PHÒNG GD &ĐT KRÔNG NĂNG ĐỀ KIỂM TRA HỌC KÌ II MÔN TOÁN LỚP 9 Thời gian 90 phút không kể thời gian giao đề A.. Tìm tiếp điểm.. bGọi x1 , x2 là hai nghiệm của phương trình.. Bài 5 3điểm C
Trang 1PHÒNG GD &ĐT KRÔNG NĂNG ĐỀ KIỂM TRA HỌC KÌ II MÔN TOÁN LỚP 9
Thời gian 90 phút ( không kể thời gian giao đề)
A MA TRẬN ĐỀ:
Chủ đề kiến thức Nhận biết Thông hiểu Vận dụng TỔNG
Số điểm 0,
5 1,5 2,0 Hàm số y= ax2(a≠0) Số câu 1 1 2 Số điểm 1 1 2,0 HệthứcVi-ét và ứng dụng Số câu 1 1 2 Số điểm 1 1 2,0 Hình trụ hình nón hình cầu Số câuSố điểm 11,0 11,0 Góc Với đường tròn Số câu 1 2 3 Số điểm 0,5 2 2,5 Hình vẽ: 0,5
TỔNG 0,
5
4,0 5,5 10, 0
B.NỘI DUNG ĐỀ:
Bài 1( 2 điểm) Giải các phương trình sau:
a) 5x2 –x + 2 = 0
b) 25x2 -1 = 0
c) x4 -5x2 -36 = 0
Bài 2:(2 điểm)
Cho hàm số y = ax2 ( a≠0) có đồ thị là Parabol (P) và đường thẳng (d) có phương trình
y = 2x -1
a)Tìm a sao cho (d) tiếp xúc với (P) Tìm tiếp điểm
b)Tìm a để (d) không cắt (P)
Bài 3( 2điểm)
Cho phương trình : x2 -2( m +2)x +m +1=0 ( x là ẩn)
a)Chứng minh rằng phương trình đã cho luôn có hai nghiệm phân biệt
b)Gọi x1 , x2 là hai nghiệm của phương trình Tính biểu thức sau theo m:
A= x1( 1-2x2 ) + x2(1-2x1)
Bài 4( 1điểm)
Một chiếc ô che nắng hình nón có vành là một đường tròn đường kính 1,6m và chiều cao
0,6m.Tính diện tích vải để làm ô
Bài 5( 3điểm)
Cho tam giác nhọn ABC nội tiếp đường tròn tâm O, đường cao BH và CK lần lượt cắt đường tròn tại E và F
a) Chứng minh tứ giác BKHC nội tiếp
b)Chứng minh: OA⊥EFvà EF//HK
c) Gọi I là giao điểm của BH và CK Chứng minh rằng bán kính đường tròn ngoại tiếp tam giác AIB bằng bán kính đường tròn ngoại tiếp tam giác BIC
Trang 2C.ĐÁP ÁN VÀ HƯỚNG DẪN CHẤM
Bài 1 a) 5x2 –x + 2 = 0
2
( 1) 4.5.2 39 0
∆ = − − = − <
Phương trình đã cho vô nghiệm
0,5 b) 25x2 -1 = 0
2 1 25 1 5
x x
⇔ = ±
Vậy phương trình đã cho có hai nghiệm 1 1; 2 1
x = x = −
0,25 0,25
c) x4 -5x2 -36 = 0
Đặt x2 = t (t≥0), ta có PT : t2 -5t -36 = 0
Giải PT ta được t1= 9( TMĐK) , t2 = -4 ( KTMĐK) Với t = 9 ⇒x2 = ⇔ = ±9 x 3
Vậy PT đã cho có hai nghiệm x1= 3; x2 = -3
0,25 0,25 0,25 0,25
Bài 2 a) (d) tiếp xúc với (P) khi và chỉ khi phương trình :
ax2 = 2x -1 2
x 2 1 0
⇔ − + = , có nghiệm kép Xét PT: ax2 -2x +1 =0
Có nghiệm kép khi ∆ = − =' 1 a 0 hay a = 1
Với a=1 ,PT x2 -2x +1 =0 có nghiệm kép x =1 nên y = 1.Vậy tiếp điểm là(1;1)
0,5 0,5
0,5 b) (d) Không cắt (P)Khi và chỉ khi ∆ = − <' 1 a 0 hay a>1 0,5
Bài 3 a) PT x2 -2( m +2)x +m +1=0 ( x là ẩn)
Có
Với mọi m nên PT luôn có hai nghiệm phân biệt
0,5 0,5
Baì 4 Ta có bán kính R = 0,8 m
Diện tích cần tìm là S =πRl≈3,14.0,8 0,82+0,62 ≈2,51(m2)
0,25 0,75
a) Do · · 0
90
BKC BHC= = nên tứ giác BKHC nội tiếp được đường tròn
0,5
b) Từ câu a) suy ra ·KBH =·KCH (cùng
0,5
[ ]2
'
2
2
( 2) ( 1)
3 3
0
m
= + ÷ + >
H K
F
E
I
G
O
C B
A
Trang 3chắn cung KH) Do đó »AF=»AE⇒OA⊥EF
-Ta có
Mặt khác: · · ( 1 » )
2
BCK =BHK = sd BK , do đó ·BHK =BE· F
Vậy EF // HK
0,5
c)Gọi G là giao điểm của AI và BC ⇒AG⊥BC, hai tam giác vuông ABG và CBK có góc B chung nên ⇒BAI· =·BCI =α Vậy A và C thuộc hai cung chứa góc
α dựng trên đoạn BI, tức là tam giác AIB và tam giác BIC nội tiếp hai đường tròn
có cùng bán kính
1,0
2
BE =BCF = sd BF