1. Trang chủ
  2. » Luận Văn - Báo Cáo

Tài liệu Sáng kiến kinh nghiệm - Giải bài tập based on tính chất tỷ lệ thức

27 423 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 27
Dung lượng 288,51 KB

Nội dung

Trng THCS Trn Quc Ton P. Giáo dc TP: H long     tài toán 7 1 ng Th Thanh Hng M U 1. Lý do chn  tài : Nh chúng ta ã bit vic dy hc theo chuyên  có tác dng rt to ln i vi vic hc, tip thu, thao tác t duy, phng pháp suy lun ca hc sinh.  lp 7 h thng kin thc v T l thc chim s tit tng i ln, óng vai trò quan trng trong vic gii bài tp toán lp 7 nói riêng và chng trình toán cp 2 nói chung. Hc v t l thc có li ích: T mt t l thc có th chuyn thành mt ng thc gia hai tích. Trong mt t l thc nu bit 3 s hng ta có th tìm c s hng th t. Khi hc v t l thun, t l nghch ta thy t l thc là mt phng tin quan trng giúp ta gii toán. Trong hình hc,  gii nh lý Talét, tam giác ng dng (lp 8) thì không th thiu kin thc v t l thc. Trong sách giáo khoa lp 7, vic trình bày h thng kin thc v t l thc và mt s bài tp vn dng tính cht ca t l thc ã có song còn  dng n gin ch phù hp vi i tng hc sinh i trà. Mun cho hc sinh nm vng v kin thc toán hc  hc khá gii môn toán và  thun tin cho vic bi dng hc sinh gii, qua kinh nghim ca bn thân và hc hi ng nghip tôi thy vic dy hc theo chuyên  là rt tt. Mt trong các chuyên  tôi thy là cn thit cho hc sinh khá, gii lp 7 là Gii mt s bài tp d a vào tính cht ca t l thc. 2. Lch s ca nhng sáng kin kinh nghim : Là mt giáo viên ging dy b môn toán  tr!ng ph" thông, trong quá trình nghiên cu và tích lu# kinh nghim trong ging dy, tôi nhn thy i vi chng trình i s 7 và hình hc 8 ( chng tam giác ng dng ) thì các tính cht ca T l thc có vai trò rt quan trng, là mt công c  gii các bài toán. 3. Mc ích nghiên cu : Là công c  gii toán ( các dng toán có  phn nhim v ca  tài ) 4. Nhim v và phng pháp nghiên cu : a, Phng pháp : Trong quá trình làm  tài tôi ã vn dng phng pháp lý lun qua vic c sách giáo khoa toán 7, sách giáo viên toán 7. Tham kho các loi sách có liên quan n  tài: 1.$ hc tt $i s 7 ( Tác gi: Hoàng Chúng). 2.Toán nâng cao và các chuyên  (Nguy%n Ngc $m V& Dng Thu'). 3.Tài liu bi dng S hc và $i s 7 (Nguy%n Tin Tài-$(ng Hùng Thng) 4.Mt s vn  phát trin $i s 7 ( V& Hu Bình) 5.Toán c bn và nâng cao $i s 7 ( V& Hu Bình) 6.Toán bi dng hc sinh lp 7 ( V& Hu Bình -Tôn Thân -$) Quang Thiu). 7.Tuyn chn 450 bài tp toán THCS ( Phan Ngc $c - Nguy%n Hoàng Thanh - Nguy%n Anh D&ng). 8.Ôn tp $i s 7 ( Nguy%n Ngc $m V& Dng Thu'). $ng th!i tôi c&ng s* dng các phng pháp khác : Phng pháp quan sát th c ti%n s phm, Phng pháp t"ng kt kinh nghim. Trng THCS Trn Quc Ton P. Giáo dc TP: H long     tài toán 7 2 ng Th Thanh Hng   tài này tôi h thng li và b" sung thêm mt s lng kin thc và bài tp cho m)i n v kin thc. M)i n v kin thc c trình bày riêng bit  tin cho vic dy. Khi dy i vi m)i n v kin thc tôi dy lý thuyt trc sau ó có ví d minh ho và bài tp kèm theo. Các bài tp c phân chia thành tng dng và cách gii cho tng dng. Tt c các phn kin thc này tôi dy vào th!i gian thêm ca lp ti tr!ng và dy lng ghép vào mt s tit hc có liên quan n  tài . Sau m)i phn tôi  cho hc sinh kim tra  nm bt u, nhc im ca hc sinh . b, Nhim v : Qua  tài này hc sinh s+ nm bt c mt s n v kin thc sau : * T l thc : - Lý thuyt : + $nh ngh,a t l thc . + Tính cht t l thc . + Tính cht ca dãy t s b-ng nhau . - Bài tp : + Loi 1 : Lp t l thc . + Loi 2 : Tìm s hng ca t l thc . + Loi 3 : Tìm x, y, z t t l thc ho(c dãy t s b-ng nhau . + Loi 4 : Gii bài toán t l . + Loi 5 : Phng pháp chng minh t l thc . + Loi 6 : Tính giá tr ca biu thc . * i lng t l thun : - Lý thuyt : + $nh ngh,a . + Tính cht . - Bài tp : + Loi 1 : Tìm giá tr ca 1 trong 2 i lng t l thun . + Loi 2 : Gii 1 s bài toán v i lng t l thun nh! tính cht t l thc ho(c dãy t s b-ng nhau . * i lng t l nghch : - Lý thuyt : + $nh ngh,a . + Tính cht . - Bài tp : + Loi 1 : Tìm giá tr ca 1 trong 2 i lng t l nghch . + Loi 2 : Gii 1 s bài toán v i lng t l nghch . 5. Gii hn (phm vi ) nghiên cu : Tin hành nghiên cu trong chng trình $i s 7 . 6. im mi trong kt qu nghiên cu : $ tài c ng dng  gii quyt nhiu dng toán. Giúp ng!i c có th vn dng 1 các a dng trong quá trình tìm tòi c&ng nh hng d.n hc sinh gii bài tp $i s . Trng THCS Trn Quc Ton P. Giáo dc TP: H long     tài toán 7 3 ng Th Thanh Hng NI DUNG I. T L THC: * Lý thuyt. 1. nh ngha : - T l thc là ng thc ca hai t s: d c b a = ( b,d ? 0 ) - T l thc: d c b a = còn c vit là a : b = c : d - Trong t l thc a : b = c : d, các s a,b,c d c gi là các s hng ca t l thc, a và d là các s hng ngoài hay ngoi t, b và c là các s hng trong hay trung t. 2. Các tính cht ca t l thc: Tính cht 1: ( tính cht c bn ca t l thc ) Nu d c b a = thì a.d = b.c Tính cht 2: ( $iu kin  4 s lp thành t l thc ) Nu ad = bc a,b,c,d ? 0 thì ta có t l thc: d c b a = ; d b c a = ; a c b d = ; a b b d = . 3. Tính cht ca dãy t s bng nhau k f e d c b a === thì k fdb eca = ±± ± ± . ( gi thit các t s u có ngh,a ) 4. Chú ý: Các s x,y,z t l vi các s a,b,c c z b y a x ==⇔ Ta còn vit: x: y: z = a : b :c 5. M t s kin thc m! r ng. + Nu: k f e d c b a === . thì: k kfkdkb kekcka = ++ + + + T t l thc d c b a = , ta suy ra các t l thc: d dc a ba + = + ; d dc d ba + = + ; c dc a ba + = + ; c dc a ba − = − d c c b a a + = + ; d c c b a a + = − * Bài tp Dng 1: Lp t l thc Bài 1: Các t s sau ây có lp thành t l thc không a, ( - 0,3 ) : 2,7 và ( - 1,71 ) : 15,39 b, 4,86 : ( - 11,34 ) và ( - 9,3 ) : 21,6 Gii: a, Ta có: ( 0,3 ) : 2,7 = 7 1 27 3 − = − ( - 1,71 ) : 15,39 = 9 1 1539 171 − = − vy: - 0,3 : 2,7 = ( - 1,71 ) : 15,39 Suy ra các t s: - 0,3 : 2,7 và ( - 1,71 ) : 15,39 có lp thành mt t l thc. Trng THCS Trn Quc Ton P. Giáo dc TP: H long     tài toán 7 4 ng Th Thanh Hng b, Ta có: 4,81 : ( 11,34 ) = 7 3 1134 486 − = − - 9,3 : 21,6 = 72 31 216 93 − = − vy 4,86 : ( 11,34 ) ? - 9,3 : 21,6 Nên các t s ã cho không lp thành mt t l thc. Bài 2: Lp tt c các t l thc có th có c t ng thc sau: a, 7. ( - 28 ) = ( - 49 ) .4 b, 0,36.4,25 = 0,9.1,7 Gii: a, Áp dng tính cht ca t l thc ta có: 7.(28 ) = ( - 49 ).4 28 4 49 7 − = −  ; 28 49 4 7 − − = ; 4 28 7 49 − = − ; 49 28 7 4 − = b, T 0,36.4,25 = 0,9.1,7 áp dng tính cht ca t l thc ta có: 25,4 7,1 9,0 36,0 = ; 25,4 9,0 7,1 26,0 = ; 7,1 25,4 36,0 9,0 = ; 9,0 25,4 36,0 7,1 = Bài 3: Lp tt c các t l thc có th t t l thc 4 1 29:) 2 1 6()27(:6 =− Gii: T 4 1 29:) 2 1 6()27(:6 =− ) 2 1 6).(27( 4 1 29.6 −−= Áp dng tính cht ca t l thc ta suy ra: 4 1 29 27 2 1 6 6 − = − ; 27 4 1 29 6 2 1 6 − = − và 2 1 6 4 1 29 6 27 − = − Bài 4: Lp tt c các t l thc có th c t các s sau: 5;25;125;625 Gii: Ta có ng thc: 5.625 = 25.125 T ó ta có 4 t l thc: 625 125 25 5 = ; 625 25 1256 5 = ; 125 625 5 25 = ; 25 625 5 125 = Bài 5: Lp tt c các dãy t l thc có c t trong 5 s sau ây:4;16;64;265;124. Gii: T 4 trong 5 s ã cho ta lp c 3 ng thc: 4.1024 = 16.256 16.1024 = 64.256 4.256 =16.64 T m)i ng thc trên ta li lp c 4 t l thc Ví d t ng thc ( 1 ) ta có: 1024 256 16 4 = ; 1024 16 256 4 = ; 4 256 16 1024 = ; 4 16 256 1024 = Nh vy t 4 trong 5 s ã cho có th lp c 12 t l thc. Trng THCS Trn Quc Ton P. Giáo dc TP: H long     tài toán 7 5 ng Th Thanh Hng Bài tp vn dng 1, Tìm các t s b-ng nhau trong các t s sau ây ri lp thành các t l thc: 24:28 ; 2: 2 1 2 ; 2:8 ; 3 2 : 2 1 ; 10:3 ; 7:1,2 ; 3,0:3 2. Lp tt c các dãy t l thc có c t ng thc sau: a, 6.6,3 = 9.42. b, 0,24.1,61 = 0,84.0,46. 3. Lp tt c các dãy t l thc có th c t t l sau: 4,11 35 1,5 15 − = − . 4. T các t s sau ây có th lp thành t l thc không ? a, 25,5:5,3 và 21:14 . b, 5 2 52: 10 3 39 và 5,3:1,2 . c, 19,15:61,5 và 7:3 . d, 3 2 4:7− và )5,0(:9,0 − . 5. Lp tt c các t l thc có c t 4 s sau: 1,5; 2; 3,6; 4,8 6. a, Lp 8 t l thc có c t 4 s sau ây:2; 4; 8; 16 ( m)i s ch vit mt ln ) b,Lp c bao nhiêu t l thc có c t 4 trong 5 s sau:2; 4; 8; 16; 32 ( m)i s ch vit mt ln ) 7. Ch rõ ngoi t trong trung t ca các t l thc sau: a, 4,29 2,4 21 3 − = − . c, 5,3.97,45.1,7 − = − . b, 3 2 80 3 2 14 4 3 35 2 1 6 = . 8. Các t s sau có th lp thành t l thc không ? a, 3,15:1,5 và 21:7 . b, 75,22:)5,13( − và 7:)4( − . c, 2 1 7: 2 1 4 và 5,4:7,2 . d, )34,11(:86,4 − và 6,21:)3,9( − . 9. Có th lp c t l thc t các s sau ây không ? Nu lp c hãy vit tt c các t l thc ó. a, 75,1 ; 20 ; 29 ; 75 . b, 3,1 ; 2,3 ; 1,2 ; 4,5 . 10. Lp tt c các t l thc có th c t ng thc sau a, 15).9()27.(5 − = − . b, 4,0.555,316,3.45,0 = . c, . 2 1 6.27 4 1 29.6 −=− . 11. Lp các dãy t l thc có c t 4 trong 5 s sau: 3; 9; 27; 91; 243. Trng THCS Trn Quc Ton P. Giáo dc TP: H long     tài toán 7 6 ng Th Thanh Hng Dng 2: Tìm s hng ca t l thc Bài 1: Tìm x trong các t l thc sau a, . 6,3 2 27 −= x b, .38,16:36,9:52,0 − = − x c, . 25,6 8 7 2 4 1 4 x =− Gii: a, T: 15 6,3 7,2.2 6,3 2 27 2 = − = − = x . b, 91,0 36,9 38,1652,0 38,16:36,9:52,0 = − − − =−=− xx . c, T: 2 1 8 2 17 50.25 17.625 8 7 2 4 1 4.25,6 25,6 8 7 2 4 1 4 ===== x x . Bài 2: Tìm x bit. a, 30900 60 15 2 ±== − = − xx x x . b, 5 4 25 16 25 8 2 25 8 2 22 ±==−= − = − xxx x x . Bài 3: Tìm x a, 15 4 20 15 304 15 16.19 2.15 32.19 15 32.19 4 1 3 2 2.8,3 2 3 2 2: 4 1 )2(:8,3 ======= xxx . b, 8025,0:2020 125,0 6 5 .3 25,015,0: 6 5 3:)25,0( ===== xxx . c, 2 3 32212 3 1 1 15 13 1. 7 3 1 12 3 1 1: 15 13 1 7 3 1:)12( ===−=−=− xxxxx . d, 2 1 36476 2,0 3 2 . 5 1 1 76)76(: 3 2 5 1 1:2,0 ===+=++= xxxxx . Bài 4: Tìm x bit a, 2 16 32 9 7 4072 9 40 7 72 == + − + − = − = − xxxx . T ó có: 58147214722 7 72 =−==−= − xx x b, T 5 10 50 7 3 1337 7 13 3 37 7 3 13 37 == + + + − = + = − = + − xxxx x x . Trng THCS Trn Quc Ton P. Giáo dc TP: H long     tài toán 7 7 ng Th Thanh Hng Có: 2215375 3 37 =−== − x x . c, 104100)4( 4 5 20 4 2 ±=+=+ + = + xx x x . + Vi: 6104 =  = + xx . + Vi: 14104 − ==  − = + xx . Vy: 6 = x và 14 − = x . d, .1 1 1 3 2 21 3 2 2 1 3 2 2 1 −=−= − − + + − − = + − = + −  + − = + − x x xx x x x x x x x x T ó ta có: 2 1 1221)2(11 2 1 −=−=−−=−+−=−−= + − xxxxxx x x . Bài 5: Tìm x bit )1( 6 61 24 41 18 2 x yyyx + = + = + . T (1) .51532439 )39(2 )41(2 24 41 )39(2 82 24 41 618 612 24 41 ===+ + + = +  + + = +  + + + + = +  xxx x yy x yy x yyxy Bài tp vn dng 1, Tìm x trong t l thc: a, 9,0::4,6 xx = . b, 4 1 2: 3 1 7,2:3 =x . c, 01,0:14,0:3 = x 2. Tìm x bit a, x x 3 27 − = − . b, 7 5 5 3 = + − x x . c, )1,0(: 3 2 8,0: 3 1 1 x= . d, xx :916,0: = . e, 4 1 2: 3 1 7,2:3 =x . f, 01,0:14,0:3 = x . g, x1,0:25,12,0:35,1 = . h, 35,0:35,04,2: 3 1 3 x= . 3. Tìm x bit a, x x 3 27 − − − . b, 49 4 9 x x − = − . 4. Tìm x trong các t l thc sau: a, 7 5 5 3 = + − x x . b, 9 1 1 7 + = − x x . Trng THCS Trn Quc Ton P. Giáo dc TP: H long     tài toán 7 8 ng Th Thanh Hng Dng 3: Tìm x,y,z t t l thc t dãy t s bng nhau Bài 1: Tìm 2 s x,y bit 5 2 yx = và 21 = + yx . Gii: Áp dng tính cht ca t l thc ta có: 3 7 21 5 2 5 2 −== + + == yxyx . T ó có: 153 5 63 2 −=−= −== y y x x Bài 2: Tìm 2 s x,y bit 7x = 3y và x- y =16. Gii: T: 7 3 37 yx yx == . Áp dng tính cht ca t l thc ta có: 4 4 16 7 3 7 3 −= − = − − == yxyx . T ó ta có: .284 7 .124 4 −=−= −=−= y y x x Bài 3:Tìm 3 s x,y,z bit a, 5 3 2 zyx == và 90 − = + + zyx . b, zyx 532 = = và 33 − = − + zyx . Gii: a, áp dng tính cht ca dãy t s b-ng nhau ta có: 9 10 90 5 3 2 5 3 2 −= − = + + + + === zyxzyx . T ó có: 459 5 279 3 189 2 −=−= −=−= −=−= z z y y x x b, T: zyx 532 = = 30 5 30 3 30 2 zyx == hay: 3 11 33 6 10 15 6 10 15 −=−= + + + + === zyxzyx . .186.3 .3010.3 .4515.3 −=−= −=−= − = − =  z y x Trng THCS Trn Quc Ton P. Giáo dc TP: H long     tài toán 7 9 ng Th Thanh Hng Bài 4: a, 4 3 yx = và 1 22 =− yx . Gii: a, T: 4 3 yx = 16 12 192 4.3 . 43 22 ===       =        yxyx . T ó ta có: .1619616 16 .1214416 9 2 2 2 2 ±=== ±=== yy y xx x Bài 5: Tính x, y, z bit a, 7 5 ; 3 2 zyyx == và 92 = + + zyx . ; b, zyx yx z zx y zx x ++= −+ = ++ = ++ 211 . Gii: a, T:        == == 211575 151032 zyzy yxyx 2 46 92 21 15 10 21 15 10 == + + + + === zyxzyx . T: 422 21 302 15 202 10 == == == z z y y x x b, Ta có: zyx yx z zx y zx x ++= −+ = ++ = ++ 211 (1). Áp dng tính cht b-ng nhau ca t l thc ta c: )2( )(2 zyx zyx zyx ++= ++ + + . Nu: 0 = + + zyx . Thì t (1) ta suy ra: 0;0;0 = = = zyx . Nu: 0 ≠ + + zyx . Thì t (2) ta suy ra: zyx ++= 2 1 khi ó(1) tr thành: 2 1 2 2 1 1 2 1 1 2 1 = −− = +− = +− z z y y x x . Do ó : . 2 1 2 3 2 . 2 1 2 3 2 . 2 1 2 3 2 −=−−= =−= =−= zzz yyy xxx Trng THCS Trn Quc Ton P. Giáo dc TP: H long     tài toán 7 10 ng Th Thanh Hng Có hai áp s: )0,0,0( và ) 2 1 ; 2 1 ; 2 1 ( − . Bài 6: Tìm các s x, y, z bit )1( 4 3 3 2 2 1 − = − = − zyx và .1432 = + − zyx Gii: Cách 1: Nhân t s th hai, th ba ca (1) ln lt vi 2 và 3 ta c: .1 8 614 12 6 2 632 12 93 6 42 2 1 4 3 3 2 2 1 = − = + − − + − = − = − = − = − = − = − zyxzyxzyx  .71.43 .51.32 .31.21 ==− ==− =  = − zz yy xx Cách 2: $(t .34,23,12)( 4 3 3 2 2 1 +=+=+=∈= − = − = − kzkykxzkk zyx Thay (2) vào (1) Ta có: .731.4 .521.3 .311.2 .1881468 .149124612 =+= =+= =+= ===+ = + + − − + z y x kkk kkk Bài 7: Tìm các s a, b, c bit cbba 75,32 = = và .30573 − = + − cba Gii: Vì ba 32 = nên 2 3 ba = hay ).1( 14 21 ba = cb 75 = nên 10 14 cb = kt hp vi 30573 − = + − cba Ta có: .60,84,126 − = − = − = cba Bài 8: Tìm các s a 1 , a 2 , a 3 , a 9 bit 1 9 8 2 9 1 9 21 − == − = − a aa và .90 921 = + + + aaa Gii: Áp dng tính cht ca dãy t s b-ng nhau ta có: .1 45 4590 1 8 9 )9 21() ( 1 89 9 21 1 9 8 2 9 1 921 9219 21 = − = + + + +++−+++ = +++ − + + − + − = − == − = − aaa aaaa aa Ta có: .101 9 1 1 1 == − a a Tng t : .10 921 = = = aaa Bài 9: Tìm các s x, y, z bit x:y:z = 3:4:5 và 2x 2 +2y 2 -3z 2 =-100. Gii: [...]... 10 Tính y1 ? c, Bi t x1.y1 = 45 và x2 = 9 Tính y2 ? d, Bi t x1 = 2; x2 = 4 và y1+y2 = 12 Tính y1, y2 ? tài toán 7 26 ng Th Thanh H ng Tr ng THCS Tr n Qu c To n P Giáo d c TP: H long Ph'n III : K(T LU%N Trên ây tôi ã trình bày sáng ki n kinh nghi m c a mình v v n Gi i m t s bài t p d a vào tính ch t c a t l th c $ây là tài s+ c ng d ng tr c ti p gi ng d y trong ch ng trình $ i s l p 7 Tôi kính mong... c sinh Bài t p v n d ng: Bài 1: ba h c sinh A, B, C có s i m 10 t l v i các s 2, 3, 4 bi t r-ng t"ng s i m 10 c a A và C h n B là 6 i m 10 H i m)i em có bao nhiêu i m 10 ? Bài 2: Tìm các góc c a m t tam giác bi t r-ng các góc ó t l v i 1, 2, 3 Bài 3: M t khu v !n có di n tích là 300m2 Hai c nh t l v i 4 và 3 Tính chi u dài và chi u r ng khu v !n ? Bài 4: Tính s h c sinh c a l p 7A,7B bi t r-ng l p... công th c y = kx v i k là h-ng s khác 0 thì y t l thu n v i x theo h s t l k 2 Tính ch t: N u y t l thu n v i x theo h s t l k thì: y y1 y 2 = = = n = k x1 x 2 xn * Bài t p: Bài 1: Cho bi t x, y là i l ng t l thu n, x1 và x2 là giá tr khác nhau c a x, y1 và y2 là 2 giá tr t ng ng c a y a, Tính x1 bi t y1 = - 3; y2 = - 2; x2 = 5 b, Tính x2, y2 bi t x2 + y2 = 10; x1 = 2; y1 = 3 tài toán 7 18 ng Th Thanh... 210 80 V y 12 ng !i làm trong 7 ngày c 210 m3 t Bài 7: Hai b n c hình h p ch nh t có di n tích áy b-ng nhau Bi t hi u th tích n c trong hai b là 1,8 m3, hi u chi u sao n c trong hai b là 0,6 m Tính di n tích áy m)i b ? Gi i: G i V1, V2 là th tích trong hai b , h1, h2 là chi u cao n c trong hai b ó Khi di n tích áy nh nhau thì th tích và chi u cao t l thu n v i nhau, do ó: tài toán 7 20 ng Th Thanh... 11 2 5 Bài 3: tìm a,b,c,d bi t a b c d = = = và a + b + c + d = 12 3 5 7 9 D ng 4: Dùng tính ch t c a t l th c gi i m t s bài toán v chia t l Bài 1: Tìm di n tích c a m t hình ch nh t bi t r-ng t s gi a 2 c nh c a nó b-ng 2/5 và chu vi c a nó b-ng 28m Gi i: G i dài hai c nh c a hình ch nh t là a và b ( a, b>0 ; m) Theo bài ra ta có: 2(a + b) = 28 a + b = 14 Và a 2 = b 5 a b = 2 5 Áp d ng tính ch... 4.10 = 40m2 tài toán 7 11 ng Th Thanh H ng Tr ng THCS Tr n Qu c To n P Giáo d c TP: H long Bài 2: S h c sinh 4 kh i 6,7,8,9 t l v i các s 9,8,7,6 bi t r-ng s h c sinh kh i 9 ít h n s h c sinh kh i 7 là 70 h c sinh Tính s h c sinh m)i kh i ? Gi i: G i s h c sinh c a các kh i 6,7,8,9 l n l t là a, b, c, d Theo bài ra ta có: a b c d = = = và b − d = 70 9 8 7 6 Áp d ng tính ch t c a dãy t s b-ng nhau ta... t l th c a+5 b+6 a 5 = (a ≠ 5; b ≠ 6) Ch ng minh r-ng = a−5 b−6 b 6 k a k b 11, Cho = ; = trong ó c + d = k Ch ng minh r-ng ax + by = k x c y d 3x − 2 y 2 z − 4 x 4 y − 3z x y z 12, Cho = = Ch ng minh r-ng = = 4 3 2 2 3 4 10, Cho tài toán 7 16 ng Th Thanh H ng Tr ng THCS Tr n Qu c To n P Giáo d c TP: H long 3 a+b+c c a b c = = = Ch ng minh r-ng: b+c+d d b c d a a a a a 14, Cho 1 = 2 = 3 = 8... nhi u h n th!i gian xe Ôtô th hai i t A n B là 4 gi!> Tính th!i gian m)i xe i t A n B ? tài toán 7 25 ng Th Thanh H ng Tr ng THCS Tr n Qu c To n P Giáo d c TP: H long 14 Ba i công nhân làm ba kh i l ng công vi c nh nhau, i th nh t hoàn thành công vi c trong 4 ngày, i th hai trong 6 ngày H i i th ba hoàn thành công vi c trong bao nhiêu ngày ? Bi t r-ng t"ng s ng !i c a i 1 và i 2 g p 5 l n s ng !i c a... To n P Giáo d c TP: H long Ta có: x : y : z = 3 : 4 : 5 Hay x y z = = 3 4 5 T x 2 y 2 z 2 2 x 2 2 y 2 3 z 2 2 x 2 + 2 y 2 + 3 z 2 100 = = = = = = = = 4 9 16 25 18 32 75 18 + 32 + 75 25 ó ta tìm c: x = 6; y = 8; z = 10 x = - 6; y = - 8; z = -1 0 Bài t p v n d ng Bài 1: Tìm 2 s x,y bi t x y = và x + y = 40 7 13 x y b, = và 2 x − y = 34 19 21 x2 y2 c, và x 2 + y 2 = 100 = 9 16 a, Bài 2: Tìm các s x,y,z... trong các tháng 7, 8, 9 l n l t là 32.000 ng; 34.000 Bài 6: M t i thu l i có 10 ng !i làm trong 8 ngày ào c 200m3 t M t i khác có 12 ng !i làm t"ng trong 7 ngày thì ào c bao nhiêu mét kh i t ( gi thi t n/ng xu t m)i ng !i u nh nhau ) Gi i: 10 ng !i làm trong 8 ngày c 10.8 = 80 ( công ) 12 ng !i ào trong 7 ngày c 12.7 = 84 ( công ) G is t mà 12 ng !i ào trong 7 ngày là x ( m3 ) V i n/ng su t không "i thì . + Tính cht . - Bài tp : + Loi 1 : Tìm giá tr ca 1 trong 2 i lng t l thun . + Loi 2 : Gii 1 s bài toán v i lng t l thun nh! tính cht t l thc ho(c dãy t s b-ng. s n v kin thc sau : * T l thc : - Lý thuyt : + $nh ngh,a t l thc . + Tính cht t l thc . + Tính cht ca dãy t s b-ng nhau . - Bài tp : + Loi 1 : Lp t l thc . . i lng t l nghch : - Lý thuyt : + $nh ngh,a . + Tính cht . - Bài tp : + Loi 1 : Tìm giá tr ca 1 trong 2 i lng t l nghch . + Loi 2 : Gii 1 s bài toán v i lng t

Ngày đăng: 15/04/2015, 20:19

TỪ KHÓA LIÊN QUAN

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN

w