1. Trang chủ
  2. » Giáo án - Bài giảng

Một số đề thi vào 10 trong cả nước năm 2010

76 1K 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 76
Dung lượng 2,59 MB

Nội dung

Dịch Vụ Toán Học Tuyển tập Đề thi vào lớp 10 năm học 2010 - 2011 của các trường THPT trên cả nước (có Đáp án ) Môn Toán WWW.VNMATH.COM About VnMath.Com vnMath.com Dịch vụ Toán họ c info@vnmath.com Sách Đại số Giải tích Hình học Các loại khác Chuyên đề Toán Luyện thi Đại học Bồi dưỡng HSG Đề thi Đáp án Đại học Cao học Thi lớp 10 Olympic Giáo án các môn SỞ GIÁO DỤC VÀ ĐÀO TẠO KỲ THI TUYỂN SINH LỚP 10 THPT TP.HCM Năm học: 2010 – 2011 ĐỀ CHÍNH THỨC MÔN: TOÁN Thời gian làm bài: 120 phút Bài 1: (2 điểm) Giải các phương trình và hệ phương trình sau: a) 2 232xx 0   b) 41 62 xy xy      9 0c) 42 4133xx d) 2 2221xx0 Bài 2: (1,5 điểm) a) Vẽ đồ thị (P) của hàm số 2 2 x y   và đường thẳng (D): 1 1 2 yx trên cùng một hệ trục toạ độ. b) Tìm toạ độ các giao điểm của (P) và (D) bằng phép tính. Bài 3: (1,5 điểm) Thu gọn các biểu thức sau: 12 6 3 21 12 3A  22 53 52335 2335 22 B         Bài 4: (1,5 điểm) Cho phương trình (x là ẩn số) 22 (3 1) 2 1 0xmxmm  a) Chứng minh rằng phương trình luôn luôn có 2 nghiệm phân biệt với mọi giá trị của m. b) Gọi x 1 , x 2 là các nghiệm của phương trình. Tìm m để biểu thức sau đạt giá trị lớn nhất: A = 2 3 22 12 1 x xxx. Bài 5: (3,5 điểm) Cho đường tròn tâm O đường kính AB=2R. Gọi M là một điểm bất kỳ thuộc đường tròn (O) khác A và B. Các tiếp tuyến của (O) tại A và M cắt nhau tại E. Vẽ MP vuông góc với AB (P thuộc AB), vẽ MQ vuông góc với AE (Q thuộc AE). a) Chứng minh rằng AEMO là tứ giác nội tiếp đường tròn và APMQ là hình chữ nhật. b) Gọi I là trung điểm của PQ. Chứng minh O, I, E thẳng hàng. c) Gọi K là giao điểm của EB và MP. Chứng minh hai tam giác EAO và MPB đồng dạng. Suy ra K là trung điểm của MP. d) Đặt AP = x. Tính MP theo R và x. Tìm vị trí của M trên (O) để hình chữ nhật APMQ có diện tích lớn nhất. BÀI GIẢI Bài 1: (2 điểm) Giải các phương trình và hệ phương trình sau: a) 2 232xx 0   (1) 916 25   (1) 35 1 35 2 42 4 x hay x       b) 41 62 9(2 xy xy      (1) ) 41 14 7 ( (2) 2 (1)) xy (1) x pt pt       3 1 2 y x         c) 42 4133xx 0   (3), đđặt u = x 2 , phương trình thành : 4u 2 – 13u + 3 = 0 (4) (4) có 2 169 48 121 11    13 11 1 13 11 (4) 3 84 8 uhayu      Do đó (3) 1 3 2 x hay x  d) 2 2221xx0   (5) '224   Do đó (5) 22 22 22 x hay x     Bài 2: a) Đồ thị: học sinh tự vẽ Lưu ý: (P) đi qua O(0;0),  1 1; , 2; 2 2      . (D) đi qua  1 1; , 2; 2 2     Do đó (P) và (D) có 2 điểm chung là :  1 1; , 2; 2 2      . b) PT hoành độ giao điểm của (P) và (D) là 2 2 1 12 22 x xxx  0 12x hay x   V ậy toạ độ giao điểm cảu (P) và (D) là  1 1; , 2; 2 2      . Bài 3: 12 6 3 21 12 3A  22 (33) 3(23)33(23)3    3 22 53 52335 2335 22 B         2B =     22 5423 625 5 423 625 3      22 22 22 5 (1 3) (5 1) 5 (31) (5 1) 3  = =    22 5(1 3) (5 1) 5 (3 1) (5 1) 3   =  B = 10. 5.3 5 20 Bài 4: a)   2 22 2 318 4 4 25(1)40mmmmmm            m Suy ra phương trình luôn luôn có 2 nghiệm phân biệt với mọi m. b) Ta có x 1 + x 2 = 3m + 1 và x 1 x 2 = 2m 2 + m – 1 A= 22 12 1 3 2 x xxx  2 12 1 5 2 x xx x 22 (3 1) 5(2 1)mmm  22 11 66 ( ) 42 mm m       2 25 1 () 42 m Do đó giá trị lớn nhất của A là : 25 4 . Đạt được khi m = 1 2 Bài 5: I K x A E Q O M P I B a) Ta có góc = 90 O =  EMO  EAO => EAOM nội tiếp. Tứ giác APMQ có 3 góc vuông :   o EAO APM PMQ 90 => Tứ giác APMQ là hình chữ nhật b) Ta có : I là giao điểm của 2 đường chéo AM và PQ của hình chữ nhật APMQ nên I là trung điểm của AM. Mà E là giao điểm của 2 tiếp tuyến tại M và tại A nên theo định lý ta có : O, I, E thẳng hàng. c) Cách 1 : hai tam giác AEO và MPB đồng dạng vì chúng là 2 tam giác vuông có 1 góc bằng nhau là , vì OE // BM   AOE ABM => AO AE BP MP  (1) Mặt khác, vì KP//AE, nên ta có tỉ số KP BP AE AB  (2) Từ (1) và (2) ta có : AO.MP = AE.BP = KP.AB, mà AB = 2.OA => MP = 2.KP Vậy K là trung điểm của MP. Cách 2 : Ta có EK AP EB AB  (3) do AE // KP, mặt khác, ta có EI AP EO AB  (4) do 2 tam giác EOA và MAB đồng dạng So sánh (3) & (4), ta có : EK EI EB EO  . Theo định lý đảo Thales => KI // OB, mà I là trung điểm AM => K là trung điểm MP. d) Ta dễ dàng chứng minh được : abcd 4 abcd 4      (*) Dấu “=” xảy ra khi và chỉ khi a = b = c = d MP = 22 2 2 MO OP R (x R) 2Rx x  2 Ta có: S = S APMQ = 23 MP.AP x 2Rx x (2R x)x S đạt max  đạt m ax  x.x.x(2R – x) đạt max 3 (2R x)x  xxx (2Rx) 333  đạt max Áp dụng (*) với a = b = c = x 3 Ta có : 4 4 4 xxx 1 x x x R (2Rx) (2Rx) 333 4 3 3 3 16         Do đó S đạt max  x (2R x) 3   3 xR 2  . TS. Nguyễn Phú Vinh (TT BDVH và LTĐH Vĩnh Viễn) SỞ GIÁO DỤC VÀ ĐÀO TẠO KỲ THI TUYỂN SINH LỚP 10 THÀNH PHỐ HỒ CHÍ MINH TRUNG HỌC PHỔ THÔNG CHUN NĂM HỌC 2010 - 2011 KHÓA NGÀY 21/06/2010 Môn thi: TOÁN (chun) Thời gian làm bài : 150 phút ( không kể thời gian giao đề) Câu 1 : (4 điểm) 1) Giải hệ phương trình : 1 y 1 x 1 2 5y 3 x 1  + =   +   + =  +  2) Giải phương trình: 2 2 2 (2x x) 2x x 12 0 − + − − = Câu 2 : (3 điểm) Cho phương trình x 2 – 2(2m + 1)x + 4m 2 + 4m – 3 = 0 (x là ẩn số) Tìm m để phương trình có hai nghiệm phân biệt x 1 , x 2 (x 1 < x 2 ) thỏa 1 2 x 2 x = Câu 3 : (2 điểm) Thu gọn biểu thức: 7 5 7 5 A 3 2 2 7 2 11 + + − = − − + Câu 4 : (4 điểm) Cho tam giác ABC cân tại A nội tiếp đường tròn (O). Gọi P là điểm chính giữa của cung nhỏ AC. Hai đường thẳng AP và BC cắt nhau tại M. Chứng minh rằng: a)   ABP AMB = b) MA. MP = BA. BM Câu 5 : (3 điểm) a) Cho phương trình: 2x 2 + mx + 2n + 8 = 0 (x là ẩn số và m, n là các số ngun).Giả sử phương trình có các nghiệm đều là số ngun. Chứng minh rằng: m 2 + n 2 là hợp số. b) Cho hai số dương a, b thỏa a 100 + b 100 = a 101 + b 101 = a 102 + b 102 . Tính P = a 2010 + b 2010 Câu 6 : (2 điểm) Cho tam giác OAB vng cân tại O với OA = OB = 2a. Gọi (O) là đường tròn tâm O bán kính a. Tìm điểm M thuộc (O) sao cho MA + 2MB đạt giá trị nhỏ nhất. Câu 7 : (2 điểm) Cho a, b là các số dương thỏa 2 2 2 a 2b 3c + ≤ . Chứng minh 1 2 3 a b c + ≥ . HẾT Họ và tên thí sinh: ………………………………………………………Số báo danh: …………………………. Chữ ký giám thò 1 :……………………………………… Chữ ký giám thò 2 :……………………………… Đ Ề CHÍNH TH Ứ C 1 SỞ GIÁO DỤC VÀ ĐÀO TẠO KỲ THI TUYỂN SINH LỚP 10 THÀNH PHỐ HỒ CHÍ MINH TRUNG HỌC PHỔ THÔNG CHUYÊN NĂM HỌC 2010 – 2011 KHÓA NGÀY 21/06/2010 Đáp án : TOÁN Câu Hướng dẫn chấm Điểm 1 (4 đ) Câu 1 : (4 điểm) 1) Giải hệ phương trình : 1 y 1 x 1 2 5y 3 x 1  + =   +   + =  +  1 2 3y 1 y 1 2y 2 x 1 x 1 2 2 2 5y 3 5y 3 5y 3 x 1 x 1 x 1 −   = + = − = −       + + ⇔ ⇔    + =    + = + = +   + +   1 x 2 1 y 3  =   ⇔   =   2) Giải phương trình: 2 2 2 (2x x) 2x x 12 0 − + − − = Đặt t = 2x 2 – x, pt trở thành t 2 + t – 12 = 0 ⇔ t = 3 hay t = – 4 t = 3 ⇔ 2x 2 – x = 3 ⇔ x = – 1 hay x = 3/2 t = – 4 ⇔ 2x 2 – x = – 4 ( vơ nghiệm) Vậy phương trình có 2 nghiệm là x = – 1, x = 3/2 0,5x4 0,5đ 0,5đ 0,5đ 0,5đ 2 (3 đ) Câu 2 : (3 điểm) Cho phương trình x 2 – 2(2m + 1)x + 4m 2 + 4m – 3 = 0 (x là ẩn số) (*) Tìm m để phương trình có hai nghiệm phân biệt x 1 , x 2 (x 1 < x 2 ) thỏa 1 2 x 2 x = ∆ ’ = (2m + 1) 2 – (4m 2 + 4m – 3) = 4 > 0, với mọi m Vậy (*) ln có 2 nghiệm phân biệt với mọi m. 1 2 x 2m 1,x 2m 3 = − = + 1 2 x 2 x 2m 1 2 2m 3 = ⇔ − = + 7 m 2m 1 2(2m 3) 2 5 2m 1 2(2m 3) m 6   = −  − = +   ⇔   − = − +   = −    0, 5 đ 0,5 đ 0,5đ 1,5đ 3 (2 đ) Câu 3 : (2 điểm) Thu gọn biểu thức: 7 5 7 5 A 3 2 2 7 2 11 + + − = − − + Xét M = 7 5 7 5 7 2 11 + + − + Ta có M > 0 và M 2 = 14 2 44 2 7 2 11 + = + suy ra M = 2 A = 2 ( 2 1) 1 − − = 1 đ 1đ 2 4 (4 ñ) Caâu 4 : (4 ñieåm) Cho tam giác ABC cân tại A nội tiếp ñường tròn (O). Gọi P là ñiểm chính giữa cung nhỏ AC. Hai ñường thẳng AP và BC cắt nhau tại M. Chứng minh rằng: a)   ABP AMB = b) MA. MP = BA. BM M P A O B C a)        1 1 1 ( ) ( ) 2 2 2 = − = − = = AMB sñAB sñPC sñAC sñPC sñAP ABP b)      = ⇒ = = PA PC CAP ABP AMB suy ra CM = AC = AB ∆ MAC ~ ∆ MBP (g – g) . . . ⇒ = ⇒ = = MA MC MA MP MBMC MBAB MB MP 2ñ 1ñ 1ñ 5 (3 ñ) Caâu 5 : (3 ñieåm) a) Cho ph ươ ng trình: 2x 2 + mx + 2n + 8 = 0 (x là ẩ n s ố và m, n là các s ố nguyên) Gi ả s ử ph ươ ng trình có các nghi ệ m ñề u là s ố nguyên. Ch ứ ng minh r ằ ng: m 2 + n 2 là h ợ p s ố . G ọ i x 1 , x 2 là 2 nghi ệ m c ủ a ph ươ ng trình ⇒ x 1 , x 2 nguyên, 1 2 m x x 2 + = − , x 1 x 2 = n + 4 2 2 2 2 2 2 2 2 1 2 1 2 1 2 1 2 m n (2x 2x ) (x x 4) 4x 4x x x 16 + = + + − = + + + 2 2 1 2 (x 4)(x 4) = + + x 1 2 + 4, x 2 2 + 4 là các số nguyên lớn hơn 1 nên m 2 + n 2 là hợp số. b) Cho hai số dương a, b thỏa a 100 + b 100 = a 101 + b 101 = a 102 + b 102 . Tính P = a 2010 + b 2010 Ta có 0 = a 100 + b 100 – (a 101 + b 101 ) = a 101 + b 101 – (a 102 + b 102 ) . ⇒ a 100 (1 – a) + b 100 (1 – b) = a 101 (1 – a) + b 101 (1 – b) ⇒ a 100 (1 – a) 2 + b 100 (1 – b) 2 = 0 ⇒ a = b = 1 ⇒ P = a 2010 + b 2010 = 2 0,5 ñ 0,5ñ 0,5 ñ 1ñ 0,5ñ 6 (2ñ) Caâu 6 : (2 ñieåm) Cho tam giác OAB vuông cân tại O với OA = OB = 2a. Gọi (O) là ñường tròn tâm O bán kính a. Tìm ñiểm M thuộc (O) sao cho MA + 2MB ñạt giá trị nhỏ nhất. 3 F E B A C O D M Đường thẳng OA cắt (O) tại C và D với C là trung ñiểm của OA. Gọi E là trung ñiểm của OC. * Trường hợp M không trùng với C và D: Hai tam giác OEM và OMA ñồng dạng (   OM 1 OE MOE AOM, OA 2 OM = = = ). ⇒ ME OM 1 AM OA 2 = = ⇒ MA = 2EM * Tr ườ ng h ợ p M trùng v ớ i C: MA = CA = 2EC = 2EM * Tr ườ ng h ợ p M trùng v ớ i D: MA = DA = 2ED = 2EM V ậ y luôn có MA = 2EM MA + 2MB = 2(EM + MB) ≥ 2EB = h ằ ng s ố . D ấ u “=” x ả y ra khi M là giao ñ i ể m c ủ a ñ o ạ n BE v ớ i ñườ ng tròn (O). V ậ y MA + 2MB nh ỏ nh ấ t khi M là giao ñ i ể m c ủ a ñ o ạ n BE v ớ i ñườ ng tròn (O). 1ñ 0,5 ñ 0,5ñ 7(2ñ) Caâu 7 : (2 ñieåm) Cho a, b là cá c s ố d ươ ng thỏ a 2 2 2 a 2b 3c + ≤ . Ch ứ ng minh 1 2 3 a b c + ≥ . Ta có 1 2 9 (1) (a 2b)(b 2a) 9ab a b a 2b + ≥ ⇔ + + ≥ + 2 2 2 2a 4ab 2b 0 2(a b) 0 ⇔ − + ≥ ⇔ − ≥ ( Đ úng) 2 2 2 2 2 a 2b 3(a 2b ) (a 2b) 3(a 2b ) (2) + ≤ + ⇔ + ≤ + 2 2 2 2a 4ab 2b 0 2(a b) 0 ⇔ − + ≥ ⇔ − ≥ (Đúng) Từ (1) và (2) suy ra 2 2 1 2 9 9 3 a b a 2b c 3(a 2b ) + ≥ ≥ ≥ + + ( do a 2 + 2b 2 ≤ 3c 2 ) 0 ,5 ñ 0,5 ñ 1ñ [...]... gúc EAF = 450 Bi 5: ( 0,5 ủi m) Cho a,b,c l ba s dng th a món abc < 1 Ch ng minh r ng : 1 1 1 + 1 + b + bc + 1 + c + ca < 1 1 + a + ab -H T - Thi vo 10 ca HSP HN nm 2 010 Ngy 19 thỏng 6 nm 2 010 Cm n bn kaka math trờn Mathscope v bn c lp ụn thi ó cung cp thi ny Vũng 1 Bi 1 Cho biu thc A= x4 + 1 3 x4 2 2 x +1 ã x3 x(4x 1) 4 x7 + 6x6 x 6 : x2 + 29x + 78 3x2 + 12x 36 a)Rỳt gn A; b)Tỡm tt c x... +4 =0 - 4) - x ) =0 =0 Vy x = l nghim ca phng trỡnh Gi ý li gii ca cụ giỏo Lu Kim Mai - Giỏo viờn trng THCS Ging Vừ - H Ni S GD V O T O H N I CHNH TH C K THI TUY N SINH VO L P 10 THP CHUYấN Nm h c 2 010 2011 MễN: TON Ngy thi: 24 thỏng 6 nm 2 010 Th i gian Lm bi 150 phỳt BI I (2,0 ủi m) 1) Cho n l s nguyờn, ch ng minh A = n 3 + 11n chia h t cho 6 2) Tỡm t t c cỏc s t nhiờn n ủ B = n 4 3n 2 + 1 l s... mt xung quanh hỡnh nún núi trờn Ht SBD thớ sinh: Ch ký ca GT 1: K THI TUYN SINH LP 10 THPT TP HU Mụn: TON - Khúa ngy: 25/6/2 010 P N V THANG IM im Ni dung S GIO DC V O TO THA THI N HU CHNH THC Bi 1 ý 2,25 a.1 (0,75) Gii phng trỡnh 5 x 2 7 x 6 0 (1): 49 120 169 132 , 13 , 7 13 3 7 13 x1 v x1 2 10 5 10 0,25 0,25 3 Vy phng trỡnh cú hai nghim: x1 , x2 2 5 a.2 2 x 3 y 13 (0,75)... 7 4)( x 2 7 4) 0 x 2 7 4 0 hay ( x 4) x 2 7 4 0 x 2 7 4 hay x 2 7 x x2 = 9 x = 3 TS Nguyn Phỳ Vinh (TT BDVH v LTH Vnh Vin) Kè THI TUYN SINH LP 10 THPT TP HU Sở Giáo dục v đo tạo Thừa Thi n Huế CHNH THC Khúa ngy 24.6.2 010 Mụn: TOáN Thi gian lm bi: 120 phỳt Bi 1: (2,25 im) Khụng s dng mỏy tớnh cm tay: a) Gii phng trỡnh v h phng trỡnh sau: 2 x 3 y 13 2) 3x 5 y 9 1) 5 x 2 7... ủó cho 1) Tỡm cỏc giỏ tr c a m ủ 2 x12 + x2 = 2 x1 x 2 ( 2 x1 x2 1) 2) Tỡm giỏ tr nh nh t v giỏ tr l n nh t c a bi u th c S = x1 + x2 BI III (2.0 ủi m) 1) Cho a l s b t kỡ,ch ng minh r ng: a 2 010 + 2 010 a 2 010 + 2009 >2 2) Tỡm cỏc s nguyờn x, y th a món phng trỡnh y 2 x( x 2)( x 2 2 x + 2) = 0 BI IV (3,0 ủi m) Cho ủ ng trũn (O;R) v m t ủi m M n m ngoi ủ ng trũn. ng trũn ủ ng kớnh OM c t ủ ng trũn... 0,25 AB AC AC Tng t: IK r 0,9dm Vy sau khi ct xong mt xung quanh, phn cũn li ca tm thic ABCD cú th 0,25 ct c mt ỏy ca hỡnh nún Ghi chỳ: Hc sinh lm cỏch khỏc ỏp ỏn nhng ỳng vn cho im ti a im ton bi khụng lm trũn 3 S GIO DC V O TO THA THI N HU K THI TUYN SINH THPT CHUYấN QUC HC Khoỏ ngy 24.6.2 010 CHNH THC Mụn: TON Thi gian lm bi: 150 phỳt Bi 1: (1,5 im) Xỏc nh tham s m phng trỡnh m 1 x 2 2 m... im) T mt tm thic hỡnh ch nht ABCD cú chiu rng AB = 3,6dm, chiu di AD = 4,85dm, ngi ta ct mt phn tm thic lm mt xung quanh ca mt hỡnh nún vi nh l A v ng sinh bng 3,6dm, sao cho din tớch mt xung quanh ny ln nht Mt ỏy ca hỡnh nún c ct trong phn cũn li ca tm thic hỡnh ch nht ABCD a) Tớnh th tớch ca hỡnh nún c to thnh b) Chng t rng cú th ct c nguyờn vn hỡnh trũn ỏy m ch s dng phn cũn li ca tm thic ABCD sau... i ủi m Q ch ng minh r ng: PN PK + QN QK BI V ( 1,0 ủi m) Gi i phng trỡnh: x 8 x 7 + x 5 x 4 + x 3 x + 1 = 0 Lu ý: Giỏm th khụng gi i thớch gỡ thờm 3 2 R 2 Kè THI TUYN SINH LP 10 TRUNG HC PH THễNG KHểA NGY 21 THNG 6 NM 2 010 ti Nng MễN THI : TON Bi 1 (2,0 im) a) Rỳt gn biu thc A ( 20 45 3 5) 5 b) Tớnh B ( 3 1) 2 3 Bi 2 (2,0 im) a) Gii phng trỡnh x 4 13x 2 30 0 3 1 x y 7 b) Gii h... 4: M I N B Q P O O' A a) Trong ng trũn tõm O: Ta cú BMN = MAB (cựng chn cung BM ) b) Trong ng trũn tõm O': Ta cú IN2 = IA.IB c) Trong ng trũn tõm O: MAB BMN (gúc chn cung BM ) (1) Trong ng trũn tõm O': BAN BNM (gúc chn cung BN ) (2) T (1)&(2) => MAB BAN MBN BMN BNM MBN 1800 Nờn t giỏc APBQ ni tip => BAP BQP QNM (gúc ni tip v gúc chn cung) m QNM v BQP v trớ so le trong => PQ // MN Vừ Lý Vn... giỏc APBQ ni tip => BAP BQP QNM (gúc ni tip v gúc chn cung) m QNM v BQP v trớ so le trong => PQ // MN Vừ Lý Vn Long (TT BDVH v LTH Vnh Vin) S Kè THI TUY N SINH L P 10 PTTH CHUYấN Lấ QUí ễN KHểA NGY 24 THNG 6 NM 2 010 GIO D C V O T O THNH PH N NG MễN THI : TON ( Chuyờn Toỏn - H s 2) Th i gian : 150 phỳt ( khụng tớnh th i gian giao ủ ) CHNH TH C Bi 1: ( 2, 0 ủi m) a Rỳt g n bi u th c : A = 3 + 2 . các số nguyên lớn hơn 1 nên m 2 + n 2 là hợp số. b) Cho hai số dương a, b thỏa a 100 + b 100 = a 101 + b 101 = a 102 + b 102 . Tính P = a 2 010 + b 2 010 Ta có 0 = a 100 + b 100 . (a 101 + b 101 ) = a 101 + b 101 – (a 102 + b 102 ) . ⇒ a 100 (1 – a) + b 100 (1 – b) = a 101 (1 – a) + b 101 (1 – b) ⇒ a 100 (1 – a) 2 + b 100 (1 – b) 2 = 0 ⇒ a = b = 1 ⇒ P = a 2 010 . đề Toán Luyện thi Đại học Bồi dưỡng HSG Đề thi Đáp án Đại học Cao học Thi lớp 10 Olympic Giáo án các môn SỞ GIÁO DỤC VÀ ĐÀO TẠO KỲ THI TUYỂN SINH LỚP 10 THPT TP.HCM Năm học: 2 010 – 2011 ĐỀ

Ngày đăng: 04/05/2015, 02:00

TỪ KHÓA LIÊN QUAN

w