1. Trang chủ
  2. » Giáo án - Bài giảng

de thi vao lop 10 toan chuyen lam son

6 369 3

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 6
Dung lượng 215 KB

Nội dung

SỞ GIÁO DỤC ĐÀO TẠO KỲ THI VÀO LỚP 10 CHUYÊN LAM SƠN THANH HOÁ NĂM HỌC 2012 - 2013 ĐỀ CHÍNH THỨC Môn thi : TOÁN (Đề gồm có 01 trang) (Môn chung cho tất các thí sinh) Thời gian làm bài :120 phút (Không kể thời gian giao đề) Ngày thi : 17 tháng 6 năm 2012 Câu 1: (2.0 điểm ) Cho biểu thức : 1 1 1 4 1 1 2 a a P a a a a a   + − = − +  ÷  ÷ − +   , (Với a > 0 , a ≠1) 1. Chứng minh rằng : 2 1 P a = − 2. Tìm giá trị của a để P = a Câu 2 (2,0 điểm ) : Trong mặt phẳng toạ độ Oxy, cho Parabol (P) : y = x 2 và đờng thẳng (d) : y = 2x + 3 1. Chứng minh rằng (d) và (P) có hai điểm chung phân biệt 2. Gọi A và B là các điểm chung của (d) và (P) . Tính diện tích tam giác OAB ( O là gốc toạ độ) Câu 3 (2.0 điểm) : Cho phương trình : x 2 + 2mx + m 2 – 2m + 4 = 0 1. Giải phơng trình khi m = 4 2. Tìm m để phương trình có hai nghiệm phân biệt Câu 4 (3.0 điểm) : Cho đường tròn (O) có đờng kính AB cố định, M là một điểm thuộc (O) ( M khác A và B ) . Các tiếp tuyến của (O) tại A và M cắt nhau ở C. Đờng tròn (I) đi qua M và tiếp xúc với đờng thẳng AC tại C. CD là đờng kính của (I). Chứng minh rằng: 1. Ba điểm O, M, D thẳng hàng 2. Tam giác COD là tam giác cân 3. Đờng thẳng đi qua D và vuông góc với BC luôn đi qua một điểm cố định khi M di động trên đường tròn (O) Câu 5 (1.0 điểm) : Cho a,b,c là các số dương không âm thoả mãn : 2 2 2 3a b c+ + = Chứng minh rằng : 2 2 2 1 2 3 2 3 2 3 2 a b c a b b c c a + + ≤ + + + + + + Hết Lê Thị Nhung Trường THCS Nguyễn Văn Trỗi BÀI GIẢI CÂU NỘI DUNG ĐIỂM 1 1. Chứng minh rằng : 2 1 P a = − 1 1 1 4 1 1 2 a a P a a a a a   + − = − +  ÷  ÷ − +   ( ) ( ) ( ) ( ) ( ) ( ) 2 2 1 1 4 1 1 1 . 2 1 1 a a a a a P a a a a + − − + + − = + − ( ) ( ) 2 1 2 1 4 4 1 . 2 1 1 a a a a a a a P a a a a + + − + − + − = + − 4 1 2 . 1 1 2 a a P a a a a = = − − (ĐPCM) 1.0 2. Tìm giá trị của a để P = a. P = a => 2 2 2 0 1 a a a a = => − − = − . Ta có 1 + 1 + (-2) = 0, nên phương trình có 2 nghiệm a 1 = -1 < 0 (không thoả mãn điều kiện) - Loại a 2 = 2 2 1 c a − = = (Thoả mãn điều kiện) Vậy a = 2 thì P = a 1.0 2 1. Chứng minh rằng (d) và (P) có hai điểm chung phân biệt Hoành độ giao điểm đường thẳng (d) và Parabol (P) là nghiệm của phương trình x 2 = 2x + 3 => x 2 – 2x – 3 = 0 có a – b + c = 0 Nên phương trình có hai nghiệm phân biệt x 1 = -1 và x 2 = 3 3 1 c a − = = Với x 1 = -1 => y 1 = (-1) 2 = 1 => A (-1; 1) Với x 2 = 3 => y 2 = 3 2 = 9 => B (3; 9) Vậy (d) và (P) có hai điểm chung phân biệt A và B 1.0 2. Gọi A và B là các điểm chung của (d) và (P) . Tính diện tích tam giác OAB ( O là gốc toạ độ) Ta biểu diễn các điểm A và B trên mặt phẳng toạ độ Oxy như hình vẽ 1.0 Lê Thị Nhung Trường THCS Nguyễn Văn Trỗi 1 D C B A 9 3 -1 0 1 9 . .4 20 2 2 ABCD AD BC S DC + + = = = . 9.3 13,5 2 2 BOC BC CO S = = = . 1.1 0,5 2 2 AOD AD DO S = = = Theo công thức cộng diện tích ta có: S (ABC) = S (ABCD) - S (BCO) - S (ADO) = 20 – 13,5 – 0,5 = 6 (đvdt) 3 1. Khi m = 4, ta có phương trình x 2 + 8x + 12 = 0 có ∆’ = 16 – 12 = 4 > 0 Vậy phương trình có hai nghiệm phân biệt x 1 = - 4 + 2 = - 2 và x 2 = - 4 - 2 = - 6 1.0 2. Tìm m để phương trình có hai nghiệm phân biệt x 2 + 2mx + m 2 – 2m + 4 = 0 Có D’ = m 2 – (m 2 – 2m + 4) = 2m – 4 Để phương trình có hai nghiệm phân biệt thì D’ > 0 => 2m – 4 > 0 => 2(m – 2) > 0 => m – 2 > 0 => m > 2 Vậy với m > 2 thì phương trình có hai nghiệm phân biệt 1.0 Lê Thị Nhung Trường THCS Nguyễn Văn Trỗi 4 1 2 N K H D I C O A B M 1. Ba điểm O, M, D thẳng hàng: Ta có MC là tiếp tuyến của đường tròn (O) ⇒ MC ⊥ MO (1) Xét đường tròn (I) : Ta có · 0 90CMD = ⇒ MC ⊥ MD (2) Từ (1) và (2) => MO // MD ⇒ MO và MD trùng nhau ⇒ O, M, D thẳng hàng 1.0 2. Tam giác COD là tam giác cân CA là tiếp tuyến của đường tròn (O) ⇒ CA ⊥AB(3) Đờng tròn (I) tiếp xúc với AC tại C ⇒ CA ⊥ CD(4) Từ (3) và (4) ⇒ CD // AB => · · DCO COA= (*) ( Hai góc so le trong) CA, CM là hai tiếp tuyến cắt nhau của (O) ⇒ · · COA COD= (**) Từ (*) và (**) ⇒ · · DOC DCO= ⇒ Tam giác COD cân tại D 1.0 3. Đường thẳng đi qua D và vuông góc với BC luôn đi qua một điểm cố định khi M di động trên đờng tròn (O) * Gọi chân đường vuông góc hạ từ D tới BC là H. · 0 90CHD = ⇒ H ∈ (I) (Bài toán quỹ tích) DH kéo dài cắt AB tại K. Gọi N là giao điểm của CO và đường tròn (I) => · 0 90 can tai D CND NC NO COD  =  ⇒ =  ∆   Ta có tứ giác NHOK nội tiếp Vì có ¶ µ · 2 1 H O DCO= = ( Cùng bù với góc DHN) ⇒ · · 0 180NHO NKO+ = (5) * Ta có : · · NDH NCH= (Cùng chắn cung NH của đường tròn (I)) · · · ( ) CBO HND HCD= = ⇒ ∆DHN ∆COB (g.g) 1.0 Lê Thị Nhung Trường THCS Nguyễn Văn Trỗi HN OB HD OC OB OA HN ON OC OC HD CD OA CN ON OC CD CD  ⇒ =    ⇒ = ⇒ =    ⇒ = =   Mà · · ONH CDH= ⇒∆NHO ∆DHC (c.g.c) ⇒ · 0 90NHO = Mà · · 0 180NHO NKO+ = (5) ⇒ · 0 90NKO = , ⇒ NK ⊥ AB ⇒ NK // AC ⇒ K là trung điểm của OA cố định ⇒ (ĐPCM) 5 Câu 5 (1.0 điểm) : Cho a,b,c là các số dơng không âm thoả mãn : 2 2 2 3a b c+ + = Chứng minh rằng : 2 2 2 1 2 3 2 3 2 3 2 a b c a b b c c a + + ≤ + + + + + + * C/M bổ đề: ( ) 2 2 2 a b a b x y x y + + ≥ + và ( ) 2 2 2 2 a b c a b c x y x x y z + + + + ≥ + + . Thật vậy ( ) ( ) ( ) ( ) ( ) 2 2 2 2 2 2 2 0 a b a b a y b x x y xy a b ay bx x y x y + + ≥ <=> + + ≥ + <=> − ≥ + (Đúng) ⇒ ĐPCM Áp dụng 2 lần , ta có: ( ) 2 2 2 2 a b c a b c x y x x y z + + + + ≥ + + * Ta có : 2 2 2 3 2 1 2 2 2 2a b a b a b+ + = + + + ≥ + + , tương tự Ta có: … ⇒ 2 2 2 2 3 2 3 2 3 2 2 2 2 2 2 2 2 2 a b c a b c A a b b c c a a b b c c a = + + ≤ + + + + + + + + + + + + + + 1 (1) 2 1 1 1 B a b c A a b b c c a   ⇔ ≤ + +  ÷ + + + + + +   1 4 4 4 4 4 2 4 4 4 4 4 3 Ta chứng minh 1 1 1 1 a b c a b b c c a + + ≤ + + + + + + ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) 2 2 2 3 1 1 1 2 1 1 1 1 1 1 2 1 1 1 1 1 1 2 1 1 1 1 1 1 2 (2) 1 1 1 1 1 1 B a b c a b b c c a b c a a b b c c a b c a a b b c c a b c a a b b b c c c a a − ⇔ − + − + − ≤ − + + + + + + − − − − − − ⇔ + + ≤ − + + + + + + + + + ⇔ + + ≥ + + + + + + + + + ⇔ + + ≥ + + + + + + + + + 1 4 4 4 4 4 4 4 4 442 4 4 4 4 4 4 4 4 4 43 * Áp dụng Bổ đề trên ta có: 1.0 Lê Thị Nhung Trường THCS Nguyễn Văn Trỗi ⇒ ( ) ( ) ( ) ( ) ( ) ( ) ( ) 2 3 3 1 1 1 1 1 1 a b c B a b b b c c c a a + + + − ≥ + + + + + + + + + + + ( ) 2 2 2 2 3 3 (3) 3( ) 3 a b c B a b c ab bc ca a b c + + + ⇔ − ≥ + + + + + + + + + * Mà: ( ) ( ) 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 3( ) 3 2 2 2 2 2 2 6 6 6 6 2 2 2 2 2 2 6 6 6 6 ( : 3) 2 2 2 6 6 6 9 3 3 3( ) a b c ab bc ca a b c a b c ab bc ca a b c a b c ab bc ca a b c Do a b c a b c ab bc ca a b c a b c a b c a b c ab bc ca a b c   + + + + + + + + +   = + + + + + + + + + = + + + + + + + + + + + = = + + + + + + + + + = + + + + + + ⇒ + + + + + + + + 2 (4) 3 = + Từ (3) và (4) ⇒ (2) Kết hợp (2) và (1) ta có điều phải chứng minh. Dấu = xảy ra khi a = b = c = 1 Lê Thị Nhung Trường THCS Nguyễn Văn Trỗi . SỞ GIÁO DỤC ĐÀO TẠO KỲ THI VÀO LỚP 10 CHUYÊN LAM SƠN THANH HOÁ NĂM HỌC 2012 - 2013 ĐỀ CHÍNH THỨC Môn thi : TOÁN (Đề gồm có 01 trang) (Môn chung cho tất các thí. (Môn chung cho tất các thí sinh) Thời gian làm bài :120 phút (Không kể thời gian giao đề) Ngày thi : 17 tháng 6 năm 2012 Câu 1: (2.0 điểm ) Cho biểu thức : 1 1 1 4 1 1 2 a a P a a a a a   +

Ngày đăng: 02/02/2015, 19:00

TỪ KHÓA LIÊN QUAN

w