) 2 2 1 1 2 3 2 2 4 1 m m m − ± ⇔ = ⇔ = + 0,25 II (2điểm) 1.(1,0 điểm) Đặt ( ) 2 2 4 2 2 4 2 2t x x t x x= + ⇒ = + ta được phương trình 0,25 2 2 4 1 5 2 8 0 2 2 t t t t t t = − + = − ⇔ + − = ⇔ = 0,25 Với 4t = − ta có ( ) 0 0 0 2 2 4 4 2 4 2 4 2 2 2 2 16 2 8 0 2 x x x x x x x x x x x < < < + = − ⇔ ⇔ ⇔ ⇔ = − + = + − = = 0,25 Với 2t = ta có ( ) 2 4 2 4 2 2 0 0 0 2 4 2 3 1 2 2 4 2 2 0 3 1 x x x x x x x x x x x > > > + = ⇔ ⇔ ⇔ ⇔ = − + = + − = = − 0,25 III (1điểm) ∫∫ + + = e 1 2 e 1 xdxlnx3dx xln1x xln I =I 1 +3I 2 +) Tính ∫ + = e dx xx x I 1 1 ln1 ln . Đặt 2 1 1 ln 1 ln ; 2t x t x tdt dx x = + ⇒ = + = Khi 2tex;1t1x =⇒==⇒= 0,25 ( ) ( ) ( ) 2 2 3 1 2 2 2 2 2 2 .2 2 1 2 1 3 3 1 1 1 t t I tdt t dt t t − − ⇒ = = − = − = ∫ ∫ ÷ ÷ 0,25 +) TÝnh dxxlnxI e 1 2 2 ∫ = . §Æt = = ⇒ = = 3 x v x dx du dxxdv xlnu 32 + ⇒ = − = − = − + = ∫ e 3 3 3 3 3 3 e 2 e 2 1 1 1 x 1 e 1 x e e 1 2e 1 I .l n x x dx . 3 3 3 3 3 3 9 9 9 0,25 =+= 21 I3II 3 e2225 3 +− 0,25 IV (1điểm) *Ta có 2IA IH= − ⇒ uur uuur H thuộc tia đối của tia IA và 2IA IH= 2 2BC AB a= = Suy ra 3 , 2 2 a a IA a IH AH IA IH= = ⇒ = + = 0,25 Ta có 5 2 2 2 0 2 . .cos 45 2 a HC AC AH AC AH HC= + − ⇒ = Vì ( ) ( ) ( ) 15 0 0 , 60 .tan 60 2 a SH ABC SC ABC SCH SH HC⊥ ⇒ = ∠ = ⇒ = = 0,25 Ta có 5 2 2 2 0 2 . .cos 45 2 a HC AC AH AC AH HC= + − ⇒ = Vì ( ) ( ) ( ) 0 0 15 , 60 .tan 60 2 a SH ABC SC ABC SCH SH HC⊥ ⇒ = ∠ = ⇒ = = 0,25 Thể tích khối chóp S.ABCD là: ( ) 3 . 1 15 . 3 6 S ABC ABC a V S SH dvtt ∆ = = 0,25 * ( ) BI AH BI SAH BI SH ⊥ ⇒ ⊥ ⊥ ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) , 1 1 1 , , 2 2 2 2 , d K SAH SK a d K SAH d B SAH BI SB d B SAH ⇒ = = ⇒ = = = 0,25 V (1điểm) Do a, b, c > 0 và 2 2 2 1a b c+ + = nên ( ) , , 0;1a b c ∈ Ta có ( ) 2 2 5 3 1 2 3 2 2 2 1 a a a a a a a b c a − − + = = − + + − Bất đẳng thức trở thành ( ) ( ) ( ) 2 3 3 3 3 3 a a b b c c− + + − + + − + ≤ 0,5 Xét hàm số ( ) ( ) ( ) 3 0;1f x x x x= − + ∈ . Ta có: ( ) ( ) 0;1 2 3 ax 9 M f x = 0,5 S H C A B I K . ( ) ( ) ( ) 2 3 3 f a f b f c⇒ + + ≤ Dấu “=” xảy ra khi và chỉ khi a = b = c= 1 3 VIa (2điểm) 1.(1,0 điểm) Tọa dộ giao điểm I của d và d’ là nghiệm của hệ phương trình 9 3 0 9 3 2 ; 6 0 3 2 2 2 x x y I x y y = − − = ⇔ ⇒ ÷ + − = = Do vai trò của A, B, C, D là như nhau nên giả sử M là trung điểm của AD ( ) Ox 3;0M d M⇒ = ∩ ⇒ 0,25 Ta có: 2 3 2AB IM= = Theo giả thiết . 12 2 2 ABCD S AB AD AD= = ⇒ = Vì I, M thuộc d : 3 0d AD AD x y⇒ ⊥ ⇒ + − = 0,25 Lại có 2MA MD= = ⇒ tọa độ điểm A, D là nghiệm cuẩ hệ phương trình ( ) ( ) ( ) 2 2 3 0 2 4 2;1 ; 4; 1 1 1 3 2 x y x x A D y y x y + − = = = ⇔ ∧ ⇒ − = = − − + = 0,25 Do I là trung điểm của AC nên C(7; 2) TT: I là trung điểm của BD nên B(5; 4) 0,25 2.(1,0 điểm) Gọi ( ) , ,n A B C= r ( ) 2 2 2 0A B C + + ≠ là một vectơ pháp tuyến của mặt phẳng (P). Phương trình mặt phẳng (P) có dạng; ( ) ( ) 1 2 0 2 0Ax B y C z Ax By Cz B C+ + + − = ⇔ + + + − = 0,25 ( ) ( ) 1;1;3 3 2 0 2N P A B C B C A B C− ∈ ⇔ − + + + − = ⇔ = + ( ) ( ) : 2 2 0P B C x By Cz B C⇒ + + + + − = 0,25 Khoảng cách từ K đến mp(P) là: ( ) ( ) , 2 2 4 2 4 B d K P B C BC = + + -Nếu B = 0 thì d(K,(P))=0 (loại) -Nếu 0B ≠ thì ( ) ( ) 2 2 2 1 1 , 2 4 2 4 2 1 2 B d K P B C BC C B = = ≤ + + + + ÷ 0,25 Dấu “=” xảy ra khi B = -C. Chọn C = 1 Khi đó pt (P): x + y – z + 3 = 0 0,25 VIIa (1điểm) Ta có ( ) ( ) ( ) 1 3 1 2 2 1 1 1 log 3 1 log 9 7 1 1 5 3 5 2 9 7 ,2 3 1 x x x x − − − + − + − − = + = + 0,25 Số hạng thứ 6 của khai triển ứng với k = 5 là ( ) ( ) ( ) ( ) 3 5 1 1 1 5 1 1 1 1 3 5 8 9 7 . 3 1 56 9 7 3 1 x x x x C − − − − − − + + = + + 0,25 Treo giả thiết ta có 0,5 ( ) ( ) 1 1 1 1 1 56 9 7 3 1 224 9 7 4 3 1 1 2 x x x x x x − − − − − + + = + ⇔ = + = ⇔ = VIb (2điểm) 1.(1,0 điểm) Do B là giao của AB và BD nên tọa độ của B là nghiệm hệ phương trình: 21 2 1 0 21 13 5 ; 7 14 0 13 5 5 5 x x y B x y y = − + = ⇔ ⇒ ÷ − + = = 0,25 Lại có ABCD là hình chữ nhật nên ( ) ( ) , ,AC AB AB BD= . Kí hiệu ( ) ( ) ( ) 1; 2 , 1; 7 , , AB BD AC n n n a b= − = − = uuur uuur uuur lần lượt là vtpt của các đường thẳng AB, BD, AC Khi đó ta có: ( ) ( ) 2 2 3 cos , cos , 2 2 AB BD AC AB n n n n a b a b= ⇔ − = + uuur uuur uuur uuur 2 2 7 8 0 7 a b a ab b b a = − ⇔ + + = ⇔ = − 0,25 Với a = -b. chọn a= 1, b = -1. Khi đó phương trình AC: x – y – 1 = 0 A AB AC = ∩ nên tọa độ điểm A là nghiệm của hệ ( ) 1 0 3 3;2 2 1 0 2 x y x A x y y − − = = ⇔ ⇒ − + = = Gọi I là tâm hình chữ nhật thì I AC BD= ∩ nên tọa độ điểm I là nghiệm của hệ 7 1 0 7 5 2 ; 7 14 0 5 2 2 2 x x y I x y y = − − = ⇔ ⇒ ÷ − + = = Do I là trung điểm của AC và BD nên ( ) 14 12 4;3 , ; 5 5 C D ÷ 0,25 Với b = -7a loại vì AC không cắt BD 0,25 2.(1,0 điểm) H ( ) ; ;x y z là trực tâm của tam giác ABC khi và chỉ khi ( ) , ,BH AC CH AB H ABC⊥ ⊥ ∈ ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) 2 15 . 0 1 2 2 3 0 29 . 0 3 1 1 2 0 15 2 8 3 5 1 0 , 0 1 3 2 29 1 ; ; 15 15 3 x BH AC x y z CH AB x y z y x y z AH AB AC z H = = + + − + = ⇔ = ⇔ − + − + + = ⇔ = − − − + − = = = − ⇒ − ÷ uuur uuur uuur uuur uuur uuur uuur 0,5 I ( ) ; ;x y z là tâm đường tròn ngoại tiếp tam giác ABC khi và chỉ khi ( ) ,AI BI CI I ABC= = ∈ 0,5 ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 3 1 1 2 1 1 2 1 2 2 8 3 5 1 0 , 0 x y z x y z AI BI CI BI x y x y z x y z AI AB AC − + − + − = + + − + = ⇔ = ⇔ − + − + + = + + − + − − − + − = = uur uuur uuur 14 15 61 14 61 1 , , 30 15 30 3 1 3 x y I z = ⇔ = ⇒ − ÷ = − VIIb (1điểm) Điều kiện x > 0 Bất phương trình ( ) ( ) ( ) 2 3 3 log 2 1 1x x x⇔ − > − Nhận thấy x = 3 không phải là nghiệm của phương trình (1) 0,25 TH1: Nếu x > 3 thì ( ) 2 3 1 1 log 2 3 x x x − ⇔ > − Xét hàm số ( ) 2 3 log 2 f x x= , hàm số đồng biến trên khoảng ( ) 0;+∞ ( ) 1 3 x g x x − = − , hàm số nghịch biến trên khoảng ( ) 3;+∞ 0,25 + Với x> 4 thì ( ) ( ) ( ) ( ) 4 3 4f x f g g x> = = > Suy ra bất phương trình có nghiệm x > 4 + Với 4x ≤ thì ( ) ( ) ( ) ( ) 4 3 4f x f g g x≤ = = ≤ ⇒ bất phương trình vô nghiệm 0,25 TH2: Nếu x < 3 thì ( ) 2 3 1 1 log 2 3 x x x − ⇔ < − + Với x ≥ 1 thì ( ) ( ) ( ) ( ) 1 0 1f x f g g x≥ = = ≥ ⇒ bất phương trình vô nghiệm + Với x < 1 thì ( ) ( ) ( ) ( ) 1 0 1f x f g g x< = = < ⇒ Bất phương trình có nghiệm 0 < x <1 Vậy bất phương trình có nghiêm 0,25 . 9 0 ,25 =+= 21 I3II 3 e 222 5 3 +− 0 ,25 IV (1điểm) *Ta có 2IA IH= − ⇒ uur uuur H thuộc tia đối c a tia IA và 2IA IH= 2 2BC AB a= = Suy ra 3 , 2 2 a a IA a IH AH IA IH= = ⇒ = + = 0 ,25 Ta có. , 2 2 2 2 , d K SAH SK a d K SAH d B SAH BI SB d B SAH ⇒ = = ⇒ = = = 0 ,25 V (1điểm) Do a, b, c > 0 và 2 2 2 1a b c+ + = nên ( ) , , 0; 1a b c ∈ Ta có ( ) 2 2 5 3 1 2 3 2 2 2 1 a a a a a a. có 5 2 2 2 0 2 . .cos 45 2 a HC AC AH AC AH HC= + − ⇒ = Vì ( ) ( ) ( ) 15 0 0 , 60 .tan 60 2 a SH ABC SC ABC SCH SH HC⊥ ⇒ = ∠ = ⇒ = = 0 ,25 Ta có 5 2 2 2 0 2 . .cos 45 2 a HC AC AH AC AH HC=