KiÓm tra 45 phót - Giíi h¹n - 11U - §1 1) TÝnh c¸c giíi h¹n sau: a) 1 lim + ++ n nnn b) 2 . 1 4 7 (3 2) lim 2 1 n n n n + + + + − + + c) 3 2 2 2 4 12 lim 6 x x x x x x → + − + − d) ( ) 2 2 lim 3 1 7 2 x x x x x →−∞ − + − − + 2) T×m a ®Ó hµm sè sau liªn tôc t¹i x = 1 3 5 3 3 1 ( ) 1 (2 3) 1 x x khi x f x x a x khi x + − + > = − + ≤ 3) a) CM pt sau cã 3 nghiÖm ph©n biÖt: 3 2 6 1 0x x − + + = b) Cho f(x) = ax 2 + bx + c tho¶ m·n: 2a + 6b + 19c = 0 CMR pt ax 2 + bx + c = 0 cã nghiÖm (Thang ®iÓm: 4x1.5® + 2® + 1® + 1®) KiÓm tra 45 phót - Giíi h¹n - 11U - §1 1) TÝnh c¸c giíi h¹n sau: a) 1 lim + ++ n nnn b) 2 . 1 4 7 (3 2) lim 2 1 n n n n + + + + − + + c) 3 2 2 2 4 12 lim 6 x x x x x x → + − + − d) ( ) 2 2 lim 3 1 7 2 x x x x x →−∞ − + − − + 2) T×m a ®Ó hµm sè sau liªn tôc t¹i x = 1 3 5 3 3 1 ( ) 1 (2 3) 1 x x khi x f x x a x khi x + − + > = − + ≤ 3) a) CM pt sau cã 3 nghiÖm ph©n biÖt: 3 2 6 1 0x x − + + = b) Cho f(x) = ax 2 + bx + c tho¶ m·n: 2a + 6b + 19c = 0 CMR pt ax 2 + bx + c = 0 cã nghiÖm (Thang ®iÓm: 4x1.5® + 2® + 1® + 1®) KiÓm tra 45 phót - Giíi h¹n - 11U - §1 1) TÝnh c¸c giíi h¹n sau: a) 1 lim + ++ n nnn b) 2 . 1 4 7 (3 2) lim 2 1 n n n n + + + + − + + c) 3 2 2 2 4 12 lim 6 x x x x x x → + − + − d) ( ) 2 2 lim 3 1 7 2 x x x x x →−∞ − + − − + 2) T×m a ®Ó hµm sè sau liªn tôc t¹i x = 1 3 5 3 3 1 ( ) 1 (2 3) 1 x x khi x f x x a x khi x + − + > = − + ≤ 3) a) CM pt sau cã 3 nghiÖm ph©n biÖt: 3 2 6 1 0x x − + + = b) Cho f(x) = ax 2 + bx + c tho¶ m·n: 2a + 6b + 19c = 0 CMR pt ax 2 + bx + c = 0 cã nghiÖm (Thang ®iÓm: 4x1.5® + 2® + 1® + 1®) KiÓm tra 45 phót - Giíi h¹n - 11U - §2 1) TÝnh c¸c giíi h¹n sau: a) 3 6 3 2 7 5 8 lim 2 12 n n n n − − + + b) 2 2 5 (3 1) lim 2 5 2 n n n n + + + − + − c) 3 2 3 1 6 11 6 lim 2 1 x x x x x x → − + − − − d) ( ) 2 2 lim 5 1 11 x x x x x →−∞ − + − − 2) T×m a ®Ó hµm sè sau liªn tôc t¹i x = 0 3 2 4 1 6 1 0 ( ) 3 1 0 x x khi x f x x x x a khi x + − + > = + + − ≤ 3) a) CM pt sau cã 3 nghiÖm ph©n biÖt: 3 3 6 2 0x x − + = b) Cho f(x) = ax 2 + bx + c tho¶ m·n: 2a + 6b + 19c = 0 CMR pt ax 2 + bx + c = 0 cã nghiÖm (Thang ®iÓm: 4x1.5® + 2® + 1® + 1®) KiÓm tra 45 phót - Giíi h¹n - 11U - §2 1) TÝnh c¸c giíi h¹n sau: a) 3 6 3 2 7 5 8 lim 2 12 n n n n − − + + b) 2 2 5 (3 1) lim 2 5 2 n n n n + + + − + − c) 3 2 3 1 6 11 6 lim 2 1 x x x x x x → − + − − − d) ( ) 2 2 lim 5 1 11 x x x x x →−∞ − + − − 2) T×m a ®Ó hµm sè sau liªn tôc t¹i x = 0 3 2 4 1 6 1 0 ( ) 3 1 0 x x khi x f x x x x a khi x + − + > = + + − ≤ 3) a) CM pt sau cã 3 nghiÖm ph©n biÖt: 3 3 6 2 0x x − + = b) Cho f(x) = ax 2 + bx + c tho¶ m·n: 2a + 6b + 19c = 0 CMR pt ax 2 + bx + c = 0 cã nghiÖm (Thang ®iÓm: 4x1.5® + 2® + 1® + 1®) KiÓm tra 45 phót - Giíi h¹n - 11U - §2 1) TÝnh c¸c giíi h¹n sau: a) 3 6 3 2 7 5 8 lim 2 12 n n n n − − + + b) 2 2 5 (3 1) lim 2 5 2 n n n n + + + − + − c) 3 2 3 1 6 11 6 lim 2 1 x x x x x x → − + − − − d) ( ) 2 2 lim 5 1 11 x x x x x →−∞ − + − − 2) T×m a ®Ó hµm sè sau liªn tôc t¹i x = 0 3 2 4 1 6 1 0 ( ) 3 1 0 x x khi x f x x x x a khi x + − + > = + + − ≤ 3) a) CM pt sau cã 3 nghiÖm ph©n biÖt: 3 3 6 2 0x x − + = b) Cho f(x) = ax 2 + bx + c tho¶ m·n: 2a + 6b + 19c = 0 CMR pt ax 2 + bx + c = 0 cã nghiÖm (Thang ®iÓm: 4x1.5® + 2® + 1® + 1®)