1. Trang chủ
  2. » Giáo án - Bài giảng

Bai tap Dai so 9

24 187 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 24
Dung lượng 1,14 MB

Nội dung

BAI TAP DAI SO 9 CHUYấN I: CN THC BC HAI Bi 1 : 1) n gin biu thc : P = 14 6 5 14 6 5+ + . 2) Cho biu thc : Q = x 2 x 2 x 1 . x 1 x 2 x 1 x + + ữ ữ + + a) Rỳt gn biu thc Q. b) Tỡm x Q > - Q. c) Tìm số nguyên x để Q có giá trị nguyên. H ớng dẫn : 1. P = 6 2. a) ĐKXĐ : x > 0 ; x 1. Biểu thức rút gọn : Q = 1 2 x . b) Q > - Q x > 1. c) x = { } 3;2 thỡ Q Z Bi 2 : Cho biu thc P = 1 x x 1 x x + + a) Rút gọn biểu thức sau P. b) Tính giá trị của biểu thức P khi x = 1 2 . H ớng dẫn : a) ĐKXĐ : x > 0 ; x 1. Biểu thức rút gọn : P = x x + 1 1 . b) Vi x = 1 2 thỡ P = - 3 2 2 . Bi 3 : Cho biu thc : A = 1 1 1 1 + + x x x xx a) Rỳt gn biu thc sau A. b) Tớnh giỏ tr ca biu thc A khi x = 4 1 c) Tỡm x A < 0. d) Tỡm x A = A. H ớng dẫn : a) ĐKXĐ : x 0, x 1. Biểu thức rút gọn : A = 1x x . b) Vi x = 4 1 thỡ A = - 1. c) Vi 0 x < 1 thỡ A < 0. d) Vi x > 1 thỡ A = A. Bài 4 : Cho biu thức : A = 1 1 3 1 a 3 a 3 a + ữ ữ + a) Rt gọn biu thức sau A. 1 BAI TAP DAI SO 9 b) Xác định a đ biu thức A > 2 1 . Hng dn : a) KX : a > 0 v a 9. Biu thc rỳt gn : A = 3 2 +a . b) Vi 0 < a < 1 thỡ biu thc A > 2 1 . Bi 5 : Cho biu thc: A = 2 2 x 1 x 1 x 4x 1 x 2003 . x 1 x 1 x 1 x + + + ữ + . 1) Tìm điều kiện đối với x để biểu thức có nghĩa. 2) Rút gọn A. 3) Với x Z ? để A Z ? H ớng dẫn : a) ĐKXĐ : x 0 ; x 1. b) Biu thc rỳt gn : A = x x 2003+ vi x 0 ; x 1. c) x = - 2003 ; 2003 thỡ A Z . Bi 6 : Cho biu thc: A = ( ) 2 x 2 x 1 x x 1 x x 1 : x 1 x x x x + + ữ ữ + . a) Rỳt gn A. b) Tìm x để A < 0. c) Tìm x nguyên để A có giá trị nguyên. H ớng dẫn : a) ĐKXĐ : x > 0 ; x 1. Biu thc rỳt gn : A = 1 1 + x x . b) Vi 0 < x < 1 thỡ A < 0. c) x = { } 9;4 thỡ A Z. Bi 7 : Cho biu thc: A = x 2 x 1 x 1 : 2 x x 1 x x 1 1 x + + + ữ ữ + + a) Rút gọn biểu thức A. b) Chứng minh rằng: 0 < A < 2. H ớng dẫn : a) ĐKXĐ : x > 0 ; x 1. Biu thc rỳt gn : A = 1 2 ++ xx b) Ta xột hai trng hp : +) A > 0 1 2 ++ xx > 0 luụn ỳng vi x > 0 ; x 1 (1) +) A < 2 1 2 ++ xx < 2 2( 1++ xx ) > 2 xx + > 0 ỳng vỡ theo gt thỡ x > 0. (2) T (1) v (2) suy ra 0 < A < 2(pcm). Bi 8 : Cho biu thc: P = a 3 a 1 4 a 4 4 a a 2 a 2 + + + (a 0; a 4) a) Rỳt gn P. b) Tớnh giỏ tr ca P vi a = 9. 2 BAI TAP DAI SO 9 Hng dn : a) KX : a 0, a 4. Biu thc rỳt gn : P = 2 4 a b) Ta thy a = 9 KX . Suy ra P = 4 Bài 9 : Cho biu thức: N = a a a a 1 1 a 1 a 1 + + ữ ữ ữ ữ + 1) Rt gọn biu thức N. 2) Tìm giá trị ca a đ N = -2004. Hng dn : a) KX : a 0, a 1. Biu thc rỳt gn : N = 1 a . b) Ta thy a = - 2004 KX . Suy ra N = 2005. Bi 10 : Cho biu thc 3x 3x 1x x2 3x2x 19x26xx P + + + + = a. Rỳt gn P. b. Tớnh giỏ tr ca P khi 347x = c. Vi giỏ tr no ca x thỡ P t giỏ tr nh nht v tớnh giỏ tr nh nht ú. Hng dn : a ) KX : x 0, x 1. Biu thc rỳt gn : 3x 16x P + + = b) Ta thy 347x = KX . Suy ra 22 33103 P + = c) P min =4 khi x=4. Bi 11 : Cho biu thc + + + + = 1 3 22 : 9 33 33 2 x x x x x x x x P a. Rỳt gn P. b. Tỡm x 2 1 P < c. Tìm giá trị nhỏ nhất của P. Hng dn : a. ) KX : x 0, x 9. Biu thc rỳt gn : 3x 3 P + = b. Vi 9x0 < thỡ 2 1 P < c. P min = -1 khi x = 0 Bi 12: Cho A= 1 1 1 4 . 1 1 a a a a a a a + + + ữ ữ ữ + vi x>0 ,x 1 a. Rỳt gn A b. Tớnh A vi a = ( ) ( ) ( ) 4 15 . 10 6 . 4 15+ ( KQ : A= 4a ) Bi 13: Cho A= 3 9 3 2 1 : 9 6 2 3 x x x x x x x x x x + ữ ữ ữ ữ + + vi x 0 , x 9, x 4 . a. Rỳt gn A. b. x= ? Thỡ A < 1. 3 BAI TAP DAI SO 9 c. Tìm x Z∈ để A Z∈ (KQ : A= 3 2x − ) Bài 14: Cho A = 15 11 3 2 2 3 2 3 1 3 x x x x x x x − − + + − + − − + với x ≥ 0 , x ≠ 1. a. Rút gọn A. b. Tìm GTLN của A. c. Tìm x để A = 1 2 d. CMR : A 2 3 ≤ . (KQ: A = 2 5 3 x x − + ) Bài 15: Cho A = 2 1 1 1 1 1 x x x x x x x + + + + − + + − với x ≥ 0 , x ≠ 1. a . Rút gọn A. b. Tìm GTLN của A . ( KQ : A = 1 x x x+ + ) Bài 16: Cho A = 1 3 2 1 1 1x x x x x − + + + − + với x ≥ 0 , x ≠ 1. a . Rút gọn A. b. CMR : 0 1A≤ ≤ ( KQ : A = 1 x x x− + ) Bài 17: Cho A = 5 25 3 5 1 : 25 2 15 5 3 x x x x x x x x x x     − − + − − − +  ÷  ÷  ÷  ÷ − + − + −     a. Rút gọn A. b. Tìm x Z∈ để A Z∈ ( KQ : A = 5 3x + ) Bài 18: Cho A = 2 9 3 2 1 5 6 2 3 a a a a a a a − + + − − − + − − với a ≥ 0 , a ≠ 9 , a ≠ 4. a. Rút gọn A. b. Tìm a để A < 1 c. Tìm a Z ∈ để A Z∈ ( KQ : A = 1 3 a a + − ) Bài 19: Cho A= 7 1 2 2 2 : 4 4 2 2 2 x x x x x x x x x x     − + + − + − −  ÷  ÷  ÷  ÷ − − − − +     với x > 0 , x ≠ 4. a. Rút gọn A. b. So sánh A với 1 A ( KQ : A = 9 6 x x + ) 4 BAI TAP DAI SO 9 Bài20: Cho A = ( ) 2 3 3 : x y xy x y x y y x x y x y   − + − −  ÷ +  ÷ − − +   với x ≥ 0 , y ≥ 0, x y ≠ a. Rút gọn A. b. CMR : A ≥ 0 ( KQ : A = xy x xy y− + ) Bài 21 : Cho A = 1 1 1 1 1 . 1 1 x x x x x x x x x x x x x x   − + + −   − + − +  ÷  ÷  ÷ − + − +     Với x > 0 , x ≠ 1. a. Rút gọn A. b. Tìm x để A = 6 ( KQ : A = ( ) 2 1x x x + + ) Bài 22 : Cho A = ( ) 4 3 2 : 2 2 2 x x x x x x x x     − +  ÷ + −  ÷  ÷  ÷ − − −     với x > 0 , x ≠ 4. a. Rút gọn A b. Tính A với x = 6 2 5− (KQ: A = 1 x− ) Bài 23 : Cho A= 1 1 1 1 1 : 1 1 1 1 2x x x x x     + − +  ÷  ÷ − + − +     với x > 0 , x ≠ 1. a. Rút gọn A b. Tính A với x = 6 2 5− (KQ: A = 3 2 x ) Bài 24 : Cho A= 3 2 1 1 4 : 1 1 1 1 x x x x x x   + +   − −  ÷  ÷  ÷ − + +   −   với x ≥ 0 , x ≠ 1. a. Rút gọn A. b. Tìm x Z∈ để A Z∈ (KQ: A = 3 x x − ) Bài 25: Cho A= 1 2 2 1 2 : 1 1 1 1 x x x x x x x x   −   − −  ÷  ÷  ÷ − + − + − −     với x ≥ 0 , x ≠ 1. a. Rút gọn A. b. Tìm x Z ∈ để A Z∈ c. Tìm x để A đạt GTNN . (KQ: A = 1 1 x x − + ) Bài 26 : Cho A = 2 3 3 2 2 : 1 9 3 3 3 x x x x x x x x     + − + − −  ÷  ÷  ÷  ÷ − + − −     với x ≥ 0 , x ≠ 9 . a. Rút gọn A. b. Tìm x để A < - 1 2 ( KQ : A = 3 3a − + ) Bài 27 : Cho A = 1 1 8 3 1 : 1 1 1 1 1 x x x x x x x x x x     + − − − − − −  ÷  ÷  ÷  ÷ − − − + −     với x ≥ 0 , x ≠ 1. a. Rút gọn A 5 BAI TAP DAI SO 9 b. Tính A với x = 6 2 5− (KQ: A = 4 4 x x + ) c . CMR : A 1≤ Bài 28 : Cho A = 1 1 1 : 1 2 1 x x x x x x +   +  ÷ − − − +   với x > 0 , x ≠ 1. a. Rút gọn A (KQ: A = 1x x − ) b.So sánh A với 1 Bài 29 : Cho A = 1 1 8 3 2 : 1 9 1 3 1 3 1 3 1 x x x x x x x     − − − + −  ÷  ÷  ÷  ÷ − − + +     Với 1 0, 9 x x≥ ≠ a. Rút gọn A. b. Tìm x để A = 6 5 c. Tìm x để A < 1. ( KQ : A = 3 1 x x x + − ) Bài30 : Cho A = 2 2 2 2 1 . 1 2 2 1 x x x x x x x   − + − + −  ÷  ÷ − + +   với x ≥ 0 , x ≠ 1. a. Rút gọn A. b. CMR nếu 0 < x < 1 thì A > 0 c. Tính A khi x =3+2 2 d. Tìm GTLN của A (KQ: A = (1 )x x− ) Bài 31 : Cho A = 2 1 1 : 2 1 1 1 x x x x x x x x   + − + +  ÷  ÷ − + + −   với x ≥ 0 , x ≠ 1. a. Rút gọn A. b. CMR nếu x ≥ 0 , x ≠ 1 thì A > 0 , (KQ: A = 2 1x x+ + ) Bài 32 : Cho A = 4 1 2 1 : 1 1 1 x x x x x −   − +  ÷ − − +   với x > 0 , x ≠ 1, x ≠ 4. a. Rút gọn b. Tìm x để A = 1 2 Bài 33 : Cho A = 1 2 3 3 2 : 1 1 1 1 x x x x x x x x   + − − +   − +  ÷  ÷  ÷ − − − +     với x ≥ 0 , x ≠ 1. a. Rút gọn A. b. Tính A khi x= 0,36 c. Tìm x Z∈ để A Z∈ Bài 34 : Cho A= 3 2 2 1 : 1 2 3 5 6 x x x x x x x x x     + + + − + +  ÷  ÷  ÷  ÷ + − − − +     với x ≥ 0 , x ≠ 9 , x ≠ 4. a. Rút gọn A. 6 BAI TAP DAI SO 9 b. Tỡm x Z A Z c. Tỡm x A < 0 (KQ: A = 2 1 x x + ) CHUYấN II: HM S BC NHT Bi 1 : 1) Viết phơng trình đờng thẳng đi qua hai điểm (1 ; 2) và (-1 ; -4). 2) Tìm toạ độ giao điểm của đờng thẳng trên với trục tung và trục hoành. H ớng dẫn : 1) Gọi pt đờng thẳng cần tìm có dạng : y = ax + b. Do đờng thẳng đi qua hai điểm (1 ; 2) và (-1 ; -4) ta có hệ pt : += += ba ba 4 2 = = 1 3 b a Vy pt ng thng cn tỡm l y = 3x 1 2) th ct trc tung ti im cú tung bng -1 ; th ct trc honh ti im cú honh bng 3 1 . Bi 2 : Cho hm s y = (m 2)x + m + 3. 1) Tỡm iu kin ca m hm s luụn nghch bin. 2) Tỡm m th ca hm s ct trc honh ti im cú honh bng 3. 3) Tỡm m th ca hm s trờn v cỏc th ca cỏc hm s y = -x + 2 ; y = 2x 1 đồng quy. H ớng dẫn : 1) Hàm số y = (m 2)x + m + 3 m 2 < 0 m < 2. 2) Do th ca hm s ct trc honh ti im cú honh bng 3. Suy ra : x= 3 ; y = 0 Thay x= 3 ; y = 0 vo hm s y = (m 2)x + m + 3, ta c m = 4 3 . 7 BAI TAP DAI SO 9 3) Giao im ca hai th y = -x + 2 ; y = 2x 1 l nghim ca h pt : = += 12 2 xy xy (x;y) = (1;1). 3 th y = (m 2)x + m + 3, y = -x + 2 v y = 2x 1 ng quy cn : (x;y) = (1;1) l nghim ca pt : y = (m 2)x + m + 3. Vi (x;y) = (1;1) m = 2 1 Bi 3 : Cho hm s y = (m 1)x + m + 3. 1) Tỡm giỏ tr ca m th ca hm s song song vi th hm s y = -2x + 1. 2) Tỡm giỏ tr ca m th ca hm s i qua im (1 ; -4). 3) Tìm điểm cố định mà đồ thị của hàm số luôn đi qua với mọi m. H ớng dẫn : 1) Để hai đồ thị của hàm số song song với nhau cần : m 1 = - 2 m = -1. Vy vi m = -1 th ca hm s song song vi th hm s y = -2x + 1. 2) Thay (x;y) = (1 ; -4) vo pt : y = (m 1)x + m + 3. Ta c : m = -3. Vy vi m = -3 thỡ th ca hm s i qua im (1 ; -4). 3) Gi im c nh m th luụn i qua l M(x 0 ;y 0 ). Ta cú y 0 = (m 1)x 0 + m + 3 (x 0 1)m - x 0 - y 0 + 3 = 0 = = 2 1 0 0 y x Vy vi mi m thỡ th luụn i qua im c nh (1;2). B ài 4 : Cho hai đim A(1 ; 1), B(2 ; -1). 1) Viết phơng trình đờng thẳng AB. 2) Tìm các giá trị ca m đ đờng thẳng y = (m 2 3m)x + m 2 2m + 2 song song với đờng thẳng AB đồng thời đi qua đim C(0 ; 2). Hng dn : 1) Gi pt ng thng AB cú dng : y = ax + b. Do ng thng i qua hai im (1 ; 1) v (2 ;-1) ta cú h pt : += += ba ba 21 1 = = 3 2 b a Vy pt ng thng cn tỡm l y = - 2x + 3. 2) ng thng y = (m 2 3m)x + m 2 2m + 2 song song vi ng thng AB ng thi i qua im C(0 ; 2) ta cn : =+ = 222 23 2 2 mm mm m = 2. Vy m = 2 thỡ ng thng y = (m 2 3m)x + m 2 2m + 2 song song vi ng thng AB ng thi i qua im C(0 ; 2) Bi 5 : Cho hàm số y = (2m 1)x + m 3. 1) Tìm m để đồ thị của hàm số đi qua điểm (2; 5) 2) Chứng minh rằng đồ thị của hàm số luôn đi qua một điểm cố định với mọi m. Tìm điểm cố định ấy. 3) Tìm m để đồ thị của hàm số cắt trục hoành tại điểm có hoành độ x = 2 1 . H ớng dẫn : 1) m = 2. 2) Gọi điểm cố định mà đồ thị luôn đi qua là M(x 0 ;y 0 ). Ta cú 8 BAI TAP DAI SO 9 y 0 = (2m – 1)x 0 + m - 3 ⇔ (2x 0 + 1)m - x 0 - y 0 - 3 = 0 ⇔        − = − = 2 5 2 1 0 0 y x Vậy với mọi m thì đồ thị luôn đi qua điểm cố định ( 2 5 ; 2 1 −− ). Bài 6 : Tìm giá trị của k để các đường thẳng sau : y = 6 x 4 − ; y = 4x 5 3 − và y = kx + k + 1 cắt nhau tại một điểm. Bài 7 : Giả sử đường thẳng (d) có phương trình y = ax + b. Xác định a, b để (d) đi qua hai điểm A(1; 3) và B(-3; -1). Bài 8 : Cho hàm số : y = x + m (D). Tìm các giá trị của m để đường thẳng (D) : 1) Đi qua điểm A(1; 2003). 2) Song song với đường thẳng x – y + 3 = 0. CHUYÊN ĐỀ III: PHƯƠNG TRÌNH – BẤT PHƯƠNG TRÌNH BẬC NHẤT MỘT ẦN HỆ PHƯƠNG TRÌNH BẬC NHẤT 2 ẨN . A. KIẾN THỨC CẦN NHỚ : 1. Phương trình bậc nhất : ax + b = 0. Phương pháp giải : + Nếu a ≠ 0 phương trình có nghiệm duy nhất : x = b a − . + Nếu a = 0 và b ≠ 0 ⇒ phương trình vô nghiệm. + Nếu a = 0 và b = 0 ⇒ phương trình có vô số nghiệm. 2. Hệ phương trình bậc nhất hai ẩn :    =+ =+ c'y b' x a' c by ax Phương pháp giải : Sử dụng một trong các cách sau : +) Phương pháp thế : Từ một trong hai phương trình rút ra một ẩn theo ẩn kia , thế vào phương trình thứ 2 ta được phương trình bậc nhất 1 ẩn. +) Phương pháp cộng đại số : - Quy đồng hệ số một ẩn nào đó (làm cho một ẩn nào đó của hệ có hệ số bằng nhau hoặc đối nhau). - Trừ hoặc cộng vế với vế để khử ẩn đó. - Giải ra một ẩn, suy ra ẩn thứ hai. B. Ví dụ minh họa : Ví dụ 1 : Giải các phương trình sau đây : a) 2 2 x x 1 -x x = + + ĐS : ĐKXĐ : x ≠ 1 ; x ≠ - 2. S = { } 4 . 9 BAI TAP DAI SO 9 b) 1 x x 1 - 2x 3 3 ++ = 2 Giải : ĐKXĐ : 1 x x 3 ++ ≠ 0. (*) Khi đó : 1 x x 1 - 2x 3 3 ++ = 2 ⇔ 2x = - 3 ⇔ x = 2 3− Với ⇔ x = 2 3− thay vào (* ) ta có ( 2 3− ) 3 + 2 3− + 1 ≠ 0 Vậy x = 2 3− là nghiệm. Ví dụ 2 : Giải và biện luận phương trình theo m : (m – 2)x + m 2 – 4 = 0 (1) + Nếu m ≠ 2 thì (1) ⇔ x = - (m + 2). + Nếu m = 2 thì (1) vô nghiệm. Ví dụ 3 : Tìm m ∈ Z để phương trình sau đây có nghiệm nguyên . (2m – 3)x + 2m 2 + m - 2 = 0. Giải : Ta có : với m ∈ Z thì 2m – 3 ≠ 0 , vây phương trình có nghiệm : x = - (m + 2) - 3 - m2 4 . để pt có nghiệm nguyên thì 4  2m – 3 . Giải ra ta được m = 2, m = 1. Ví dụ 3 : Tìm nghiệm nguyên dương của phương trình : 7x + 4y = 23. Giải : a) Ta có : 7x + 4y = 23 ⇔ y = 4 7x - 23 = 6 – 2x + 4 1 x − Vì y ∈ Z ⇒ x – 1  4. Giải ra ta được x = 1 và y = 4 BÀI TẬP PHẦN HỆ PT Bài 1 : Giải hệ phương trình: a) 2x 3y 5 3x 4y 2 − = −   − + =  b) x 4y 6 4x 3y 5 + =   − =  c) 2x y 3 5 y 4x − =   + =  d) x y 1 x y 5 − =   + =  e) 2x 4 0 4x 2y 3 + =   + = −  f) 2 5 2 x x y 3 1 1,7 x x y  + =  +    + =  +  Bài 2 : Cho hệ phương trình : mx y 2 x my 1 − =   + =  1) Giải hệ phương trình theo tham số m. 2) Gọi nghiệm của hệ phương trình là (x, y). Tìm các giá trị của m để x + y = -1. 3) Tìm đẳng thức liên hệ giữa x và y không phụ thuộc vào m. B µi 3 : Cho hÖ ph¬ng tr×nh: x 2y 3 m 2x y 3(m 2) − = −   + = +  10 [...]... ó cú) - Thay x = 3 vo phng trỡnh (1) ta cú : 9m 6(m 2) + m -3 = 0 4m = -9 m = - i chiu vi iu kin (*), giỏ tr m = - 9 4 9 tho món 4 20 BAI TAP DAI SO 9 *) Cỏch 2: Khụng cn lp iu kin / 0 m thay x = 3 vo (1) tỡm c m = - 9 4 9 vo phng trỡnh (1) : 4 9 9 9 - x2 2(- - 2)x - - 3 = 0 -9x2 +34x 21 = 0 4 4 4 x1 = 3 cú / = 2 89 1 89 = 100 > 0 => x2 = 7 9 9 Vy vi m = - thỡ phng trỡnh (1) cú mt nghim... tỡm nghim th 2 ,ta cú 3 cỏch lm Cỏch 1: Thay m = - 9 vo phng trỡnh ó cho ri gii phng trỡnh tỡm c x2 = 4 7 (Nh phn trờn ó lm) 9 9 Cỏch 2: Thay m = - vo cụng thc tớnh tng 2 nghim: 4 9 2( 2) 2(m 2) 34 4 = = x1 + x2 = 9 m 9 4 34 34 7 x2 = - x1 = -3= 9 9 9 9 vo cụng trc tớnh tớch hai nghim 4 9 3 m3 21 21 21 7 = 4 = x1x2 = => x2 = : x1 = :3= 9 m 9 9 9 9 4 Cỏch 3: Thay m = - Bi 10: Cho phng trỡnh : x2... = S2 2p = 9 2(-7) = 23 + (x1 x2)2 = S2 4p => B = x1 x2 = S 2 4 p = 37 1 1 ( x1 + x 2 ) 2 S 2 1 + C = x 1 + x 1 = ( x 1)( x 1) = p S + 1 = 9 1 2 1 2 + D = (3x1 + x2)(3x2 + x1) = 9x1x2 + 3(x12 + x22) + x1x2 = 10x1x2 + 3 (x12 + x22) = 10p + 3(S2 2p) = 3S2 + 4p = - 1 17 BAI TAP DAI SO 9 b)Ta cú : 1 1 1 S = x 1 + x 1 = 9 (theo cõu a) 1 2 1 1 1 p = ( x 1)( x 1) = p S + 1 = 9 1 2 1 1 Vy... ny gp 3 ln nghim kia ta sột 2 trng hp m3 9 gii ra ta c m = - (ó gii cõu 1) m+2 2 m3 11 1= 3 m + 2 = 3m 9 m = (tho món iu m+2 2 Trng hp 1 : 3x1 = x2 3 = Trng hp 2: x1 = 3x2 kin m - 2) Kim tra li: Thay m = 11 vo phng trỡnh ó cho ta c phng trỡnh : 2 15x2 20x + 5 = 0 phng trỡnh ny cú hai nghim 19 BAI TAP DAI SO 9 x1 = 1 , x2 = 5 1 = (tho món u bi) 15 3 Bi 9: Cho phng trỡnh : mx2 2(m-2)x + m 3... phng trỡnh : x2 2(m + 1) +2m+10 = 0 Gii 2 2 / Ta cú = (m + 1) 2m + 10 = m 9 + Nu / > 0 m2 9 > 0 m < - 3 hoc m > 3 Phng trỡnh ó cho cú 2 nghim phõn bit: x1 = m + 1 - m 2 9 x2 = m + 1 + m 2 9 + Nu / = 0 m = 3 - Vi m =3 thỡ phng trỡnh cú nghim l x1.2 = 4 - Vi m = -3 thỡ phng trỡnh cú nghim l x1.2 = -2 15 BAI TAP DAI SO 9 + Nu < 0 -3 < m < 3 thỡ phng trỡnh vụ nghim Kt kun: Vi m = 3 thỡ phng... rng phng trỡnh (1) luụn cú hai nghim x1 , x2 phõn bit vi mi m 18 BAI TAP DAI SO 9 3 Tỡm m x1 x2 t giỏ tr nh nht (x1 , x2 l hao nghim ca phng trỡnh (1) núi trong phn 2.) Gii 1 Vi m = - 5 phng trỡnh (1) tr thnh x2 + 8x 9 = 0 v cú 2 nghim l x1 = 1 , x2 = -9 2 Cú / = (m + 1)2 (m 4) = m2 + 2m + 1 m + 4 = m2 + m + 5 = m2 + 2.m 1 1 19 1 19 + + = (m + )2 + > 0 vi mi m 2 4 4 2 4 Vy phng trỡnh (1) luụn cú... Theo Bi ra ta cú (x1 + x2)2 2x1x2 = 10 21 BAI TAP DAI SO 9 Vi iu kin(*) , ỏp dng h trc vi ột: x1 + x2 = Vy (-2k)2 2(2 5k) = 10 2k2 + 5k 7 = 0 (Cú a + b + c = 2+ 5 7 = 0 ) => k1 = 1 , k2 = - b = - 2k v x1x2 = 2 5k a 7 2 i chiu vi iu kin (*) ta thay ln lt k1 , k2 vo / = k2 + 5k 2 + k1 = 1 => / = 1 + 5 2 = 4 > 0 ; tho món + k2 = - 7 49 35 49 70 8 29 2= = => / = khụng tho món 2 4 2 4 8 Vy k... 2 19 ) + ] 2 4 1 1 1 19 19 2 => x1 x2 = 2 (m + ) 2 + = 19 khi m + = 0 m = 2 4 4 Vy x1 x2 t giỏ tr nh nht bng 2 1 19 khi m = 2 2 Bi 8 : Cho phng trỡnh (m + 2) x2 + (1 2m)x + m 3 = 0 (m l tham s) 1) Gii phng trỡnh khi m = - 9 2 2) Chng minh rng phng trỡnh ó cho cú nghim vi mi m 3) Tỡm tt c cỏc giỏ tr ca m sao cho phng trỡnh cú hai nghim phõn bit v nghim ny gp ba ln nghim kia Gii: 1) Thay m = - 9. .. AB = 350 km, xut phỏt ti A lỳc 4gi sỏng Bi 12 : (trang 24): Hai vũi nc cựng chy vo mt ci b nc cn, sau 4 b Nu lỳc u ch m vũi th nht, sau 9 gi m vũi th hai thỡ sau b Nu mt mỡnh vũi th hai chy bao lõu s nay b ỏp s : 8 gi 4 gi thỡ y 5 6 gi na mi nay 5 12 BAI TAP DAI SO 9 Bi 13 : (trang 24): Bit rng m gam kg nc gim t 0C thỡ ta nhit lng Q = mt (kcal) Hi phi dựng bao nhiờu lớt 1000C v bao nhiờu lớt 200C ... 22 BAI TAP DAI SO 9 2) Gi x1, x2 l hai nghim ca phng trỡnh (1) Tớnh B = x13 + x23 Bi 7 : Cho phng trỡnh : x2 - (m + 4)x + 3m + 3 = 0 (m l tham s) a) Xỏc nh m phng trỡnh cú mt nghim l bng 2 Tỡm nghim cũn li b) Xỏc nh m phng trỡnh cú hai nghim x1, x2 tho món x13 + x23 0 Bi 8 : Cho phng trỡnh: (m 1)x2 + 2mx + m 2 = 0 (*) 1) Gii phng trỡnh khi m = 1 2) Tỡm m phng trỡnh (*) cú 2 nghim phõn bit Bi 9 . 3 vào phương trình (1) ta có : 9m – 6(m – 2) + m -3 = 0 ⇔ 4m = -9 ⇔ m = - 4 9 - Đối chiếu với điều kiện (*), giá trị m = - 4 9 thoả mãn 19 BAI TAP DAI SO 9 *) Cách 2: Không cần lập điều. m = - 4 9 .Sau đó thay m = - 4 9 vào phương trình (1) : - 4 9 x 2 – 2(- 4 9 - 2)x - 4 9 - 3 = 0 ⇔ -9x 2 +34x – 21 = 0 có / ∆ = 2 89 – 1 89 = 100 > 0 =>      = = 9 7 3 2 1 x x Vậy. Rỳt gn P. b) Tớnh giỏ tr ca P vi a = 9. 2 BAI TAP DAI SO 9 Hng dn : a) KX : a 0, a 4. Biu thc rỳt gn : P = 2 4 a b) Ta thy a = 9 KX . Suy ra P = 4 Bài 9 : Cho biu thức: N = a a a a 1 1 a

Ngày đăng: 03/02/2015, 21:00

Xem thêm

TỪ KHÓA LIÊN QUAN

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN

w