1. Trang chủ
  2. » Giáo án - Bài giảng

TOAN ON THI DAI HOC 2012 (2) -GIAI CHI TIET

98 203 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 98
Dung lượng 4,56 MB

Nội dung

B GIO DC & O TO THI I HC MễN TON NM 2012 THAM KHO Thi gian lm bi: 180 phỳt I. PHN CHUNG CHO TT C TH SINH (7 im). Cõu I (2 im): Cho hàm số 2 1 1 x y x + = + 1. Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số đã cho. 2. Tìm trên (C) những điểm có tổng khoảng cách đến hai tiệm cận của (C) nhỏ nhất Cõu II (2 im):1) Gii phng trỡnh: 2 2 2009 cos2 2 2 sin 4cos sin 4sin cos 4 x x x x x x + + = + ữ . 2) Gii h phng trỡnh: 2 2 3 2 3 1 1 (1 ) 4 1 4 x x y y x x x y y y + + + = + + = . Cõu III (1 im): Tớnh tớch phõn: 0 2 2 1 2 3 4 4 . 2 1 4 4 5 x x I x x dx x x = + + ữ ữ + + . Cõu IV (1 im):Trờn ng thng vuụng gúc ti A vi mt phng ca hỡnh vuụng ABCD cnh a ta ly im S vi SA = 2a . Gi B, D l hỡnh chiu vuụng gúc ca A lờn SB v SD. Mt phng (ABD ) ct SC ti C . Tớnh th tớch khi a din ABCDD C B. Cõu V (1 im): Tam giác ABC có đặc điểm gì nếu các góc thoả mãn: cos .cos cos .cos cos .cos 3 cos cos cos 2 + + = A B B C C A C A B II. PHN RIấNG CHO TNG CHNG TRèNH ( 3 im). Thớ sinh ch c lm mt trong hai phn (phn 1 hoc phn 2) 1. Theo chng trỡnh Chun: 1. Cõu VI.a (2 im): 1) Trong mt phng to Oxy , cho ng trũn ( C) : 2 2 2 6 15 0x y x y+ + = v ng thng (d) : cos sinx x ( m l tham s). Gi I l tõm ca ng trũn . Tỡm m ng thng (d) ct (C) ti 2 im phõn bit A,B tho món chu vi IAB bng 5(2 2)+ . 2) Trong khụng gian vi h ta Oxyz cho hai ng thng : 1 1 1 ( ): 2 1 1 x y z d + = = v 2 2 1 ( ) : 1 1 1 x y z d + = = . Vit phng trỡnh mt phng cha (d 1 ) v hp vi (d 2 ) mt gúc 30 0 . Cõu VII.a (1 im): Chng minh rng vi a, b, c>0 ta cú: 1 1 1 1 1 1 1 1 1 4 4 4 3 3 3 2 2 2a b c a b b c c a a b c b c a c a b + + + + + + + + + + + + + + + 2. Theo chng trỡnh Nõng cao: Cõu VI.b (2 im) 1) Trong mt phng Oxy cho ng trũn (C) tõm I(-1; 1), bỏn kớnh R=1, M l mt im trờn ( ) : 2 0d x y + = . Hai tip tuyn qua M to vi (d) mt gúc 45 0 tip xỳc vi (C) ti A, B. Vit phng trỡnh ng thng AB. 1 2) Trong khụng gian Oxyz cho t din ABCD bit A(0; 0; 2), B(-2; 2; 0), C(2; 0; 2), ( )DH ABC v 3DH = vi H l trc tõm tam giỏc ABC. Tớnh gúc gia (DAB) v (ABC). Cõu VII.b (1 im): Chng minh rng vi a, b, c>0 ta cú: 1 ( )( ) ( )( ) ( )( ) a b c a a b a c b b a b c c c a c b + + + + + + + + + + + . P N 1 I. PHN CHUNG CHO TT C TH SINH (7 im). Cõu I (2 im): Cho hàm số 2 1 1 x y x + = + 1. Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số đã cho. 2. Tìm trên (C) những điểm có tổng khoảng cách đến hai tiệm cận của (C) nhỏ nhất Cõu II (2 im):1) Gii phng trỡnh: 2 2 2009 cos2 2 2 sin 4cos sin 4sin cos 4 x x x x x x + + = + ữ . 2 2 2009 cos2 2 2 sin 4cos sin 4sin cos 4 x x x x x x + + = + ữ 2 2 cos sin 2(sin cos ) 4sin .cos (sin cos )x x x x x x x x + + = + (cos sin )(cos sin 4cos .sin 2) 0x x x x x x + + = cos sin 0 (1) cos sin 4sin .cos 2 0 (2) x x x x x x + = + = + Gii (1): (1) tan 1 4 x x k = = + + Gii (2): t cos sin , 2x x t t = ta cú phng trỡnh: 2 2 0t t+ = . 0 1/ 2 t t = = Vi 0t = ta cú: tan 1 4 x x k = = + Vi 1/ 2t = ta cú: arccos( 2 / 4) / 4 2 cos( ) 2 / 4 4 arccos( 2 / 4) / 4 2 x k x x k = + + = = + KL: Vy phng trỡnh cú 4 h nghim: 4 x k = + , 4 x k = + , arccos( 2 / 4) / 4 2x k = + , arccos( 2 / 4) / 4 2x k = + . 2).Gii h phng trỡnh: 2 2 3 2 3 1 1 (1 ) 4 1 4 x x y y x x x y y y + + + = + + = . 2 §k 0y ≠ 2 2 2 2 3 3 3 2 3 1 1 1 1 (1 ) 4 4 1 1 1 ( ) 4 4 x x x x y y y y x x x x x x y y y y y y   + + + = + + + =     ⇔     + + + = + + = −     ®Æt 1 a x y x b y  = +     =   Ta ®îc 2 2 2 3 3 2 2 2 4 4 2 4 2 2 1 2 4 ( 4) 4 4 4 0 a a b a a b a a b a b a ab a a a a a a    + − = + − = + − = =     ⇔ ⇔ ⇔     = − = − + − = − + =        Khi ®ã 1 1 1 2 x y y x x x =  =   ⇔   = + =    KL Câu III (1 điểm): Tính tích phân: 0 2 2 1 2 3 4 4 . 2 1 4 4 5 x x I x x dx x x −   − − = + +  ÷  ÷ + +   ∫ . 0 2 2 1 2 3 4 4 . 2 1 (2 1) 4 x x I x x dx x −   − − = + +  ÷  ÷ + +   ∫ 0 0 2 2 1 1 2 2 4 (2 1) ( . 2 1) (2 1) 4 x dx x x dx x − − − + = + + + + ∫ ∫ 0 0 2 2 1 1 2 2 4 (2 1) ( . 2 1) (2 1) 4 x dx x x dx x − − − + = + + + + ∫ ∫ + Tính: 0 2 1 2 1 2 4 (2 1) (2 1) 4 x I dx x − − + = + + ∫ . Đặt: 1 2 1 2sin , ; cos , 0, 0 2 2 2 6 x t t dx tdt x t x t π π π   + = ∈ − ⇒ = = − ⇒ = = ⇒ =  ÷   . Khi đó: 2 2 6 6 6 6 1 2 2 2 0 0 0 0 2cos 2 1 sin 1 4sin 4 2(sin 1) 2 sin 1 t tdt dt I dt dt t t t π π π π − − = = = − + + + + ∫ ∫ ∫ ∫ = 6 2 0 12 sin 1 dt t π π − + + ∫ + Tính: 6 6 2 2 2 0 0 (tan ) sin 1 2(tan 1/ 2) dt d t I t t π π = = + + ∫ ∫ . Đặt: 2 tan tan 2 t y= . Suy ra: 2 2 2 (tan ) (tan ) (1 tan ) 2 2 d t d y y dy= = + , với 0 0, 6 t y t y π ϕ = ⇒ = = ⇒ = sao cho 6 tan 3 ϕ = , (0 ) 2 π ϕ < < Khi đó: 2 0 0 2 2 2 . 2 2 2 I dy y ϕ ϕ ϕ = = = ∫ 3 + Tính: 0 3 1 2 ( . 2 1)I x x dx − = + ∫ . Đặt: 2 1 1 2 1 2 1, , 0, 1 2 2 t x x t dx tdt x t x t= + ⇒ = − = = − ⇒ = = − ⇒ = . Khi đó: 1 2 5 3 2 1 2 0 0 1 1 2 10 6 15 t t t I t dt   − = = − = −  ÷   ∫ KL: Vậy 1 2 3 1 2 15 12 2 I I I I π ϕ = + + = − − + , ( 6 tan 3 ϕ = , (0 ) 2 π ϕ < < ) Câu IV (1 điểm):Trên đường thẳng vuông góc tại A với mặt phẳng của hình vuông ABCD cạnh a ta lấy điểm S với SA = 2a . Gọi B’, D’ là hình chiếu vuông góc của A lên SB và SD. Mặt phẳng (AB’D’ ) cắt SC tại C’ . Tính thể tích khối đa diện ABCDD’ C’ B’. + Trong tam giác SAB hạ 'AB SC⊥ . Trong tam giác SAD hạ 'AD SD ⊥ . Dễ có: , ( )BC SA BC BA BC SAB⊥ ⊥ ⇒ ⊥ Suy ra: 'AB BC⊥ , mà 'AB SB⊥ . Từ đó có ' ( ) ' (1)AB SAC AB SC⊥ ⇒ ⊥ . Tương tự ta có: ' (2)AD SC⊥ . Từ (1) và (2) suy ra: ( ' ') ' 'SC AB D B D SC⊥ ⇒ ⊥ . Từ đó suy ra: ' ( ' ' ')SC AB C D⊥ + Ta có: 2 2 2 1 1 1 2 5 ' ' 5 a AB AB SA BA = + ⇒ = 2 2 2 2 4 4 5 ' ' 4 5 5 SB SA AB a a a⇒ = − = − = , 2 2 5SB SA AB a= + = . Suy ra: ' 4 5 SB SB = ; Lại có B’D’ // BD (cùng thuộc mp(SBD) và cùng vuông góc với SC) nên ' ' 'B D AC⊥ (vì dễ có ( )BD SAC⊥ nên 'BD AC⊥ ). Xét hai tam giác đồng dạng SB’D’ và SBD suy ra: ' ' ' 4 5 B D SB BD SB = = 4 2 ' ' 5 a B D⇒ = . Ta có: 2 2 2 2 2 1 1 1 2 3 2 6 ' ' ' ' 3 3 a AC SC SA AC a AC SA AC = + ⇒ = ⇒ = − = + Ta có: 3 . ' ' ' ' ' ' 1 1 1 16 . ' . ' '. '. ' 3 3 2 45 S AB C D AB C D V S SC B D AC SC a= = = . 3 . 1 2 . 3 3 S ABCD ABCD V S SA a= = . Suy ra thể tích đa diện cần tìm là: 4 B S O A D C C' B' D' 3 . . ' ' ' 14 45 S ABCD S AB C D V V V a= = . Chỳ ý: V hỡnh sai khụng chm. Cõu V (1 im): Tam giác ABC có đặc điểm gì nếu các góc thoả mãn: cos .cos cos .cos cos .cos 3 cos cos cos 2 A B B C C A C A B + + = Ta có tanA+tanB= sin cos .cos tan cos .cos cos tan tan C A B C A B C A B = + ABC không nhọn nên đặt x=tanA>0,y=tanB>0,z=tanC>0 Từ GT ta có 3 2 x y z y z z x x y + + = + + + với x,y,z>0.Dễ dàng CM đợc 3 2 x y z y z z x x y + + + + + . Dấu =xảy ra khi và chỉ khi x=y=z hay tam giác ABC đều II. PHN RIấNG CHO TNG CHNG TRèNH ( 3 im). Thớ sinh ch c lm mt trong hai phn (phn 1 hoc phn 2) 1. Theo chng trỡnh Chun: 2/.Cõu VI.a (2 im): 1) Trong mt phng to Oxy , cho ng trũn ( C) : 2 2 2 6 15 0x y x y+ + = v ng thng (d) : cos sinx x ( m l tham s). Gi I l tõm ca ng trũn . Tỡm m ng thng (d) ct (C) ti 2 im phõn bit A,B tho món chu vi IAB bng 5(2 2)+ . 2) Trong khụng gian vi h ta Oxyz cho hai ng thng : 1 1 1 ( ): 2 1 1 x y z d + = = v 2 2 1 ( ) : 1 1 1 x y z d + = = . Vit phng trỡnh mt phng cha (d 1 ) v hp vi (d 2 ) mt gúc 30 0 . Gi s mt phng cn tỡm l: 2 2 2 ( ) : 0 ( 0)ax by cz d a b c + + + = + + > . Trờn ng thng (d 1 ) ly 2 im: A(1; 0; -1), B(-1; 1; 0). Do ( ) qua A, B nờn: 0 2 0 a c d c a b a b d d a b + = = + + = = nờn ( ) : (2 ) 0ax by a b z a b + + + = . Yờu cu bi toỏn cho ta: 0 2 2 2 2 2 2 1. 1. 1.(2 ) 1 sin 30 2 1 ( 1) 1 . (2 ) a b a b a b a b + = = + + + + 2 2 2 2 2 3 2 3(5 4 2 ) 21 36 10 0a b a ab b a ab b = + + = D thy 0b nờn chn b=1, suy ra: 18 114 21 18 114 21 a a = + = KL: Vy cú 2 mt phng tha món: 18 114 15 2 114 3 114 0 21 21 21 x y z + + + + = 18 114 15 2 114 3 114 0 21 21 21 x y z + + + = . Cõu VII.a (1 im): Chng minh rng vi a, b, c>0 ta cú: 5 1 1 1 1 1 1 1 1 1 4 4 4 3 3 3 2 2 2a b c a b b c c a a b c b c a c a b + + ≥ + + ≥ + + + + + + + + + + + Dễ có: 2 1 1 4 ( ) 4 ( , 0)(*)x y xy x y x y x y + ≥ ⇒ + ≥ < + . + Chứng minh: 1 1 1 1 1 1 4 4 4 3 3 3a b c a b b c c a + + ≥ + + + + + . Áp dụng 2 lần (*) ta có: 1 1 1 1 16 3a b b b a b + + + ≥ + hay 1 3 16 3a b a b + ≥ + (1) Tương tự ta có: 1 3 16 3b c b c + ≥ + (2) và 1 3 16 3c a c a + ≥ + (3) Cộng (1), (2) và (3) theo vế với vế rồi rút gọn ta có điều phải chứng minh. + Chứng minh: 1 1 1 1 1 1 3 3 3 2 2 2a b b c c a a b c b c a c a b + + ≥ + + + + + + + + + + + Áp dụng (*) ta có: 1 1 4 2 3 2 2( 2 ) 2a b b c a a b c a b c + ≥ = + + + + + + + (4) Tương tự ta có: 1 1 2 (5) 3 2 2b c c a b b c a + ≥ + + + + + 1 1 2 (6) 3 2 2c a a b c c a b + ≥ + + + + + Cộng (4), (5) và (6) theo vế với vế ta có điều phải chứng minh. 2. Theo chương trình Nâng cao: Câu VI.b (2 điểm) 1) Trong mặt phẳng Oxy cho đường tròn (C) tâm I(-1; 1), bán kính R=1, M là một điểm trên ( ) : 2 0d x y− + = . Hai tiếp tuyến qua M tạo với (d) một góc 45 0 tiếp xúc với (C) tại A, B. Viết phương trình đường thẳng AB. Dễ thấy ( )I d∈ . Hai tiếp tuyến hợp với (d) một góc 45 0 suy ra tam giác MAB vuông cân và tam giác IAM cũng vuông cân . Suy ra: 2IM = . ( ) (M d M∈ ⇒ a; a+2), ( 1; 1)IM a a= + + uuur , 0 2 2 1 2 2 a IM a a =  = ⇔ + = ⇔  = −  . Suy ra có 2 điểm thỏa mãn: M 1 (0; 2) và M 2 (-2; 0). + Đường tròn tâm M 1 bán kinh R 1 =1 là (C 1 ): 2 2 4 3 0x y y+ − + = . Khi đó AB đi qua giao điểm của (C ) và (C 1 ) nên AB: 2 2 2 2 4 3 2 2 1 1 0x y y x y x y x y+ − + = + + − + ⇔ + − = . + Đường tròn tâm M 2 bán kinh R 2 =1 là (C 2 ): 2 2 4 3 0x y x+ + + = . Khi đó AB đi qua giao điểm của (C ) và (C 2 ) nên AB: 2 2 2 2 4 3 2 2 1 1 0x y x x y x y x y+ + + = + + − + ⇔ + + = . + KL: Vậy có hai đường thẳng thỏa mãn: 1 0x y+ − = và 1 0x y+ + = . 2).Trong không gian Oxyz cho tứ diện ABCD biết A(0; 0; 2), B(-2; 2; 0), C(2; 0; 2), ( )DH ABC⊥ và 3DH = với H là trực tâm tam giác ABC. Tính góc giữa (DAB) và (ABC). Trong tam giác ABC, gọi K CH AB= ∩ . Khi đó, dễ thấy ( )AB DCK⊥ . Suy ra góc giữa (DAB) và (ABC) chính là góc DKH∠ .Ta tìm tọa độ điểm H rồi 6 Tính được HK là xong. + Phương trình mặt phẳng (ABC). - Vecto pháp tuyến ( ) [ , ] 0; 4; 4n AB AC= = − − r uuur uuur - (ABC): 2 0y z+ − = . + ( )H ABC∈ nên giả sử ( ; ;2 )H a b b− . Ta có: ( ; ; ), (4; 2;2).AH a b b BC= − = − uuur uuur ( 2; ; ), ( 2;2; 2).CH a b b AB= − − = − − uuur uuur Khi đó: . 0 0 2 2 2 0 . 0 BC AH a b a b a b AB CH  = − =   ⇔ ⇔ = = −   − + + = =    uuur uuur uuur uuur Vậy H(-2; -2; 4). + Phương trình mặt phẳng qua H và vuông góc với AB là: 4 0x y z− + − = . Phương trình đường thẳng AB là: 2 x t y t z t =   = −   = +  . Giải hệ: 2 4 0 x t y t z t x y z =   = −   = +   − + − =  ta được x =2/3; y =-2/3, z =8/3. Suy ra: K(2/3;-2/3; 8/3). Suy ra: 2 2 2 2 2 8 96 2 2 4 3 3 3 3 HK       = + + − + + − =  ÷  ÷  ÷       . Gọi ϕ là góc cần tìm thì: tan / 96 /12 6 / 3 arctan( 6 / 3)DH HK ϕ ϕ = = = ⇒ = Vậy arctan( 6 / 3) ϕ = là góc cần tìm. Câu VII.b (1 điểm): Chứng minh rằng với a, b, c>0 ta có: 1 ( )( ) ( )( ) ( )( ) a b c a a b a c b b a b c c c a c b + + ≤ + + + + + + + + + . Víi a,b >0 ta cã ( ) ( ) ( ) ( ) ( ) ( ) 2 2 2 2 a b a c ( ) 2 ( ) 0 a b a c ( ) a b a c ( ) ( )( ) ab ac a bc a bc a bc ab ac ab ac a a a a a b a c a ab ac a b c + + − + = + − = − ≥ ⇒ + + ≥ + ⇒ + + ≥ + ⇒ ≤ = + + + + + + + CM t 2 råi céng vÕ víi vÕ ta ®îc dpcm Đ 2 Câu 1: Cho hàm số y = 2 3 2 x x − − có đồ thị là (C) 1) Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số trên. 2) Tìm trên (C) những điểm M sao cho tiếp tuyến tại M của (C) cắt 2 tiệm cận của (C) tại A, b sao cho AB ngắn nhất 7 Câu 2: 1/.Giải phương trình: 2 2 sin( ).cos 1 12 x x π − = 2/.Giải hệ phương trình: 3 3 3 2 2 8 27 18 (1) 4 6 (2) x y y x y x y + =   + =  Câu 3: 1) Tính tích phân I = 2 2 6 1 sin sin 2 x x dx π π × + ∫ 2) Tìm các giá trị của tham số thực m sao cho phương trình sau có nghiệm thực: (m - 3) x + ( 2- m)x + 3 - m = 0. (1) Câu 4: Cho ba số thực dương a, b, c thỏa mãn abc = 1. Chứng minh rằng: 3 3 3 1 8 1 8 1 8 1 a b c c a b + + ≥ + + + Câu 5: Cho hình chóp S. ABC có góc ((SBC), (ACB)) =60 0 , ABC và SBC là các tam giác đều cạnh a. Tính theo a khoảng cách từ B đến mặt phẳng (SAC). Phần riêng: 1.Theo chương trình chuẩn: Câu 6a: Cho ∆ ABC có B(1;2), phân giác trong góc A có phương trình (∆ ) 2x +y –1 =0; khoảng cách từ C đến (∆ ) bằng 2 lần khoảng cách từ B đến (∆). Tìm A, C biết C thuộc trục tung. Câu 7a: Trong không gian Oxyz cho mp(P): x –2y +z -2 =0 và hai đường thẳng : (d 1 ) 3 2 1 1 1 2 y z x − + + = = ; (d 2 ) 1 2 2 ( ) 1 x t y t t z t = +   = + ∈   = +  ¡ . Viết phương trình tham số của đường thẳng ∆ nằm trong mp(P) và cắt cả 2 đường thẳng (d 1 ) , (d 2 ) 2.Theo chương trình nâng cao: Câu 6b: Cho ∆ ABC có diện tích bằng 3/2; A(2;–3), B(3;–2), trọng tâm G ∈ (d) 3x –y –8 =0. tìm bán kinh đường tròn nội tiếp ∆ ABC. Câu 7b: Trong không gian Oxyz cho đường thẳng (d) là giao tuyến của 2 mặt phẳng: (P): 2x–2y–z +1 =0, (Q): x+2y –2z –4 =0 và mặt cầu (S): x 2 +y 2 +z 2 +4x –6y +m =0. Tìm tất cả các giá trị của m để (S) cắt (d) tại 2 điểm MN sao cho MN= 8. ĐP N Đ 2 Câu 1: Cho hàm số y = 2 3 2 x x − − có đồ thị là (C) 1) Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số trên. 2) Tìm trên (C) những điểm M sao cho tiếp tuyến tại M của (C) cắt 2 tiệm cận của (C) tại A, B sao cho AB ngắn nhất Gọi M(x o ; 0 0 2 3 2 x x − − )∈ (C) . Phương trình tiếp tuyến tại M: (∆) y = 2 0 0 2 2 0 0 2 6 6 ( 2) ( 2) x x x x x − + − + − − 8 (∆ ) ∩ TCĐ = A (2; 0 0 2 2 2 x x − − ) (∆ ) ∩ TCN = B (2x 0 –2; 2) 0 0 2 (2 4; ) 2 AB x x − = − − uuur ⇒ AB = 2 0 2 0 4 4( 2) 2 2 ( 2) cauchy x x − + − ≥ ⇒ AB min = 2 2 ⇔ 0 3 (3;3) 1 (1;1) o x M x M = →   = →  Câu 2: 1) Giải phương trình: 2 2 sin( ).cos 1 12 x x π − = phương trình ⇔ 2(cosx–sinx)(sinx– 3 cosx)=0 ⇔ 3 ( ) 4 x k k x k π π π π  = +  ∈  = +   ¢ 2).Giải hệ phương trình: 3 3 3 2 2 8 27 18 (1) 4 6 (2) x y y x y x y + =   + =  (1) ⇒ y ≠ 0 Hệ ⇔ 3 3 3 3 2 2 27 3 8 18 (2 ) 18 4 6 3 3 1 2 . 2 3 x x y y x x x x y y y y     + = + =   ÷      ⇔       + = + =  ÷       Đặt a = 2x; b = 3 y . Ta có hệ: 3 3 3 18 1 ( ) 3 a b a b ab ab a b + = + =   ⇔   = + =   → Hệ đã cho có 2 nghiệm 3 5 6 3 5 6 ; , ; 4 4 3 5 3 5     − +  ÷  ÷     + − Câu 3: 1) Tính tích phân I = 2 2 6 1 sin sin 2 x x dx π π × + ∫ I = 2 2 6 3 cos (cos ) 2 π π − − × ∫ x d x . §Æt 3 cos cos 2 x u= × ⇒ I ∫ ⋅= 2 4 2 sin 2 3 π π udu = ( ) 3 2 16 π + 2) Tìm các giá trị của tham số thực m sao cho phương trình sau có nghiệm thực: (m - 3) x + ( 2- m)x + 3 - m = 0. (1) Đk x ≥ 0. đặt t = x ; t ≥ 0 9 (1) trở thành (m–3)t+(2-m)t 2 +3-m = 0 ⇔ 2 2 2 3 3 1 t t m t t − + = − + (2) Xét hàm số f(t) = 2 2 2 3 3 1 t t t t − + − + (t ≥ 0) Lập bảng biến thiên (1) có nghiệm ⇔ (2) có nghiệm t ≥ 0 ⇔ 5 3 3 m≤ ≤ Câu 4: Cho ba số thực dương a, b, c thỏa mãn abc = 1. Chứng minh rằng: 3 3 3 1 8 1 8 1 8 1 a b c c a b + + ≥ + + + 3 2 2 8 1 (2 1)(4 2 1) 2 1 cauchy c c c c c+ = + − + ≤ + ⇒ 2 3 2 1 8 1 a a c c ≥ + + Tương tự, 2 2 3 3 ; 2 1 2 1 8 1 8 1 b b c c a b a b ≥ ≥ + + + + Ta sẽ chứng minh: 2 2 2 1 (1) 2 1 2 1 2 1 a b c c a b + + ≥ + + + Bđt(1) ⇔ 4(a 3 b 2 +b 3 a 2 +c 3 a 2 ) +2(a 3 +b 3 +c 3 )+2(ab 2 +bc 2 +ca 2 )+( a+b+c) ≥ ≥ 8a 2 b 2 c 2 +4(a 2 b 2 +b 2 c 2 +c 2 a 2 ) +2 (a 2 +b 2 +c 2 )+1 (2) Ta có: 2a 3 b 2 +2ab 2 ≥ 4a 2 b 2 ; …. (3) 2(a 3 b 2 +b 3 a 2 +c 3 a 2 ) ≥ 2.3. 3 5 5 5 a b c =6 (do abc =1)(4) a 3 +b 3 +c 3 ≥ 3abc =3 = 1 +2 a 2 b 2 c 2 (5) a 3 +a ≥ 2a 2 ; …. (6) Công các vế của (3), (4), (5), (6), ta được (2). Dấu bằng xảy ra khi a=b=c=1 Câu 5: Cho hình chóp S. ABC có góc ((SBC), (ACB)) =60 0 , ABC và SBC là các tam giác đều cạnh a. Tính theo a khoảng cách từ B đến mặt phẳng (SAC). Gọi M là trung điểm của BC và O là hình chiếu của S lên AM. Suy ra: SM =AM = 3 2 a ; · 0 60AMS = và SO ⊥ mp(ABC) ⇒ d(S; BAC) = SO = 3 4 a ⇒ V(S.ABC) = 3 3 1 ( ). 3 16 a dt ABC SO = Mặt khác, V(S.ABC) = 1 ( ). ( ; ) 3 dt SAC d B SAC ∆SAC cân tại C có CS =CA =a; SA = 3 2 a ⇒ dt(SAC) = 2 13 3 16 a Vậy d(B; SAC) = 3 3 ( ) 13 V a dt SAC = Phần riêng: 1.Theo chương trình chuẩn: Câu 6a: Cho ∆ ABC có B(1;2), phân giác trong góc A có phương trình (∆ ) 2x +y –1 =0; khoảng cách từ C đến (∆ ) bằng 2 lần khoảng cách từ B đến (∆). Tìm A, C biết C thuộc trục tung. Gọi H, I lần lượt là hình chiếu của B, C lên (∆). M là đối xứng của B qua ∆ ⇒ M ∈ AC và M là trung điểm của AC. (BH): x –2y + 3 =0 → H ( ) 7 1 ; 5 5 − → M ( ) 7 4 ; 5 5 − BH = 3 5 5 ⇒CI = 6 5 5 ; C∈ Oy ⇒ C(0; y 0 ) ⇒ 0 7 5 o y y =   = −  10 [...]... mt trong hai phn (phn a, hoc b) a Theo chng trỡnh Chun: Cõu VIa (2,0 im) 1.Trong mt phng vi h to Oxy, cho tam giỏc ABC cú A(4; 6) , phng trỡnh cỏc ng thng cha ng cao v trung tuyn k t nh C ln lt l 2 x y + 13 = 0 v 6 x 13 y + 29 = 0 Vit phng trỡnh ng trũn ngoi tip tam giỏc ABC 2 Trong khụng gian vi h to Oxyz, cho hỡnh vuụng MNPQ cú M (5; 3; 1), P (2; 3; 4) Tỡm to nh Q bit rng nh N nm trong mt... cho Cõu V (1 im) Chng minh rng trong mi tam giỏc ta u cú: A B C A B C sin sin sin sin sin sin 2 2 2 4 4 4 II PHN RIấNG (3im) Thớ sinh ch c lm mt trong hai phn (phn a hoc b) Cõu VI a.(2 im) x2 y2 1/ Trong mt phng vi h ta Oxy ,cho elip (E): + = 1 v im M(1 ; 1) Vit phng 6 4 trỡnh ng thng (d) qua M v ct (E) ti hai im A, B sao cho M l trung im AB 2/ Trong khụng gian vi h ta Oxyz,vit... 2) = 0 , hay : x + 8y 18 = 0 4 2/ Trong khụng gian Oxyz, lp phng trỡnh mt phng (P) qua M(2; -1; 2) , song song vi Oy v vuụng gúc vi mt phng (Q): 2x y + 3z + 4 = 0 Cỏch 1 r + Mt phng (Q) : 2x y + 3z + 4 = 0 cú VTPT n Q = ( 2; 1;3) v trc Oy cú VTV r r r j = ( 0 ; 1 ; 0 ) Hai vect n Q v j khụng cựng phng vi nhau r + Gi n P l VTPT ca mt phng (P) Vỡ (P) song song vi Oy v vuụng gúc vi mt phng (Q) r... AN ấ 3 A PHN CHUNG CHO TT C TH SINH (7,0 im) Cõu I (2,0 im) Cho hm s y = x 3 3(m + 1) x 2 + 9 x m , vi m l tham s thc 1 Kho sỏt s bin thi n v v th ca hm s ó cho ng vi m = 1 Với m = 1 ta có y = x 3 6 x 2 + 9 x 1 * Tập xác định: D = R * Sự biến thi n Chi u biến thi n: y ' = 3 x 2 12 x + 9 = 3( x 2 4 x + 3) 12 x > 3 Ta có y ' > 0 , y' < 0 1 < x < 3 x < 1 Do đó: + Hàm số đồng biến trên mỗi... đi qua B(- 4; - 7) và song song với Ox chính là đờng thẳng BC suy ra phơng trình cạnh BC: y = - 7 Vậy phơng trình cạnh còn lại của tam giác ABC là y = -7 2.Trong khụng gian vi h ta Oxyz, cho im M(2 ; 1 ; 0) v ng thng d với d: x 1 y +1 z = = Vit phng trỡnh chớnh tc ca ng thng i qua im M, 2 1 1 ct v vuụng gúc vi ng thng d và tìm toạ độ của điểm M đối xứng với M qua d Gi H l hỡnh chiu vuụng gúc ca M trờn... phng (SAB) to vi ỏy gúc Bit khong cỏch t tõm O ca ỏy hỡnh nún n mt phng (SAB) bng a Hóy tỡm th tớch hỡnh nún theo , v a CõuV :( 1, 0 im) Cho x, y, z l ba s dng Chng minh bt ng thc sau : 2 y 2 x 2 z 1 1 1 + 3 2+ 3 2 + 2+ 2 3 2 2 x +y y +z z +x x y z B.PHN RIấNG (3,0 im) : Thớ sinh ch c lm mt trong hai phn(phn 1 hoc 2) 1.Theo chng trỡnh Chun Cõu VIa :(2,0 im) 1/ Trong mt phng (Oxy), cho ng trũn (C... ) vi ng thng AB 2/ Trong khụng gian Oxyz, lp phng trỡnh mt phng (P) qua M(2; -1; 2) , song song vi Oy v vuụng gúc vi mt phng (Q): 2x y + 3z + 4 = 0 Cõu VIIa :(1,0 im) Cho cỏc ch s 1, 2, 3, 4, 5, 7, 9 Hóy cho bit cú tt c bao nhiờu s t nhiờn cú 7 ch s khỏc nhau ụi mt sao cho hai ch s chn khụng ng cnh nhau , c lp t cỏc ch s ó cho 2.Theo chng trỡnh Nõng cao Cõu VIb :(2,0 im) 1/ Trong mt phng (Oxy), cho... tỡm cỏc giỏ tr ca x bit rng s hng th 6 trong khai trin ny l 224 AP AN ấ 7 A.PHN CHUNG CHO TT C TH SINH(7.0 im) Cõu I :( 2, 0 im) Cho hm s y = (m + 2)x 3 + 3x 2 + mx 5 , m l tham s 1 Kho sỏt s bin thi n v v th (C ) ca hm s khi m = 0 2 Tỡm cỏc giỏ tr ca m cỏc im cc i, cc tiu ca th hm s ó cho cú honh l cỏc s dng Cỏc im cc i, cc tiu ca th hm s ó cho cú honh l cỏc s dng PT y ' = 3(m + 2)x 2 + 6x... A6 + 3 A6 A5 = 420 ( ) b Theo chng trỡnh Nõng cao: 16 Cõu VIb (2,0 im) 1 Trong mt phng vi h to Oxy, xột elớp (E ) i qua im M (2; 3) v cú phng trỡnh mt ng chun l x + 8 = 0 Vit phng trỡnh chớnh tc ca (E ) 2 2 - Gọi phơng trình ( E ) : x 2 + y 2 = 1 (a > b > 0) a b 9 4 (1) a 2 + b2 = 1 - Giả thi t 2 a = 8 (2) c Ta có (2) a 2 = 8c b 2 = a 2 c 2 = 8c c 2 = c(8 c) Thay vào (1) ta đợc 4 9 +... 13160160 cách B Theo chơng trình nâng cao Câu VI.b (2 điểm) 1)Trong mt phng vi h trc ta Oxy cho A(4;3), ng thng (d) : x y 2 = 0 v (d): x + y 4 = 0 ct nhau ti M Tỡm B (d ) v C (d ') sao cho A l tõm ng trũn ngoi tip tam giỏc MBC 2) Trong kg Oxyz cho ng thng ( ): x= -t ; y=2t -1 ; z=t +2 v mp(P):2x y -2z - 2=0 Vit PT mt cu(S) cú tõm I v khong cỏch t I n mp(P) l 2 v mt cu(S) ct mp(P )theo giao tuyn . DC & O TO THI I HC MễN TON NM 2012 THAM KHO Thi gian lm bi: 180 phỳt I. PHN CHUNG CHO TT C TH SINH (7 im). Cõu I (2 im): Cho hàm số 2 1 1 x y x + = + 1. Khảo sát sự biến thi n và vẽ đồ. thực. 1. Khảo sát sự biến thi n và vẽ đồ thị của hàm số đã cho ứng với 1 = m . Víi 1 = m ta cã 196 23 −+−= xxxy . * TËp x¸c ®Þnh: D = R * Sù biÕn thi n • Chi u biÕn thi n: )34(39123' 22 +−=+−=. Gọi B’, D’ là hình chi u vuông góc của A lên SB và SD. Mặt phẳng (AB’D’ ) cắt SC tại C’ . Tính thể tích khối đa diện ABCDD’ C’ B’. + Trong tam giác SAB hạ 'AB SC⊥ . Trong tam giác SAD hạ

Ngày đăng: 28/10/2014, 00:00

w