1. Trang chủ
  2. » Giáo án - Bài giảng

Ôn tập số phức

2 288 0

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 2
Dung lượng 297 KB

Nội dung

ÔN TẬP SỐ PHỨC  { }      z z a bi a b i= = + ∈ = −C R  !"# •   ⇔ $ ≠ $ • %"# ⇔ $ ≠ $ &'( biaz −= − )*+,%(   z a b= + -./0%1 /0%!"#/0% 234534 6R∈ ,78%9:;,8<*5346 =>?0!@A B7, CDE BF#G%4HE,@I4  J @#0KLG%",7 M>Nhân tử và mẫu với số phức liên hợp của mẫu $>N( E< | |.a i± 17O0@  $5∈PQ$6   )b ac∆ = − 6 $=∆ 17O0@R0B<9%4S  b a − 6 $∆ > 17O0@R0B< EB   b z a − ± ∆ = 6 $∆ < 17O0@R0B<EB   b i z a − ± ∆ = BÀI TẬP: T>#U  &z i= + !  w i= − <<+,%!'(U!V W  &  )   z z w w  X    &z i= − +  & Cz = −   )     = ) w i w i= − − = − +  T BUYW 65Z&6  Z565-Z6 6 ( ) )  -  & i i i + − + − −  6 6655 & ii i +− + 96   656&5 6565 ii ii +−+ −−+ F6 - $ 5 & 6 5 6i i− + [6 ( ) ( )  M  &  i i + − 06 C - = 2 i i +    ÷ +   ĐS: $ =i − −  2 i − +  i - & - ) + 9 i = M &)  +  F $  i − [ 2   & 5 &6i   − − + +   0 M  i T&<L 6  & = Cz i i+ = + 6 ( ) ( )  & ) & = -i z i i− + + = − 6 ( )  &  )i z i z+ + = − 96 ( )   - 2  & z i i i − + = − + F6 z  $ !"#(/0& (R [6 z  &) ! 2z z − + = 06 z = ! /0"# T)\"U7O0@%@'>5]6 6 i i z i i + +− = − +  &   X i - ) -  +  6 $6   ^5&6_5 =+++− i izizi XJ 6 izz ) −=+ X&)  96 $  =− zz X$J ii  &     &   −+ F6 $  =+ zz X$J  [6  & )z i= − + XJJ T-`U,aU,8<@#0<bc08%9:U d<e<f,g%KB 6 )& =++ zz 6 izz −+−  6 5  6 $z i+ − = X63!3J=64  &± 6   5 6 5 6 $x y+ + − = T=\"U7O0@%@#0> 6  &  $x x+ + = b)   $x x+ + = 6 $&  =+− xx 96 & C $x − =  X6  & 2 i− ± 6  &  i− ± 6 i    & ± 96   &i− ± TC\"U7O0@%@#0>  ÔN TẬP SỐ PHỨC 6 )  & ) $z z+ − = 5X  i± ± 6 6 )  C M $z z− − = 5X  &i± ± 6 TM\"U7O0@%@#0> 6 ( ) ( )   &  $z i z z+ − − + = 6 &  $z + =  XJ&  &   i± J  &   i− ± T$>#7O0@ &  $z − = RU0B<     & \hiT>7U,8<8%9:U     & >0< ABC∆ <0U,g% T. `YU,8<iT>@#0<bc0j34F# 8%9:U    & )  2  5 65  6  & z i i i i i i = = = + − + − −  6>0<iT><0U!%+0E 6<8%9:;,8<k##0UiT>k!%+0 CÁC ĐỀ THI VỀ SỐ PHỨC 1) < "#!<+,%(<f% 56  5Z6C565>XZ$$M6 2) Giải các phương trình sau trên tập số phức: 6C  Z)$5>TlD$$M66 4 3 7 2 z i z i z i − − = − − 5>X$M6 6  Z$5D>lD$$M6 96  $$5  !  0B<6 W0U@a8% 2 2 1 2 A z z= + 5X.miZ$$M6 3)>#       &z i z i= + = − 5D$$T>T6 `U,a !"#(   z z−  4)>#    -  & )= + = −z i z i 5D$$TD>6 `U,a !"#(   z z  5) \"15Z65J6)J-5D$6 6)>#d<e  5  6 ) $i z z i+ + = − Wnn5>X$6 7)<d<enn  !  %"# 8)`U,aU,8<8%9:d<e<f,g%KB nJ5&J)6n5>X$$M6 9)<S"UL  nn   z 5X.k.mil$6 10)<L - &  $ i z z + − − = 5X.mTl$6 11)i$>#d ( ) 3 1 3.i z 1 i - = - < z iz+ 12)k<d ( ) z 2 3i .z 1 9i- + = - 13)\h  !  0B<(  $$W 2 2 4 4 1 2 1 2 z z ; z z+ + X$$$ 14)>#  !  d 1 2 1 2 z z 1; z z 3= = + = W 1 2 z z- X 15)>#  !  d 1 2 1 2 z 3; z 4; z z 37= = - = < 1 2 z z  16)T<L 5 i 3 z 1 0 z + - - =  17)T< !"#L 21 1 i 3 z 1 i æ ö + ÷ ç ÷ = ç ÷ ç ÷ ÷ ç + è ø  18)k>#d<e ( ) ( )     = C  i i Z i i + + + = + + <<+,%(  w z i= + + 19)i>#d ( ) -   z i i z + = − + W w !o  w z z= + +  20) >X>#d ( ) 2 z 2 1 i .z 2i 0- + + = < !"#( 1 z  21)<34 R∈ d ( ) ( )      & ) x y x y i xy xy i+ + + = + + +  22)<U0%4'34##34d 2 z 4 6 5i= +  <U0%4'34##34d 3 z 18 26i= +  X3 ± &4 -± b/ 3&4 24)k$pL9q0700UU0B<(7O0@   & ) $z iz− − = 25)>kk$\h   z z, U0B<(     $z z i− + + = W   z z+  26)`U,aU,8<@#0<8%9:(d  z z i = −  27)>#d ( ) ( )    &  i i z i z i − − − = − + <h,?,8<8%9:( @#0j34  . VỀ SỐ PHỨC 1) < "#!<+,%(<f% 56  5Z6C565>XZ$$M6 2) Giải các phương trình sau trên tập số phức: 6C  Z)$5>TlD$$M66 4. 6 i    & ± 96   &i− ± TC"U7O0@%@#0>  ÔN TẬP SỐ PHỨC 6 )  & ) $z z+ − = 5X  i± ± 6 6 )  C M $z z− − = 5X  &i±. ÔN TẬP SỐ PHỨC  { }      z z a bi a b i= = + ∈ = −C R 

Ngày đăng: 26/01/2015, 04:00

TỪ KHÓA LIÊN QUAN

w