1. Trang chủ
  2. » Giáo Dục - Đào Tạo

Bài tập hình học giải tích Oxyz

21 662 10

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 21
Dung lượng 438,72 KB

Nội dung

PHƯƠNG TRÌNH MẶT PHẲNG TRONG KHÔNG GIAN I. VÉCTƠ ĐẶC TRƯNG CỦA MẶT PHẲNG: 1.Hai véctơ ( ) ( ) 1 2 3 1 2 3 , , ; ; ; u a a a v b b b = =   là m ột cặp véc tơchỉphương (VTCP) của mặt phẳng (α) ⇔ , 0 u v ≠    ; không cùng phương và các giá của chúng song song hoặc nằm trên mặt phẳng (α) 2. Véctơ ( ) ; ; n a b c = là véc tơpháp tuyến (VTPT) của mặt phẳng (α) ⇔(α) ⊥giá của n  3. Nhận xét: Mặt phẳng (α) có vô sốcặp véctơchỉphương và vô sốvéctơpháp tuyến đồng thời , n u v    . Nếu ( ) ( ) 1 2 3 1 2 3 , , ; ; u a a a v b b b  =   =   

PH ƯƠ NG TRÌNH M Ặ T PH Ẳ NG TRONG KHÔNG GIAN I. VÉCTƠ ĐẶC TRƯNG CỦA MẶT PHẲNG: 1. Hai véct ơ ( ) ( ) 1 2 3 1 2 3 , , ; ; ; u a a a v b b b = =   là m ộ t c ặ p véc t ơ ch ỉ ph ươ ng (VTCP) c ủ a m ặ t ph ẳ ng ( α ) ⇔ , 0 u v ≠    ; không cùng ph ươ ng và các giá c ủ a chúng song song ho ặ c n ằ m trên m ặ t ph ẳ ng ( α ) 2. Véct ơ ( ) ; ; n a b c = là véc t ơ pháp tuy ế n (VTPT) c ủ a m ặ t ph ẳ ng ( α ) ⇔ ( α ) ⊥ giá c ủ a n  3. Nh ậ n xét : M ặ t ph ẳ ng ( α ) có vô s ố c ặ p véct ơ ch ỉ ph ươ ng và vô s ố véct ơ pháp tuy ế n đồ ng th ờ i [ ] // , n u v    . N ế u ( ) ( ) 1 2 3 1 2 3 , , ; ; u a a a v b b b  =   =     là m ộ t c ặ p VTCP c ủ a mp( α ) thì VTPT là: [ ] 2 3 3 1 1 2 2 3 3 1 1 2 , ; ; a a a a a a n u v b b b b b b   = =        II. CÁC DẠNG PHƯƠNG TRÌNH CỦA MẶT PHẲNG 2. Ph ươ ng trình t ổ ng quát: 2.1. Ph ươ ng trình chính t ắ c: 0 Ax By Cz D + + + = v ớ i 2 2 2 0 A B C + + > . N ế u D = 0 thì 0 Ax By Cz + + = ⇔ ( α ) đ i qua g ố c t ọ a độ . N ế u A = 0, B ≠ 0, C ≠ 0 thì ( α ): 0 By Cz D + + = s ẽ song song ho ặ c ch ứ a v ớ i tr ụ c x ’O x . N ếu A ≠ 0, B = 0, C ≠ 0 thì ( α ): 0Ax Cz D+ + = sẽ song song ho ặc ch ứa vớ i trục y ’O y . N ế u A ≠ 0, B ≠ 0, C = 0 thì ( α ): 0Ax By D + + = sẽ song song hoặ c ch ứa vớ i trụ c z ’O z . www. laisac. pag e. tl  Đ Đ Đ Ư Ư Ư Ờ Ờ Ờ N N N G G G T T T H H H Ẳ Ẳ Ẳ N N N G G G V V V À À À M M M Ặ Ặ Ặ T T T P P P H H H Ẳ Ẳ Ẳ N N N G G G T T T R R R O O O N N N G G G K K K H H H Ô Ô Ô N N N G G G G G G I I I A A A N N N O O O X X X Y Y Y Z Z Z T S.T rần  P h ươ ng 2.2. Ph ươ ng trình t ổ ng quát c ủ a mp( α ) đ i qua M 0 ( x 0 , y 0 , z 0 ) v ớ i c ặ p VTCP ( ) ( ) 1 2 3 1 2 3 , , ; ; u a a a v b b b  =   =     hay VTPT [ ] 2 3 3 1 1 2 2 3 3 1 1 2 , ; ; a a a a a a n u v b b b b b b   = =        là: ( ) ( ) ( ) 2 3 3 1 1 2 0 0 0 2 3 3 1 1 2 0 a a a a a a x x y y z z b b b b b b − + − + − = 2.3. Ph ươ ng trình t ổ ng quát c ủ a mp( α ) đ i qua 3 đ i ể m ( ) ( ) ( ) 1 1 1 2 2 2 3 3 3 , , ; , , ; , , A x y z B x y z C x y z không th ẳ ng hàng có VTPT là: 2 1 2 1 2 1 2 1 2 1 2 1 3 1 3 1 3 1 3 1 3 1 3 1 , , , y y z z z z x x x x y y n AB AC y y z z z z x x x x y y − − − − − −     = =     − − − − − −      nên ph ươ ng trình là: ( ) ( ) ( ) 2 1 2 1 2 1 2 1 2 1 2 1 1 1 1 3 1 3 1 3 1 3 1 3 1 3 1 0 y y z z z z x x x x y y x x y y z z y y z z z z x x x x y y − − − − − − − + − + − = − − − − − − Đặ c bi ệ t: Ph ươ ng trình m ặ t ph ẳ ng đ i qua ( ) ( ) ( ) ; 0;0 , 0; ;0 , 0;0; A a B b C c là: ( ) 1 0 y x z abc a b c + + = ≠ 3. Ph ươ ng trình chùm m ặ t ph ẳ ng: Cho 2 m ặ t ph ẳ ng c ắ t nhau ( ) ( ) 1 1 1 1 1 2 2 2 2 2 : 0; : 0 a x b y c z d a x b y c z d α + + + = α + + + = v ớ i ( ) ( ) ( ) 1 2 ∆ = α α ∩ . M ặ t ph ẳ ng ( α ) ch ứ a ( ∆ ) là ( ) ( ) 1 1 1 1 2 2 2 2 0 p a x b y c z d q a x b y c z d + + + + + + + = v ớ i 2 2 0 p q + > III. VỊ TRÍ TƯƠNG ĐỐI CỦA 2 MẶT PHẲNG Cho 2 m ặ t ph ẳ ng ( α 1 ): 1 1 1 1 0 A x B y C z D + + + = có VTPT ( ) 1 1 1 1 , , n A B C =  và ( α 2 ): 2 2 2 2 0 A x B y C z D + + + = có VTPT ( ) 2 2 2 2 , , n A B C =  . N ế u 1 2 , n n   không cùng ph ươ ng thì ( α 1 ) c ắ t ( α 2 ). Nếu 1 2 ,n n   cùng phương và ( α 1 ), ( α 2 ) không có điểm chung thì ( α 1 ) // ( α 2 ) N ế u 1 2 , n n   cùng ph ươ ng và ( α 1 ), ( α 2 ) có đ i ể m chung thì ( α 1 ) ≡ ( α 2 ) IV. GÓC GIỮA HAI MẶT PHẲNG Góc giữa 2 mặt phẳng ( α 1 ): 1 1 1 1 0A x B y C z D+ + + = và ( α 2 ): 2 2 2 2 0 A x B y C z D + + + = là ϕ (0 ≤ ϕ ≤ 90 ° ) th ỏ a mãn: 1 2 1 2 1 2 1 2 2 2 2 2 2 2 1 2 1 1 1 2 2 2 . cos n n A A B B C C n n A B C A B C + + ϕ = = + + + +     với 1 2 ,n n   là 2 VTPT của ( α 1 ), ( α 2 ). V. KHOẢNG CÁCH 1. Kho ả ng cách t ừ M 0 ( x 0 , y 0 , z 0 ) đế n m ặ t ph ẳ ng ( α ): 0 Ax By Cz D + + + = là: ( ) 0 0 0 2 2 2 , Ax By Cz D d M A B C + + + α = + + 2. Kho ả ng cách gi ữ a 2 m ặ t ph ẳ ng song song: ( ) ( ) ( ) ; ; d d M M α β = β ∀ ∈ α ( ) ( ) ( ) ; ;d d M M α β = α ∀ ∈ β VI. CÁC BÀI TẬP MẪU MINH HỌA Bài 1. L ậ p ph ươ ng trình t ổ ng quát c ủ a mp( α ) đ i qua A(2; 1; − 1) và vuông góc v ớ i đườ ng th ẳ ng xác đị nh b ở i 2 đ i ể m B( − 1; 0; − 4), C(0; − 2; − 1).  Mp( α ) đ i qua A nh ậ n ( ) 1; 2;3 BC = −  làm VTPT nên ph ươ ng trình mp( α ) là: ( ) ( ) ( ) 1 2 2 1 3 1 0 x y z − − − + + = ⇔ 2 3 3 0 x y z − + + = Bài 2. L ậ p ph ương trình tham s ố và ph ươ ng trình tổ ng quát c ủ a mp( α ) đ i qua ( ) 2; 1;4 A − , ( ) 3; 2; 1 B − và vuông góc v ớ i ( ) : 2 3 0 x y z β + + − = HD: ( ) 1;3; 5 AB = −  , ( ) 1;1;2 n β =  . Do mp( α ) đ i qua A, B và ( ) ( ) α ⊥ β nên ( α ) nh ậ n , b AB n   làm c ặ p VTCP. Suy ra VTPT c ủ a ( α ) là: ( ) 3 5 5 1 1 3 ; ; 11; 7; 2 1 2 2 1 1 1 n − −   = = − −      . M ặ t khác ( α ) đ i qua ( ) 2; 1;4 A − nên ph ươ ng trình mp( α ): ( ) ( ) ( ) 11 2 7 1 2 4 0 11 7 2 21 0 x y z x y z − − + − − = ⇔ − − − = . Bài 3. L ậ p ph ươ ng trình mp( α ) đ i qua A(1; 0; 5) và // mp( γ ): 2 17 0 x y z − + − = . L ậ p ph ươ ng trình mp( β ) đ i qua 3 đ i ể m B(1; − 2; 1), C(1; 0; 0), D(0; 1; 0) và tính góc nhọ n ϕ tạ o bở i 2 mp( α ) và ( β ). HD: mp( α ) // ( γ ): 2 17 0 x y z − + − = có ( ) 2; 1;1 n = −  ⇒ ( α ): 2 0 x y z c − + + = ( α ) đ i qua A(1; 0; 5) ⇒ 2 1 0 5 0 7 c c ⋅ − + + = ⇔ = − ⇒ PT ( α ): 2 7 0 x y z − + − =  mp( β ) nh ậ n 2 véc t ơ ( ) ( ) 0; 2; 1 , 1;3; 1 BC BD = − = − −   làm c ặ p VTCP nên có VTPT là: ( ) 2 1 1 0 0 2 ; ; 1;1; 2 3 1 1 1 1 3 n β − −   = =   − − − −    . V ậ y ph ươ ng trình mp( β ): ( ) 1 2 0 2 1 0 x y z x y z + − + = ⇔ + + − =  ( ) 2 2 2 1 1 1 1 2 3 1 cos cos , 60 6 2 3 2 1 1 1 1 2 n n β ⋅ − ⋅ + ⋅ π ϕ = = = = ⇒ ϕ = = ° + + + +   Bài 4. Vi ế t PT m ặ t ph ẳ ng ch ứ a đườ ng th ẳ ng ( ∆ ): 2 0 3 2 3 0 x z x y z − =    − + − =   và vuông góc v ớ i m ặ t ph ẳ ng (P): 2 5 0 x y z − + + = HD: Ph ươ ng trình chùm m ặ t ph ẳ ng ch ứ a ( ∆ ) là: ( ) ( ) ( ) 2 2 2 3 2 3 0 , ; 0 m x z n x y z m n m n − + − + − = ∈ + > » ⇔ ( ) ( ) 3 2 2 3 0 m n x ny n m z n + − + − − = ⇒ mp( α ) ch ứ a ( ∆ ) có VTPT ( ) 3 ; 2 ; 2 u m n n n m = + − −  M ặ t ph ẳ ng (P) có VPPT ( ) 1; 2;1 v = −  nên để ( α ) ⊥ (P) thì 0 u v ⋅ =   ( ) ( ) ( ) 1 3 2 2 1 2 0 m n n n m ⇔ ⋅ + − ⋅ − + ⋅ − = 8 0 n m ⇔ − = . Cho 1 n = suy ra 8 m = , khi đ ó ph ươ ng trình mp( α ) là: 11 2 15 3 0 x y z − − − = Bài 5. Vi ế t ph ươ ng trình m ặ t ph ẳ ng (P) ch ứ a O z và l ậ p v ớ i m ặ t ph ẳ ng ( α ): 2 5 0 x y z + − = m ộ t góc 60 ° . HD: M ặ t ph ẳ ng (P) ch ứ a O z ⇒ (P) có d ạ ng: 0 mx ny + = ( 2 2 0 m n + > ) ⇒ VTPT ( ) ; ; 0 u m n =  . M ặ t ph ẳ ng ( α ) có VTPT ( ) 2;1; 5 v = −  suy ra ( ) 2 2 2 2 2. 1. 0. 5 1 cos , cos 60 2 2 1 5 m n u v m n + − = ° ⇔ = + + +   ( ) ( ) 2 2 2 2 2 10 m n m n ⇔ + = + ( ) ( ) ( ) 2 2 2 2 2 2 4 4 4 10 2 3 8 3 0 m mn n m n m mn n ⇔ + + = + ⇔ + − = Cho 1 n = ⇒ 2 1 3 8 3 0 3 3 m m m m + − = ⇔ = − ∨ = . V ậ y ( ) : 3 0 P x y − = ho ặ c ( ) : 3 0 P x y + = Bài 6. Vi ế t ph ươ ng trình t ổ ng quát c ủ a mp( α ) qua M(0; 0; 1), N(3; 0; 0) và t ạ o v ớ i (O xy ) m ộ t góc 60 ° . HD: ( α ): 0 Ax By Cz D + + + = qua M, N suy ra: 0;3 0 C D A D + = + = ⇒ 3 ; 3 C A D A = = − . M ặ t ph ẳ ng (O xy ) có VTPT là ( ) 0;0;1 suy ra 2 2 2 2 2 2 2 2 3 1 cos 60 36 10 2 10 C A A A B A B C A B = ° ⇔ = ⇔ = + + + + 2 2 26 26 A B B A ⇔ = ⇔ = ± . Do 2 2 2 0 A B C + + ≠ ⇒ 0 A ≠ . Cho 1 A = suy ra mp( α ): 26 3 3 0 x y z − + − = ho ặ c 26 3 3 0 x y z + + − = Bài 7. Cho A( a ; 0; a ), B(0; b ; 0), C(0; 0; c ) v ớ i a , b , c là 3 s ố d ươ ng thay đổ i luôn luôn th ỏ a mãn 2 2 2 3 a b c + + = . Xác đị nh a , b , c sao cho kho ả ng cách t ừ O đế n m ặ t ph ẳ ng (ABC) đạ t Max. HD:  (ABC): 1 0 y x z a b c + + − = . Suy ra ( ) 2 2 2 1 1 1 1 ; d O ABC a b c = + + ⇒ 2 2 2 2 1 1 1 1 d a b c = + + ⇒ ( ) 2 2 2 2 2 2 1 1 1 1 1 9 3 3 3 a b c a b c   = + + + + ≥ ⋅ =     2 1 1 3 3 d d ⇒ ≤ ⇒ ≤ . V ớ i 1 a b c = = = thì 1 Max 3 d = Bài 8. Cho chùm mặt phẳng ( ) ( ) : 2 1 1 0 m P x y z m x y z+ + + + + + + = . Chứng minh rằng: (P m ) luôn đi qua (d) cố định ∀ m Tính kho ảng cách t ừ O đến (d). Tìm m để (P m ) ⊥ ( ) 0 : 2 1 0P x y z + + + = HD:  V ớ i m ọ i m , (P m ) luôn đ i qua đườ ng th ẳ ng c ố đị nh (d): 2 1 0 1 0 x y z x y z + + + =    + + + =    M ặ t ph ẳ ng 2 1 0 x y z + + + = có VTPT: ( ) 2;1;1 u =  và 1 0 x y z + + + = có VTPT ( ) 1;1;1 v =  suy ra (d) có VTCP là: [ ] ( ) ; 0; 1;1 a u v = = −    . M ặ t khác (d) đ i qua ( ) 0;0; 1 M − ⇒ ( ) ( ) [ ] 2 2 1 0 0 1 , 2 0 1 1 OM a d O d a ⋅ + + = = = + +     ( ) ( ) ( ) ( ) : 2 1 1 1 0 m P m x m y m z m + + + + + + + = có VTPT ( ) 1 2; 1; 1 n m m m = + + +  ; Tr ườ ng h ợ p đặ c bi ệ t m ặ t ph ẳ ng ( ) 0 P có VTPT ( ) 2 2;1;1 n =  . Để (P m ) ⊥ (P 0 ) thì ( ) ( ) ( ) 1 2 3 0 2 2 1 1 1 1 0 4 6 0 2 n n m m m m m − ⋅ = ⇔ + + + + + = ⇔ + = ⇔ =   Bài 9. Cho 3 đ i ể m A(0; 1; 2), B(2; 3; 1), C(2; 2; − 1). Vi ế t ph ươ ng trình m ặ t ph ẳ ng (ABC). CMR: O ∈ (ABC) và OABC là m ộ t hình ch ữ nh ậ t. Cho S(9; 0; 0). Tính th ể tích chóp S.OABC. Vi ế t ph ươ ng trình m ặ t ph ẳ ng ch ứ a AB và đ i qua trung đ i ể m OS. HD:  ( ) ( ) 2; 2; 1 , 2;1; 3 AB AC = − = −   ⇒ VTPT ( ) , 5; 4; 2 n AB AC   = = − −      Do (ABC) đ i qua A(0; 1; 2) nên ph ươ ng trình m ặ t ph ẳ ng (ABC) là: ( ) ( ) ( ) 5 0 4 1 2 2 0 5 4 2 0 x y z x y z − − + − − − = ⇔ − + =  O(0; 0; 0) và 5.0 4.0 2.0 0 − + = nên O ∈ (ABC). Ta có: ( ) 0;1;2 OA =  , ( ) 2; 2; 1 OC = −  OC AB ⇒ =   0.2 1.2 2.1 0 OA OC ⋅ = + − =   suy ra OABC là hình ch ữ nh ậ t.  G ọ i H là hình chi ề u c ủ a S lên (OABC) suy ra 1 1 2 2. 3 3 OABC ABC SABC V S SH S SH V = ⋅ = ⋅ ⋅ = 1 2 , 6 AB AC AS   = ⋅ ⋅      Ta có: ( ) 9; 1; 2 AS = − −  và ( ) , 5; 4; 2 AB AC   = − −     ⇒ ( ) ( ) 1 1 9 5 1 4 2 2 45 15 3 3 V = − − ⋅ − − = − =  Trung đ i ể m c ủ a OS là ( ) 9 ;0;0 2 M ⇒ ( ) 9 ; 1; 2 2 AM = − −  ⇒ M ặt phẳng chứ a AB và đi qua M có VTPT là: [ ] ( ) 1 . 5; ; 11 2 n AB AM= = − − −    ⇒ Ph ươ ng trình m ặ t ph ẳ ng: 10 22 45 0 x y z + + − = . Bài 10. Lập phươ ng trình của mặt ph ẳng ( ) α thuộc chùm tạ o bởi hai mặt ph ẳng ( ) ( ) : 3 7 36 0; :2 15 0 P x y z Q x y z− + + = + − − = n ếu bi ết khoả ng cách từ g ố c t ọ a độ O đế n α b ằ ng 3. Gi ả i M ặ t ph ẳ ng ( ) α thu ộ c chùm t ạ o b ở i (P) và (Q) nên có ph ươ ng trình d ạ ng: ( ) ( ) ( ) 2 2 3 7 36 2 15 0 0 m x y z n x y z m n − + + + + − − = + > ( ) ( ) ( ) 2 3 7 36 15 0m n x n m y m n z m n⇔ + + − + − + − = . Ta có ( ) ( ) ( ) ( ) ( ) 2 2 2 36 15 , 3 3 2 3 7 m n d O m n n m m n − α = ⇔ = + + − + − 2 2 2 2 12 5 59 16 6 19 104 85 0 m n m mn n n mn m ⇔ − = − + ⇔ − + = ( ) ( ) 19 85 0 19 85 n m n m n m n m ⇔ − − = ⇔ = ∨ = + Cho n = m = 1 thì nhận được ( ) 1 : 3 2 6 21 0x y zα − + + = + Cho m = 19, n = 85 ta có ( ) 2 : 189 28 48 591 0 x y z α + + − = . Bài 11. L ậ p ph ươ ng trình m ặ t ph ẳ ng ( ) α đ i qua 2 đ i ể m A(2; –1; 0), B(5; 1; 1) và kho ả ng cách t ừ đ i ể m ( ) 1 0; 0; 2 M đế n m ặ t ph ẳ ng ( ) α b ằ ng 6 3 . Gi ả i G ọ i ph ươ ng trình m ặ t ph ẳ ng ( ) α là: ( ) 2 2 2 0 0 Ax By Cz D A B C + + + = + + > Ta có ( ) ( ) ( ) ( ) 2 0 1 ; 5 0 2 A A B D B A B C D ∈ α ⇒ − + = ∈ α ⇒ + + + = M ặ t khác: ( ) ( ) 2 2 2 7 7 1 , 2 6 3 6 3 d M C D A B C α = ⇔ + = + + ( ) ( ) ( ) 2 2 2 2 27 2 49 3 C D A B C ⇔ + = + + . T ừ (1) và (2), ta có ( ) 3 2 , 2 4 C A B D B A = − − = − Th ế (4) vào (3), ta đượ c: ( ) 2 2 2 2 27.49 49 3 2 A A B A B   = + + +   2 2 17 5 12 17 0 5 B AB A B A B A+ − = ⇔ = ∨ = − + Ch ọ n A = B = 1 ⇒ C = –5, D = –1 thì nh ậ n đượ c ( ) 1 : 5 1 0 x y z α + − − = + Ch ọ n A = 5, B = 17 ⇒ C = 19, D = –27 thì ( ) 2 : 5 17 19 27 0 x y z α − + − = VII. CÁC BÀI TẬP DÀNH CHO BẠN ĐỌC TỰ GIẢI Bài 1. Vi ế t PT mp( α ) ch ứ a g ố c t ọ a độ O và vuông góc v ớ i ( ) : 7 0 P x y z − + − = , ( ) : 3 2 12 5 0 Q x y z + − + = Bài 2. Vi ế t PT mp( α ) đ i qua M(1; 2;1) và ch ứ a giao tuy ế n c ủ a ( ) ( ) : 1 0, : 2 3 0 P x y z Q x y z + + − = − + = Bài 3. Vi ế t ph ươ ng trình m ặ t ph ẳ ng ch ứ a ( ) 3 0 : 3 2 1 0 x y z x y z − + − =   ∆  + + − =   và vuông góc vớ i mặ t phẳng (P): 2 3 0x y z+ + − = Bài 4. Cho A(5; 1; 3), B(1; 6; 2), C(5; 0; 4). Vi ế t PT mp(ABC). Tính kho ả ng cách t ừ g ố c O đế n (ABC). Vi ế t PT m ặ t ph ẳ ng: a. Qua O, A và // BC; Qua C, A và ⊥ ( α ): 2 3 1 0 x y z − + + = . b. Qua O và ⊥ ( α ), (ABC); Qua I( − 1; 2; 3) và ch ứ a giao tuy ế n c ủ a ( α ), (ABC) Bài 5. Xác đị nh các tham s ố m , n để m ặ t ph ẳng 5 4 0x ny z m + + + = thuộ c chùm m ặ t ph ẳ ng có ph ươ ng trình: ( ) ( ) 3 7 3 9 2 5 0 x y z x y z α − + − + β − − + = Bài 6. Cho 2 m ặ t ph ẳ ng ( ) : 2 3 1 0 x y z α − + + = , ( ) : 5 0 x y z β + − + = và đ i ể m M(1; 0; 5). Tính kho ả ng cách t ừ M đế n mp( α ). Vi ế t ph ươ ng trình m ặ t ph ẳ ng (P) đ i qua giao tuy ế n (d) c ủ a ( α ) và ( β ) đồ ng th ờ i vuông góc v ớ i m ặ t ph ẳ ng (Q): 3 1 0 x y − + = . Bài 7. Vi ế t ph ươ ng trình m ặ t ph ẳ ng (P) đ i qua 3 đ i ể m A(1; 1; 3), B( − 1; 3; 2), C( − 1; 2; 3). Tính kho ả ng cách t ừ g ố c O đế n (P). Tính di ệ n tích tam giác ABC và th ể tích t ứ di ệ n OABC. Bài 8. Cho A(2; 0; 0), B(0; 3; 0), C(0; 0; 3). Các đ i ể m M, N l ầ n l ượ t là trung đ i ể m c ủ a OA và BC; P, Q là 2 đ i ể m trên OC và AB sao cho 2 3 OP OC = và 2 đườ ng th ẳ ng MN, PQ c ắ t nhau. Viết phương trình mp(MNPQ) và tìm tỉ số AQ AB . Bài 9. Cho A( a ; 0; 0), B(0; a ; 0), C( a ; a ; 0), D(0; 0; d ) v ớ i a , d > 0. G ọ i A’, B’ là hình chi ế u c ủ a O lên DA, DB. Vi ế t ph ươ ng trình m ặ t ph ẳ ng ch ứ a 2 đườ ng OA’, OB’. Ch ứ ng minh m ặ t ph ẳ ng đ ó vuông góc CD. Tính d theo a để s ố đ o góc  45 A OB ′ ′ = ° . Bài 10. Tìm trên O y các đ i ể m cách đề u 2 m ặ t ph ẳ ng ( ) ( ) : 1 0, : 5 0 x y z x y z α + − + = β − + − = Bài 11. Tính góc gi ữ a 2 m ặ t ph ẳ ng (P) và (Q) cùng đ i qua đ i ể m I(2; 1; − 3) bi ế t (P) ch ứ a O y và (Q) ch ứ a O z . Tìm t ậ p h ợ p các đ i ể m cách đề u 2 m ặ t ph ẳ ng (P) và (Q). Bài 12. Cho ∆ OAB đề u c ạ nh a n ằ m trong m ặ t ph ẳ ng (O xy ), đườ ng th ẳ ng AB // O y . Điể m A nằm trên phần tư thứ nhất trong mp(O xy ). Cho đ iểm ( ) 0;0; 3 a S . Xác đị nh A, B và trung đ i ể m E c ủ a OA. Vi ế t ph ươ ng trình m ặ t ph ẳ ng (P) ch ứ a SE và song song v ớ i O x . Tính ( ) , d O P t ừ đ ó suy ra ( ) ; d Ox SE PH ƯƠ NG TRÌNH ĐƯỜ NG TH Ẳ NG TRONG KHÔNG GIAN I. VÉCTƠ ĐẶC TRƯNG CỬA ĐƯỜNG THẲNG TRONG KHÔNG GIAN : 1. Véct ơ ( ) 1 2 3 ; ; a a a a =  là véc t ơ ch ỉ ph ươ ng (VTCP) c ủ a ( ∆ ) ⇔ ( ∆ ) // giá c ủ a a  2. Nh ậ n xét: N ế u a  là m ộ t VTCP c ủ a ( ∆ ) thì ka  ( k ≠ 0) c ũ ng là VTCP c ủ a ( ∆ ) t ứ c là ( ∆ ) có vô s ố VTCP. II. PHƯƠNG TRÌNH ĐƯỜNG THẲNG TRONG KHÔNG GIAN 1. Ph ươ ng trình tham s ố : Ph ươ ng trình đườ ng th ẳ ng ( ∆ ) đ i qua M 0 ( x 0 , y 0 , z 0 ) và có VTCP ( ) 1 2 3 ; ;a a a a=  : ( ) 0 1 0 2 0 3 x x a t y y a t t z z a t = +    = + ∈   = +   » 2. Ph ươ ng trình chính t ắ c: Ph ươ ng trình đườ ng th ẳ ng ( ∆ ) đ i qua M 0 ( x 0 , y 0 , z 0 ) và có VTCP ( ) 1 2 3 ; ; a a a a =  : 0 0 0 1 2 3 x x y y z z a a a − − − = = 3. Phương trình tổng quát: Phương trình đường thẳng ( ∆ ) tổng quát là giao tuy ế n c ủ a hai m ặ t ph ẳ ng 1 1 1 1 2 2 2 2 0 0 A x B y C z D A x B y C z D + + + =    + + + =   v ớ i 1 1 1 2 2 2 : : : : A B C A B C ≠ 4. Ph ươ ng trình đườ ng th ẳ ng ( ∆ ) đ i qua 2 đ i ể m M 1 ( x 1 , y 1 , z 1 ), M 2 ( x 2 , y 2 , z 2 ): 1 1 1 2 1 2 1 2 1 x x y y z z x x y y z z − − − = = − − − 5. Chuy ể n d ạ ng ph ươ ng trình t ổ ng quát sang d ạ ng tham s ố , chính t ắ c: Cho ( ∆ ): ( ) ( ) 1 1 1 1 2 2 2 2 : 0 : 0 A x B y C z D A x B y C z D  α + + + =   β + + + =   ( 1 1 1 2 2 2 : : : : A B C A B C ≠ ) ⇒ VTPT c ủ a hai m ặ t ph ẳ ng là ( ) ( ) 1 1 1 1 2 2 2 2 , , , , n A B C n A B C  =   =     ⇒ VTCP 1 2 , a n n =        Tìm điể m M 0 ( x 0 , y 0 , z 0 ) ∈ ( α ) ∩ ( β ) ⇒ 0 0 0 1 2 3 x x y y z z a a a − − − = = . Đặ t t ỉ s ố này b ằ ng t suy ra d ạ ng tham s ố . III. VỊ TRÍ TƯƠNG ĐỐI CỦA CÁC ĐƯỜNG THẲNG VÀ MẶT PHẲNG TRONG KHÔNG GIAN 1. V ị trí t ươ ng đố i c ủ a 2 đườ ng th ẳ ng : Cho ( ∆ 1 ) đ i qua M 1 ( x 1 ; y 1 , z 1 ) v ớ i VTCP ( ) 1 2 3 , , u a a a =  , ( ∆ 2 ) đ i qua M 2 ( x 2 ; y 2 , z 2 ) v ớ i VTCP là ( ) 1 2 3 , , v b b b =   N ế u [ ] 1 2 , 0 u v M M ⋅ ≠    thì ( ) ( ) 1 2 , ∆ ∆ chéo nhau.  N ế u [ ] 1 2 , 0 u v M M ⋅ =    và 1 2 3 1 2 3 : : : : a a a b b b ≠ thì ( ∆ 1 ), ( ∆ 2 ) c ắ t nhau.  N ế u [ ] 1 2 1 2 3 1 2 3 , 0 : : : : u v M M a a a b b b  ⋅ =    =     và h ệ ph ươ ng trình c ủ a ( ) ( ) 1 2  ∆   ∆   vô nghi ệ m thì ( ∆ 1 ), ( ∆ 2 ) song song nhau.  N ế u [ ] 1 2 1 2 3 1 2 3 , 0 : : : : u v M M a a a b b b  ⋅ =    =     và h ệ ph ươ ng trình c ủ a ( ) ( ) 1 2  ∆   ∆   có nghi ệ m thì ( ∆ 1 ), ( ∆ 2 ) trùng nhau. 2. V ị trí t ươ ng đố i c ủ a đườ ng th ẳ ng và m ặ t ph ẳ ng: Cho ( ∆ ) đ i qua M 0 ( x 0 ; y 0 , z 0 ) v ớ i VTCP ( ) , , u a b c =  và mp( α ): 0 Ax By Cz D + + + = v ớ i VTPT ( ) , , n A B C =   N ế u 0 n u ⋅ ≠   0 Aa Bb Cc ⇔ + + ≠ thì ( ∆ ) c ắ t ( α ).  N ế u // n u   : : : : a b c A B C ⇔ = thì ( ∆ ) ⊥ ( α ).  N ế u ( ) 0 0n u M ⋅ =    ∉ α     ⇔ 0 0 0 0 0 Aa Bb Cc Ax By Cz D + + =    + + + ≠   thì ( ∆ ) // ( α ).  Nếu ( ) 0 0 n u M ⋅ =    ∈ α     ⇔ 0 0 0 0 0 Aa Bb Cc Ax By Cz D + + =    + + + =   thì ( ∆ ) ⊂ ( α ). IV. GÓC GIỮA CÁC ĐƯỜNG THẲNG VÀ MẶT PHẲNG TRONG KHÔNG GIAN 1. Góc gi ữ a 2 đườ ng th ẳ ng: Cho ( ∆ 1 ) đ i qua M 1 ( x 1 ; y 1 , z 1 ) v ớ i VTCP ( ) 1 2 3 , , u a a a =  , ( ∆ 2 ) đ i qua M 2 ( x 2 ; y 2 , z 2 ) v ớ i VTCP là ( ) 1 2 3 , , v b b b =  Góc gi ữ a ( ) ( ) ( ) [ ] 1 2 , 0,90 ∆ ∆ = ϕ∈ ° xác đị nh b ở i: 1 1 2 2 3 3 2 2 2 2 2 2 1 2 3 1 2 3 cos a b a b a b u v u v a a a b b b + + ⋅ ϕ = = ⋅ + + + +     2. Góc gi ữ a đườ ng th ẳ ng và m ặ t ph ẳ ng: Cho ( ∆ ) đ i qua M 0 ( x 0 ; y 0 , z 0 ) v ớ i VTCP ( ) , , u a b c =  và mp( α ): 0 Ax By Cz D + + + = v ớ i VTPT ( ) , , n A B C =  Góc gi ữ a ( ) ( ) ( ) [ ] , 0,90 ∆ α = ϕ∈ ° xác định b ở i: 2 2 2 2 2 2 sin u n aA bB cC u n a b c A B C ⋅ + + ϕ = = ⋅ + + + +     3. Góc gi ữ a hai m ặ t ph ẳ ng: Góc gi ữ a 2 m ặ t ph ẳ ng ( α 1 ): 1 1 1 1 0 A x B y C z D + + + = và ( α 2 ): 2 2 2 2 0 A x B y C z D + + + = là ϕ (0 ≤ ϕ ≤ 90 ° ) th ỏ a mãn: 1 2 1 2 1 2 1 2 2 2 2 2 2 2 1 2 1 1 1 2 2 2 . cos n n A A B B C C n n A B C A B C + + ϕ = = + + + +     v ớ i 1 2 , n n   là 2 VTPT c ủ a ( α 1 ), ( α 2 ). V. KHOẢNG CÁCH 1. Kho ả ng cách t ừ 1 đ i ể m đế n 1 đườ ng th ẳ ng: Cho ( ∆ ) đ i qua M 0 ( x 0 ; y 0 , z 0 ) v ớ i VTCP ( ) , , u a b c =  . Kho ả ng cách t ừ đ i ể m M 1 ( x 1 ; y 1 , z 1 ) đến đường th ẳng ( ∆ ) là: ( ) ( ) 0 1 1 , u M M d M u   ⋅   ∆ =    2. Kho ả ng cách gi ữ a 2 đườ ng th ẳ ng chéo nhau: Cho ( ∆ 1 ) đi qua M 1 ( x 1 ; y 1 , z 1 ) với VTCP ( ) 1 2 3 , ,u a a a =  , ( ∆ 2 ) đ i qua M 2 ( x 2 ; y 2 , z 2 ) v ớ i VTCP là ( ) 1 2 3 , , v b b b =  Gi ả s ử ( ) ( ) 1 2 , ∆ ∆ chéo nhau, khi đ ó ( ) [ ] [ ] 1 2 1 2 , ( ),( ) , u v M M d u v ⋅ ∆ ∆ =      [...]... 2 i m A, B phân bi t thu c (∆ ) Xác nh hình chi u vuông góc c a A, B lên (α ) là H1, H2 Hình chi u vuông góc c a (∆) lên (α) là ư ng th ng (∆ ’) ≡ H1 H2 C3: N u (∆ ) c t (α ): Xác Xác nh A ≡ (∆ ) ∩ (α ) L y M b t kì ∉ (∆) và M ≠ A nh hình chi u vuông góc H c a M lên (α) Hình chi u vuông góc c a (∆) lên (α) là (∆ ’) ≡ AH Bài 1 Xác 5 x − 4 y − 2 z − 5 = 0  nh hình chi u vuông góc c a (∆):  x + 2z... (∆ 3) 2 D ng 2: Xác nh hình chi u vuông góc c a 1 i m M lên m t ph ng (α) α Phương pháp: Vi t phương trình tham s c a ư ng th ng (∆ ) qua M và (∆ ) ⊥(α) Giao i m H c a (∆ ) và (α) là hình chi u vuông góc c a M lên (α) Bài 1 Tìm hình chi u vuông góc c a M(1; 2;−3) lên ( α ) : x + y − 3 z + 5 = 0 3 D ng 3: Xác nh i m i x ng v i i m M cho trư c qua m t ph ng (α) α Phương pháp: Tìm hình chi u vuông góc H... 2 = 0 Bài 6 Tính kho ng cách gi a 2 m t ph ng (α): 2x + y + z – 1 = 0 và (β):2x + y + z + 10 = 0 n BC Bài 7 Cho A(5; 7;−2), B(3;1;1), C(9; 4;−4) Tính kho ng cách t D(−1; 5; 0) n (ABC) 12.2 Tìm i m bi t kho ng cách cho trư c: Bài 1 Cho (α): x + 2y – 2z – 2 = 0 Tìm M∈Oy sao cho kho ng cách t M n (α) b ng 4 Bài 2 Cho A(1;−2; 0) Tìm M∈Oz sao cho kho ng cách t M n (α): 3x – 2y + 6z + 9 = 0 b ng MA Bài 3... + MB) min y + z − 5 = 0 Bài 6 Cho A(1; 1; 0), B(3;−1; 4) y −1 z + 2 sao cho (MA + MB) min Tìm M∈ ( ∆ ) : x + 1 = = 1 2 −1 A(1;2; −1) y−2 z −2  Bài 7 Cho  Tìm M∈ ( ∆) : x + 1 = sao cho (MA + MB) min = 3 2 −2 B ( 7; −2;3)  Bài 8 Cho A(2; 3; 0) và B ( 0; − 2; 0 ) x + y + z − 2 = 0 sao cho (MA + MB) min Tìm M∈ ( ∆ ) :  x − y + z − 2 = 0 13 D ng 13: Các bài toán v góc Bài 1 Xác nh góc gi a 2 m... 7 D ng 7: Xác nh hình chi u song song c a ư ng th ng (∆1) lên (α) ∆ α ∆ theo phương (∆2) c t (α) α Phương pháp: TH1: (∆1 ) // (∆ 2) ⇒ Hình chi u song song c a (∆1 ) lên (α ) theo phương (∆2 ) là i m H≡ ( ∆1 ) ∩ (α ) TH2: (∆1 ) và (∆2 ) không song song: Vi t phương trình m t ph ng (β ) ch a (∆1 ) và // (∆2 ) Hình chi u song song c a (∆1) lên (α) theo phương (∆2) là (∆) = (β) ∩ (α) Bài 1 Xác 7 x + y... thì bài toán vô nghi m N u (α) c t (∆2 ) thì tìm N = (∆ 2) ∩ (α ) N u MN // (∆ 1) thì bài toán vô nghi m, n u MN c t (∆1 ) suy ra ư ng th ng c n tìm là (∆) ≡ MN Phương pháp 2: Vi t phương trình m t ph ng (α ) qua M ch a (∆ 1), m t ph ng (β ) qua M ch a (∆2 ) Xét (∆) = (α ) ∩ (β ) N u (∆) c t (∆1 ) và (∆2 ) thì ư ng th ng (∆ ) là ư ng th ng c n tìm N u (∆ ) // (∆1 ) ho c (∆ 2) thì bài toán vô nghi m Bài. .. + 3t  z = −3 + 3t 1 2   Bài 4 VPT ư ng vuông góc chung c a 3 x − 2 y − 8 = 0 ( ∆ 1 ) : 5 x + 2 z − 12 = 0 và ( ∆ 2 ) : {x = −1 + 3t; y = −3 − 2t; z = 2 − t}  x = 2 + t x + 2z − 2 = 0  Bài 5 Cho ( ∆ 1 ) :  y = 1 − t và ( ∆ 2 ) :  y − 3 = 0  z = 2t  u (∆ 1) và (∆2) Vi t phương trình m t ph ng cách 12 D ng 12: Các bài toán v kho ng cách 12.1 Tính kho ng cách: Bài 1 Tính kho ng cách t M(1;... 2; 3) y +1 z −1 n (∆) : x − 1 = = 2 1 3 Bài 2 Cho A(1; 2; 3), B(0; 1; 2), C(4;−1; 1) Tính kho ng cách t A Bài 3 Tính kho ng cách gi a 2 ư ng th ng x + y = 0 ( ∆ 1 ) :  x − y + z − 4 = 0 ( ∆ 2 ) : { x = 1 + 3t; y = −t; z = 2 + t}  Bài 4 Tính kho ng cách gi a 2 ư ng th ng − ( ∆1 ) : x 1 1 = y −2 z −3 = , 2 3 x + 2 y − z = 0 ( ∆ 2 ) : 2 x − y + 3z − 5 = 0  Bài 5 Tính kho ng cách gi a 2 ư ng th ng... z = 3 − 3t} 6 D ng 6: Xác ∆ α nh hình chi u vuông góc c a ư ng th ng (∆) lên m t ph ng (α) Phương pháp: TH1: (∆ ) ⊥ (α ) ⇒ Hình chi u vuông góc c a (∆ ) lên (α ) là i m H≡ (∆) ∩ (α ) TH2: (∆ ) ⊂ (α ) ⇒ Hình chi u vuông góc c a (∆ ) lên (α ) là ư ng th ng (∆) TH3: (∆ ) không vuông góc v i (α), (∆ ) ⊄ (α ): C1: Vi t phương trình m t ph ng (β ) ch a (∆ ) và (β ) ⊥ (α ) Hình chi u vuông góc c a (∆) lên... M∈(P): 3x – y – 2z + 19 = 0 (MA + MB) min;|MA – MB| max Bài 2 Cho A(1; 2; 3), B(4; 4; 5) Tìm M∈ m t ph ng Oxy sao cho: (MA + MB) min; |MA – MB| max Bài 3 Cho A(1; 0; 2), B(2; −1; 3) Tìm M∈ ( P ) : x − 2 y + z − 4 = 0 (MA + MB) min; |MA – MB| max Bài 4 Cho A(1; 3; −2), B(13; 7; −4) Tìm M∈ ( P ) : x − 2 y + 2 z − 9 = 0 (MA + MB) min; |MA – MB| max Bài 5 Cho A(1; 2;−1), B ( 2 − 2; 2; −3) x + y + z − 3

Ngày đăng: 21/11/2014, 22:35

TỪ KHÓA LIÊN QUAN

w