Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống
1
/ 59 trang
THÔNG TIN TÀI LIỆU
Thông tin cơ bản
Định dạng
Số trang
59
Dung lượng
703,5 KB
Nội dung
MỘT PHƯƠNG PHÁP TÌM GIÁ TRỊ NHỎ NHẤT VÀ GIẤ TRỊ LỚN NHẤT Trong bài viết này, tôi đề cập đến một dạng toán tìm giá trị lớn nhất (GTLN) và giá trị nhỏ nhất (GTNN) của một biểu thức nhiều ẩn, trong đó các ẩn là nghiệm của những phương trình hoặc bất phương trình cho trước. Đối với dạng toán này, ta cần xác định và giải một bất phương trình một ẩn mà ẩn đó là biểu thức cần tìm GTLN, GTNN. Bài toán 1 : Tìm GTLN và GTNN của xy biết x và y là nghiệm của phương trình x 4 + y 4 - 3 = xy(1 - 2xy) Lời giải : Ta có x 4 + y 4 - 3 = xy(1 - 2xy) <=> xy + 3 = x 4 + y 4 + 2x 2 y 2 <=> xy + 3 = (x 2 + y 2 ) 2 (1). Do (x 2 - y 2 ) 2 ≥ 0 với mọi x, y, dễ dàng suy ra (x 2 + y 2 ) 2 ≥ 4(xy) 2 với mọi x, y (2). Từ (1) và (2) ta có : xy + 3 ≥ 4(xy) 2 <=> 4t 2 - t - 3 ≤ 0 (với t = xy) <=> (t - 1)(4t + 3) ≤ 0 Vậy : t = xy đạt GTLN bằng 1 <=> x = y = 1 ; t = xy đạt GTNN bằng Bài toán 2 : Cho x, y, z là các số dương thỏa mãn xyz ≥ x + y + z + 2. Tìm GTNN của x + y + z. Lời giải : áp dụng bất đẳng thức Cô-si cho ba số dương x, y, z ta có : Vậy t = x + y + z đạt GTNN bằng 6 khi và chỉ khi x = y = z = 2. Bài toán 3 : Cho các số thực x, y, z thỏa mãn x 2 + 2y 2 + 2x 2 z 2 + y 2 z 2 + 3x2y 2 z 2 = 9. Tìm GTLN và GTNN của A = xyz. Lời giải : x 2 + 2y 2 + 2x 2 z 2 + y 2 z 2 + 3x 2 y 2 z 2 = 9 <=> (x 2 + y 2 z 2 ) + 2(y 2 + x 2 z 2 ) + 3x 2 y 2 z 2 = 9 (1). áp dụng bất đẳng thức m 2 + n 2 ≥ 2|mn| với mọi m, n ta có : x 2 + y 2 z 2 ≥ 2|xyz| ; y 2 + x 2 z 2 ≥ 2|xyz| (2). Từ (1) và (2) suy ra : 2|xyz| + 4|xyz| + 3(xyz)2 ≤ 9 <=> 3A 2 + 6|A| - 9 ≤ 0 <=> A 2 + 2|A| - 3 ≤ 0 <=> (|A| - 1)(|A| + 3) ≤ 0 <=> |A| ≤ 1 <=> -1 ≤ A ≤ 1. Vậy : A đạt GTLN bằng 1 A đạt GTNN bằng -1 Bài toán 4 : Cho các số thực x, y, z thỏa mãn x 4 + y 4 + x 2 - 3 = 2y 2 (1 - x 2 ). Tìm GTLN và GTNN của x 2 + y 2 . Lời giải : Ta có x 4 + y 4 + x 2 - 3 = 2y 2 (1 - x 2 ) <=> (x 2 + y 2 ) 2 - 2(x 2 + y 2 ) - 3 = -3x 2 ≤ 0 => t 2 - 2t - 3 ≤ 0 (với t = x 2 + y2 ≥ 0) => (t + 1)(t - 3) ≤ 0 => t ≤ 3 Vậy t = x 2 + y 2 đạt GTLN bằng 3 khi và chỉ khi x = 0 ; Ta lại có x 4 + y 4 + x 2 - 3 = 2y 2 (1 - x 2 ) <=> (x 2 + y 2 ) 2 + x 2 + y 2 - 3 = 3y 2 ≥ 0 => t 2 + t - 3 ≥ 0 (với t = x 2 + y 2 ≥ 0) Vậy t = x 2 + y 2 đạt GTNN bằng khi và chỉ khi y = 0 ; Bài tập tương tự 1) Cho x, y, z thỏa mãn : 2xyz + xy + yz + zx ≤ 1. Tìm GTLN của xyz. Đáp số : 1/8(x = y = z = 1/2) 2) Cho ba số dương x, y, z thỏa mãn : (x + y + z) 3 + x 2 + y 2 + z 2 + 4 = 29xyz Tìm GTNN của xyz. Đáp số : 8 (x = y = z = 2). 3) Tìm GTLN và GTNN của S = x 2 + y 2 biết x và y là nghiệm của phương trình : 5x 2 + 8xy + 5y 2 = 36 Đáp số : GTLN là 36 GTNN là 4 4) Cho x và y là các số thực thỏa mãn : Tìm GTLN của x 2 + y 2 . Đáp số : 1 (x = -1 ; y = 0). 5) Cho các số thực x, y, z thỏa mãn : x 2 + 4y 2 + z 2 = 4xy + 5x - 10y +2z - 5 Tìm GTLN và GTNN của x - 2y. Đáp số : GTLN là 4 (x = 2y + 4 ; y Є R ; z = 1) ; GTNN là 1 (x = 2y + 1 ; y Є R ; z = 1). 6) Tìm các số nguyên không âm x, y, z, t để M = x 2 + y 2 + 2z 2 + t 2 đạt GTNN, biết rằng : Đáp số : x = 5 ; y = 2 ; z = 4 ; t = 0. Khi đó M đạt giá trị nhỏ nhất là 61. MỘT HẰNG ĐẲNG THỨC THÚ VỊ Với mọi số thực a, b, c, ta có : (a + b)(a + c) = a 2 + (ab + bc + ca) = a(a + b + c) + bc (*). Với tôi, (*) là hằng đẳng thức rất thú vị. Trước hết, từ (*) ta có ngay : Hệ quả 1 : Nếu ab + bc + ca = 1 thì a 2 + 1 = (a + b)(a + c). Hệ quả 2 : Nếu a + b + c = 1 thì a + bc = (a + b)(a + c). Bây giờ, chúng ta đến với một vài ứng dụng của (*) và hai hệ quả trên. Bài toán 1 : Cho ba số dương a, b, c thỏa mãn ab + bc + ca = 1. Hãy tính giá trị của biểu thức : Lời giải : Theo hệ quả 1 ta có a 2 + 1 = a 2 + (ab + bc + ca) = (a + b)(a + c) ; b 2 + 1 = b 2 + (ab + bc + ca) = (b + a)(b + c) ; c 2 + 1 = c 2 + (ab + bc + ca) = (c + a)(c + b). Suy ra Vì vậy A = a(b + c) + b(c + a) + c(a + b) = 2(ab + bc + ca) = 2. Vấn đề sẽ khó hơn khi ta hướng tới việc đánh giá các biểu thức. Bài toán 2 : Cho ba số dương a, b, c thỏa mãn (a +b)(a +c) = 1. Chứng minh rằng : Lời giải : a) Sử dụng bất đẳng thức Cô-si cho hai số dương a(a + b + c) ; bc : 1 = (a + b)( a + c) = a(a + b + c) + bc ≥ b) Sử dụng bất đẳng thức Cô-si cho ba số dương a 2 ; (ab + bc + ca)/2 ; (ab + bc + ca)/2 1 = (a + b)( a + c) = a 2 + (ab + bc + ca) = Bài toán 3 : Cho ba số dương a, b, c thỏa mãn ab + bc + ca = 1. Chứng minh rằng : Lời giải : Theo hệ quả 1 ta có Sử dụng bất đẳng thức Cô-si cho hai số dương a 2 + ab ; a 2 + ac : Tương tự ta có Từ các kết quả trên ta suy ra : Bài toán sau đây nguyên là đề thi Châu á - Thái Bình Dương năm 2002 đã được viết lại cho đơn giản hơn (thay (1/x ; 1/y ; 1/z) bởi (a ; b ; c)). Bài toán 4 : Cho ba số dương a, b, c thỏa mãn a + b + c = 1. Chứng minh rằng : Lời giải : Theo hệ quả 2 và bất đẳng thức Bu-nhi-a-cốp-ski ta có Tương tự ta có Từ các kết quả trên ta suy ra : Để kết thúc, xin các bạn làm thêm một số bài tập : Bài tập 1 : Cho ba số dương a, b, c thỏa mãn a + b + c = 1. Hãy tính giá trị của biểu thức : Bài tập 2 : Cho ba số dương a, b, c thỏa mãn ab + bc + ca = 1. Chứng minh rằng : Bài tập 3 : Cho ba số dương a, b, c thỏa mãn a + b + c = 1. Chứng minh rằng : (a + bc)(b + ca)(c + ab) ≥ 64/81(ab + bc + ca) 2 . LÀM QUEN VỚI BẤT ĐẲNG THỨC TRÊ-BƯ-SEP Các bạn đã từng được làm quen với các bất đẳng thức Cô si, Bunhiacôpski nhưng không ít bạn còn chưa biết về bất đẳng thức Trê - bư - sép. Con đường đi đến bất đẳng thức này thật là giản dị, quá gần gũi với những kiến thức cơ bản của các bạn bậc THCS. Các bạn có thể thấy ngay : Nếu a 1 ≤ a 2 và b 1 ≤ b 2 thì (a 2 - a 1 ) (b 2 - b 1 ) ≥ 0. Khai triển vế trái của bất đẳng thức này ta có : a 1 b 1 + a 2 b 2 - a 1 b 2 - a 2 b 1 ≥ 0 => : a 1 b 1 + a 2 b 2 ≥ a 1 b 2 + a 2 b 1 . Nếu cộng thêm a 1 b 1 + a 2 b 2 vào cả hai vế ta được : 2 (a 1 b 1 + a 2 b 2 ) ≥ a 1 (b 1 + b 2 ) + a 2 (b 1 + b 2 ) => : 2 (a 1 b 1 + a 2 b 2 ) ≥ (a 1 + a 2 ) (b 1 + b 2 ) (*) Bất đẳng thức (*) chính là bất đẳng thức Trê - bư - sép với n = 2. Nếu thay đổi giả thiết, cho a 1 ≤ a 2 và b 1 ≥ b 2 thì tất cả các bất đẳng thức trên cùng đổi chiều và ta có : 2 (a 1 b 1 + a 2 b 2 ) ≤ (a 1 + a 2 ) (b 1 + b 2 ) (**) Các bất đẳng thức (*) và (**) đều trở thành đẳng thức khi và chỉ khi a 1 = a 2 hoặc b 1 = b 2 . Làm theo con đường đi tới (*) hoặc (**), các bạn có thể giải quyết nhiều bài toán rất thú vị. Bài toán 1 : Biết rằng x + y = 2. Chứng minh x 2003 + y 2003 ≤ x 2004 + y 2004 . Lời giải : Do vai trò bình đẳng của x và y nên có thể giả sử x ≤ y. Từ đó => : x 2003 ≤ y 2003 . Do đó (y 2003 - x 2003 ).(y - x) ≥ 0 => : x 2004 + y 2004 ≥ x.y 2003 + y.x 2003 Cộng thêm x 2004 + y 2004 vào hai vế ta có : 2.(x 2004 + y 2004 ) ≥ (x+y) (x 2003 + y 2003 ) = 2.(x 2003 + y 2003 ) => : x 2004 + y 2004 ≥ x 2003 + y 2003 (đpcm). Để ý rằng : Bất đẳng thức vừa chứng minh trở thành đẳng thức khi và chỉ khi x = y = 1 ; các bạn sẽ có lời giải của các bài toán sau : Bài toán 2 : Giải hệ phương trình : Nếu các bạn quan tâm tới các yếu tố trong tam giác thì vận dụng các bất đẳng thức (*) hoặc (**) sẽ dẫn đến nhiều bài toán mới. Bài toán 3 : Cho tam giác ABC có diện tích bằng 1. AH và BK là các đường cao của tam giác. Chứng minh : (BC + CA).(AH + BK) ≥ 8. Lời giải : Ta có AH x BC = BK x CA = 2. Do vai trò bình đẳng của BC và CA nên có thể giả sử rằng BC ≤ CA => 2/BC ≥ 2/CA => AH ≥ BK. Do đó (CA - BC).(BK - AH) ≤ 0 => : CA x BK + BC x AH ≤ BC x BK + CA x AH Cộng thêm CA x BK + BC x AH vào 2 vế ta có : 2.(CA x BK + BC x AH) ≤ (BC + CA) (AH + BK) => : (BC + CA).(AH + BK) ≥ 8. Đẳng thức xảy ra khi và chỉ khi BC = CA hoặc BK = AH tương đương với BC = CA hay tam giác ABC là tam giác cân đỉnh C. Bài toán 4 : Cho tam giác ABC với BC = a, CA = b, AB = c và các đường cao tương ứng của các cạnh này có độ dài lần lượt là h a , h b , h c . Chứng minh : với S là diện tích tam giác ABC. Lời giải : Do vai trò bình đẳng của các cạnh trong tam giác nên có thể giả sử rằng a ≤ b ≤ c => : 2S/a ≥ 2S/b ≥ 2S/c => h a ≥ h b ≥ h c . Làm như lời giải bài toán 3 ta có : (a + b).(ha + hb) ≥ 8S => : 1/(h a + h b ) ≤ (a + b)/(8S) (1) Tương tự ta được : 1/(h b + h b ) ≤ (b + c)/(8S) (2) 1/(h c + h a ) ≤ (c + a)/(8S) (3) Cộng từng vế của (1), (2), (3) dẫn đến : Bất đẳng thức (4) trở thành đẳng thức khi và chỉ khi các bất đẳng thức (1), (2), (3) đồng thời trở thành đẳng thức tương đương với a = b = c hay tam giác ABC là tam giác đều. Bây giờ các bạn thử giải các bài tập sau đây : 1) Biết rằng x 2 + y 2 = 1. Tìm giá trị lớn nhất của F = (x 4 + y 4 ) / (x 6 + y 6 ) 2) Cho các số dương x, y, z thỏa mãn x + y + z = 1. Chứng minh : 3) Cho tam giác ABC có độ dài các cạnh lần lượt là a, b, c và độ dài các đường phân giác trong thuộc các cạnh này lần lượt là l a , l b , l c . Chứng minh : 4) Hãy dự đoán và chứng minh bất đẳng thức Trê - bư - sép với n = 3. Từ đó hãy sáng tạo ra các bài toán. Nếu bạn thấy thú vị với những khám phá của mình ở bài tập này, hãy gửi gấp bài viết về cho chuyên mục EUREKA của TTT2. PHƯƠNG PHÁP HOÁN VỊ VÒNG QUANH Phân tích thành nhân tử là một trong những kĩ năng cơ bản nhất của chương trình đại số bậc THCS. Kĩ năng này được sử dụng khi giải các bài toán : biến đổi đồng nhất các biểu thức toán học, giải phương trình, chứng minh bất đẳng thức và giải các bài toán cực trị Sách giáo khoa lớp 8 đã giới thiệu nhiều phương pháp phân tích thành nhân tử. Sau đây tôi xin nêu một phương pháp thường sử dụng, dựa vào việc kết hợp các phương pháp quen thuộc như đặt nhân tử chung, nhóm số hạng, hằng đẳng thức Phương pháp này dựa vào một số nhận xét sau đây : 1/ Giả sử phải phân tích biểu thức F(a, b, c) thành nhân tử, trong đó a, b, c có vai trò như nhau trong biểu thức đó. Nếu F(a, b, c) = 0 khi a = b thì F(a, b, c) sẽ chứa các nhân tử a - b, b - c và c - a. Bài toán 1 : Phân tích thành nhân tử : F(a, b, c) = a 2 (b - c) + b 2 (c - a) + c 2 (a - b). Nhận xét : Khi a = b ta có : F(a, b, c) = a 2 (a - c) + a 2 (c - a) = 0, do đó F(a, b, c) có chứa nhân tử a - b. Tương tự F(a, b, c) chứa các nhân tử b - c, c - a. Vì F(a, b, c) là biểu thức bậc ba, do đó F(a, b, c) = k.(a - b)(b - c)(c - a). Cho a = 1, b = 0, c = -1 ta có : 1 + 1 = k.1.1.(-2) => k = -1. Vậy : F(a, b, c) = -(a - b)(b - c)(c - a). Bài toán 2 : Phân tích thành nhân tử : F(a, b, c) = a 3 (b - c) + b 3 (c - a) + c 3 (a - b). Nhận xét : Tương tự như bài toán 1, ta thấy F(a, b, c) phải chứa các nhân tử a - b, b - c, c - a. Nhưng ở đây F(a, b, c) là biểu thức bậc bốn, trong khi đó (a - b)(b - c)(c - a) bậc ba, vì vậy F(a, b, c) phải có một thừa số bậc nhất của a, b, c. Do vai trò a, b, c như nhau nên thừa số này có dạng k(a + b + c). Do đó : F(a, b, c) = k(a - b)(b - c)(c - a)(a + b + c) Cho a = 0 ; b = 1 ; c = 2 => k = -1. Vậy : F(a, b, c) = -(a - b)(b - c)(c - a)(a + b + c). 2/ Trong một số bài toán, nếu F(a, b, c) là biểu thức đối xứng của a, b, c nhưng F(a, b, c) ≠ 0 khi a = b thì ta thử xem khi a = -b, F(a, b, c) có triệt tiêu không, nếu thỏa mãn thì F(a, b, c) chứa nhân tử a + b, và từ đó chứa các nhân tử b + c, c + a. Bài toán 3 : Chứng minh rằng : Nếu : 1/x + 1/y + 1/z = 1/(x + y + z) thì 1/x n + 1/y n + 1/z n = 1/(x n + y n + z n ) với mọi số nguyên lẻ n. Nhận xét : Từ giả thiết 1/x + 1/y + 1/z = 1/(x + y + z) => : (xy + xz + yz)(x + y + z) - xyz = 0 (*) Do đó ta thử phân tích biểu thức F(x, y, z) = (xy + xz + yz)(x + y + z) - xyz thành nhân tử. Chú ý rằng khi x = - y thì F(x, y, z) = - y 2 z + y 2 z = 0 nên F(x, y, z) chứa nhân tử x + y. Lập luận tương tự như bài toán 1, ta có F(x, y, z) = (x + y)(y + z)(x + z). Do đó (*) trở thành : (x + y)(y + z)(x + z) = 0 Tương đương với : x + y = 0 hoặc y + z = 0 hoặc z + x = 0 . Nếu x + y = 0 chẳng hạn thì x = - y và do n lẻ nên x n = (-y) n = -y n . Vậy : 1/x n + 1/y n + 1/z n = 1/(x n + y n + z n ) Tương tự cho các trường hợp còn lại, ta có đpcm. Có những khi ta phải linh hoạt hơn trong tình huống mà hai nguyên tắc trên không thỏa mãn : Bài toán 4 : Phân tích đa thức sau thành nhân tử : F(x, y, z) = x 3 + y 3 + z 3 - 3xyz. Nhận xét : Ta thấy rằng khi x = y hay x = -y thì F(x, y, z) ≠ 0. Nhưng nếu thay x = -(y + z) thì F(x, y, z) = 0 nên F(x, y, z) có nhân tử x + y + z. Chia F(x, y, z) cho x + y + z, ta được thương x 2 + y 2 + z 2 - xy - yz - zx và dư là 0. Do đó : F(x, y, z) = (x + y + z)(x 2 + y 2 + z 2 - xy - yz - zx). Ta có thể thêm bớt vào F(x, y, z) một lượng 3x 2 y + 3xy 2 để nhân được kết quả này. Các bạn hãy dùng các phương pháp và kết quả nêu trên để giải các bài tập sau đây. Bài toán 5 : Tính tổng : trong đó k = 1, 2, 3, 4. Bài toán 6 : Chứng minh rằng (a - b) 5 + (b - c) 5 + (c - a) 5 chia hết cho 5(a - b)(b - c)(c - a). TS. Lê Quốc Hán (ĐH Vinh) MỘT PHƯƠNG PHÁP TÌM NGHIỆM ĐỘC ĐÁO Bằng kiến thức hình học lớp 6 ta có thể giải được các phương trình bậc hai một ẩn được không ? Câu trả lời là ở trường hợp tổng quát thì không được, nhưng trong rất nhiều trường hợp ta vẫn có thể tìm được nghiệm dương. Ví dụ : Tìm nghiệm dương của phương trình x 2 + 10x = 39. Lời giải : Ta có : x 2 + 10x = 39 tương đương x 2 + 2.5.x = 39 Từ biến đổi trên, ta hình dung x là cạnh của một hình vuông thì diện tích của hình vuông đó là x 2 . Kéo dài mỗi cạnh của hình vuông thêm 5 đơn vị (như hình vẽ), ta dễ thấy : [...]... đó tính được P Thật vậy, từ (1) ta có : a100.(1 - a) = b100.(b - 1) (2) a101.(1 - a) = b101.(b - 1) (3) Trừ (2) cho (3) theo từng vế ta có : (a100 - a101)(1 - a) = (b100 - b101)(b - 1) a100.(1 - a)2 = b100.(1 - b)(b - 1) a100.(1 - a)2 = - b100.(1 - b)2 (4) Nếu a ≠ 1, do a > 0 suy ra : a100.(1 - a)2 > 0 ≥ - b100.(1 - b)2 trái với (4) => a = 1 => b = 1 (thay vào (2), b >0) Vậy P = 12004 + 12004... bằng cách thử giải bài toán sau : Bài toán 10 : Hãy tìm số tự nhiên n sao cho A = n4 - 2n3 + 3n2 - 2n là số chính phương Gợi ý : Nghĩ đến (n2 - n + 1)2 Bài toán 11 : Chứng minh số 235 + 2312 + 232003 không là số chính phương Gợi ý : Nghĩ đến phép chia cho 3 hoặc phép chia cho 4 Bài toán 12 : Có 100 0 mảnh bìa hình chữ nhật, trên mỗi mảnh bìa được ghi một số trong các số từ 2 đến 100 1 sao cho không có... dựng : (d) đi qua C, (d) // AB * Kết quả của bài toán 2 cũng được vận dụng trong nhiều bài toán dựng hình chỉ bằng thước thẳng Bài toán 3 : Cho hình bình hành ABCD với O là tâm Chỉ dùng thước thẳng, qua O, hãy dựng đường thẳng song song với một cạnh bất kì của hình bình hành ABCD Lời giải : Theo bài toán, O lần lượt là trung điểm AC, BD (hình 3) áp dụng bài toán 2 cho đoạn thẳng AC với O là trung điểm... phải là số chính phương Tương tự các em có thể tự giải quyết được 2 bài toán : Bài toán 5 : Chứng minh tổng các số tự nhiên liên tiếp từ 1 đến 2005 không phải là số chính phương Bài toán 6 : Chứng minh số : n = 20044 + 20043 + 20042 + 23 không là số chính phương Bây giờ các em theo dõi bài toán sau để nghĩ tới một “tình huống” mới Bài toán 7 : Chứng minh số : n = 44 + 4444 + 444444 + 44444444 + 15 không... hành => MN // EF => đpcm Bài toán 1 có nhiều biến dạng” rất thú vị, sau đây là một vài biến dạng của nó, đề nghị các bạn giải xem như những bài tập nhỏ ; sau đó hãy đề xuất những “biến dạng” tương tự Bài toán 2 : Cho tam giác ABC Trên AB và CD có hai điểm D và E chuyển động sao cho BD = CE Đường thẳng qua các trung điểm của BC và DE cắt AB và AC tại I và J Chứng minh ΔAIJ cân Bài toán 3 : Cho tam giác... Theo bài toán 3, qua O ta dựng được đường thẳng song song với AB và dễ thấy đường thẳng này cắt PQ tại N là trung điểm của PQ Đến đây, ta có thể => cách dựng đường thẳng qua M song song với (d) dựa vào bài toán 2 Bài tập tự giải : Bài toán 5 : Cho trước đường tròn (S) và tâm O của nó, M là một điểm bất kì Chỉ dùng thước thẳng, hãy dựng qua M một đường thẳng vuông góc với một đường thẳng (d) cho trước Bài. .. 4a - 4b = b2 - c2 = 0 => b = c => a = b = c Thay vào (*) ta có : 4a - b2 = 1 4a - a2 = 1 a2 - 4a + 1 = 0 Giải phương trình bậc hai ẩn a trên ta được hai nghiệm là ++++++++ Vậy hệ phương trình (*) có hai nghiệm : 2 Đánh giá ẩn với một số Ví dụ 4 (đề thi vào lớp 10 chuyên, ĐHQG Hà Nội 2004) : Biết a > 0, b > 0 và a100 + b100 = a101 + b101 = a102 + b102 (1) Tính giá trị của biểu thức P = a2004... (tháng 7 năm 2003), tôi rất tâm đắc với các bài toán phân tích đa thức thành nhân tử Do đó tôi mạnh dạn trao đổi với bạn đọc về vấn đề vận dụng phép phân tích đa thức thành nhân tử vào giải một số dạng toán ở bậc THCS 1 Rút gọn các biểu thức đại số Bài toán 1 : Rút gọn : với ab ≠ 0 Lời giải : Bài toán 2 : Rút gọn : Lời giải : 2 Chứng minh bất đẳng thức Bài toán 3 : Cho ΔABC với góc A ≥ góc B ≥ góc C... chứng minh 3 Giải phương trình và bất phương trình Bài toán 4 : Giải phương trình : 4x3 - 10x2 + 6x - 1 = 0 (1) Lời giải : (1) 4x3 - 2x2 - 8x2 + 4x + 2x - 1 = 0 tương đương 2x2(2x - 1) - 4x(2x - 1) + (2x - 1) = 0 hay (2x - 1)(2x2 - 4x + 1) = 0 Bài toán 5 : Giải phương trình : Lời giải : Ta có : Vậy phương trình (2) có nghiệm duy nhất là x = 3 Bài toán 6 : Giải bất phương trình : 7x3 - 12x2 - 8 < 0... = 12, b = 18 Bài toán 3 : Tìm hai số nguyên dương a, b biết ab = 180, [a, b] = 60 Lời giải : Từ (**) => (a, b) = ab/[a, b] = 180/60 = 3 Tìm được (a, b) = 3, bài toán được đưa về dạng bài toán 2 Kết quả : a = 3, b = 60 hoặc a = 12, b = 15 Chú ý : Ta có thể tính (a, b) một cách trực tiếp từ định nghĩa ƯCLN, BCNN : Theo (*) ta có ab = mnd2 = 180 ; [a, b] = mnd = 60 => d = (a, b) = 3 Bài toán 4 : Tìm hai . các bài toán sau : Bài toán 2 : Giải hệ phương trình : Nếu các bạn quan tâm tới các yếu tố trong tam giác thì vận dụng các bất đẳng thức (*) hoặc (**) sẽ dẫn đến nhiều bài toán mới. Bài toán. số bài tập : Bài tập 1 : Cho ba số dương a, b, c thỏa mãn a + b + c = 1. Hãy tính giá trị của biểu thức : Bài tập 2 : Cho ba số dương a, b, c thỏa mãn ab + bc + ca = 1. Chứng minh rằng : Bài. một số dạng toán ở bậc THCS. 1. Rút gọn các biểu thức đại số. Bài toán 1 : Rút gọn : với ab ≠ 0. Lời giải : Bài toán 2 : Rút gọn : Lời giải : 2. Chứng minh bất đẳng thức Bài toán 3 : Cho