GIẢI TÍCH CƠ BẢN (ÔN THI THẠC SĨ TOÁN HỌC) GIỚI HẠN CỦA DÃY SỐ VÀ HÀM SỐ PGS. TS Lê Hoàn Hóa Ngày 11 tháng 10 năm 2004 1 Giới hạn của dãy số 1.1 Định nghĩa Cho (x n ) n là dãy số thực. Ta nói : • Dãy (x n ) n hội tụ về x (x hữu hạn) khi n → ∞, ký hiệu lim n→∞ x n = x hay lim x n = x nếu với mọi > 0, tồn tại số tự nhiên n 0 ∈ N sao cho với mọi n ≥ n 0 thì |x n − x| < . lim x n = x ⇐⇒ ∀ > 0, ∃n 0 ∈ N : ∀n ≥ n 0 =⇒ |x n − x| < ⇐⇒ lim |x n − x| = 0 • Dãy (x n ) n tiến ra +∞ (theo tứ tự −∞) nếu với mọi A ∈ R, tồn tại n 0 ∈ N sao cho với mọi n ≥ n 0 thì x n > A (theo thứ tự x n < A). • Dãy (x n ) n phân kỳ nếu không có lim x n hoặc lim x n = +∞ hoặc lim x n = −∞. Như vậy với một dãy (x n ) n chỉ có hai trường hợp : hoặc (x n ) n hội tụ hoặc (x n ) n phân kỳ. 1.2 Định lý cơ bản 1. Nếu(x n ) n là dãy tăng, bị chặn trên và a = sup{x n } thì lim x n = a. Nếu (x n ) n là dãy giảm, bị chặn dưới và b = inf{x n } thì lim x n = b. 2. Giới hạn kẹp : Giả sử : a n ≤ x n ≤ b n , ∀n ≥ n 0 và lim a n = lim b n = a. Khi đó lim x n = a. 3. Tiêu chuẩn Cauchy : (x n ) n hội tụ ⇐⇒ ∀ > 0, ∃n 0 ∈ N : ∀n ≥ n 0 , ∀p ∈ N =⇒ |x n+p − x n | < 1.3 Các giới hạn cơ bản 1. lim 1 n α = 0, ∀α > 0 2. lim q n = 0, ∀q, |q| < 1 3. lim n √ a = 1, ∀a > 0 1 4. lim n √ n p = 1, ∀p ≥ 0 5. lim n p (1 + a) n = 0, ∀a > 0, ∀p 6. lim n p e n = 0, ∀p 7. lim(1 + 1 n ) n = e 8. lim(1 − 1 n ) n = e −1 9. lim ln p n n α = 0, ∀α > 0, ∀p 10. lim n n √ n! = e 1.4 Ví dụ 1.4.1 Ví dụ 1 Với a > 0, cho x n = (1 + a n ) n , y n = (1 + a n ) n+1 , n ∈ N. 1. Chứng minh : (x n ) n là dãy tăng, (y n ) n là dãy giảm. 2. Chứng minh :(x n ) n ,(y n ) n hội tụ và lim x n = lim y n . Đặt lim x n = lim y n = e a Giải : 1. Trước tiên ta chứng minh : Với α ≥ −1, (1 + α) n ≥ 1 + nα, ∀n ∈ N . Bất đẳng thức đúng với n = 1. Giả sử đúng đến n. Khi đó, do 1 + α ≥ 0 : (1 + α) n+1 = (1 + α) n (1 + α) ≥ (1 + nα)(1 + α) = 1 + (n + 1)α + α 2 ≥ 1 + (n + 1)α Ta có, với mọi n ∈ N : x n+1 x n = (1 + a n + 1 ) n+1 (1 + a n ) n = (1 + a n + 1 )( 1 + a n + 1 1 + a n ) n = (1 + a n + 1 )(1 − a (n + 1)(n + a) ) n ≥ (1 + a n + 1 )[1 − na (n + 1)(n + a) ] = 1 + a 2 (n + 1) 2 (n + a) > 1 Vậy (x n ) n là dãy tăng. Tương tự : y n y n+1 = (1 + a n ) n+1 (1 + a n + 1 ) n+2 = (1 + a n + 1 ) −1 [1 + a n(n + 1 + a) ] n+1 ≥ (1 − a n + 1 + a )(1 + (n + 1)a n(n + 1 + a) ) ≥ 1 + (n + 1)a n(n + 1 + a) 2 > 1 Vậy (y n ) n là dãy giảm. 2 2. Ta có : (1 + a) = x 1 ≤ x 2 ≤ ≤ x n ≤ y n ≤ ≤ y 1 = (1 + a) 2 Vậy (x n ) n là dãy tăng, bị chặn trên ; (y n ) n là dãy giảm, bị chặn dưới, chúng hội tụ. Đặt lim x n = lim y n = lim(1 + a n ) n = e a 1.4.2 Ví dụ 2 Cho (x n ) n định bởi : x 1 = √ 2, x n+1 = √ 2 + x n , ∀n ∈ N. Chứng minh (x n ) n là dãy tăng, bị chặn trên. Tính lim x n Giải : Ta có : x n ≥ 0, ∀n và x n+1 − x n = √ 2 + x n − x n = 2 + x n − x n 2 √ 2 + x n + x n Tam thức bậc hai 2 + x n − x n 2 ≥ 0 ⇐⇒ −2 ≤ x n ≤ 2, ∀n. Bằng quy nạp, ta có : x 1 = √ 2 < 2. Giả sử x n ≤ 2. Khi đó : x n+1 = √ 2 + x n ≤ 2 Vậy (x n ) n là dãy tăng, bị chặn trên nên (x n ) n hội tụ. Đặt x = lim x n . Từ đẳng thức x n+1 = √ 2 + x n , ∀n ∈ N, cho n → ∞, ta có : x = √ 2 + x hay x 2 −x −2 = 0 Vậy x = 2. 1.4.3 Ví dụ 3 lim 3 n+1 + 2 n 3 n + 2 n = lim 3 n+1 [1 + (2 /3 ) n+1 ] 3 n [1 + (2 /3 ) n ] = 3 1.4.4 Ví dụ 4 Tính lim n √ a n + b n + c n , a, b, c > 0. Giả sử a = max{a, b, c}. Ta có : a ≤ n √ a n + b n + c n = a n 1 + ( b a ) n + ( c a ) n ≤ a n √ 3 Vậy lim n √ a n + b n + c n = max{a, b, c} 1.4.5 Ví dụ 5 Tính lim n √ n 2 2 n + 3 n Do lim n 2 (3 /2 ) n = 0 nên có n 0 ∈ N sao cho n 2 (3 /2 ) n < 1, ∀n ≥ n 0 . Với n ≥ n 0 , ta có : 3 ≤ n √ n 2 2 n + 3 n = 3 n 1 + n 2 (3 /2 ) n ≤ 3 n √ 2 Do định lý giới hạn kẹp lim n √ n 2 2 n + 3 n = 3 3 1.4.6 Ví dụ 6 Tính lim sin(π √ n 2 + 1) 0 ≤ |sin(π √ n 2 + 1)| = |sin π( √ n 2 + 1 − n)| = |sin( π √ n 2 + 1 + n )| ≤ π √ n 2 + 1 + n Vậy lim sin(π √ n 2 + 1) = 0 BÀI TẬP Tính các giới hạn sau 1. lim( √ n 2 + 5 − √ n 2 + 3) 2. lim n sin n n 2 + 1 3. lim a n − b n a n + b n , ∀a, b > 0 4. lim nq n , |q| < 1 5. lim 2 n n! ( HD: 2 n n! = 2.2 2.2 1.2 (n − 1).n ≤ 4 n ) 6. lim n 2 n! 7. Chứng minh : 1 2 + 2 2 + + n 2 = n(n + 1)(2n + 1) 6 Tính 1 2 + 2 2 + + n 2 n 3 8. Tính lim n( n √ e − 1) HD : Dùng thí dụ (1) có bất đẳng thức : (1 + 1 n ) n < e < (1 − 1 n − 1 ) n , ∀n 9. Cho (x n ) n định bởi : x 1 = √ a, x n+1 = √ a + x n , ∀n(a > 0) Xét tính đơn điệu của (x n ) n và tính lim x n (nếu có). 10. Tính lim n 2 √ n HD : n 2 √ n = exp[− √ n ln 2(1 − ln n √ n ln 2 )] Do lim lnn √ n ln 2 = 0 nên lim(ln n − √ n ln 2) = −∞. Suy ra với mọi A > 0, có n 0 ∈ N sao cho với n ≥ n 0 thì n 2 √ n ≤ e −A . Vậy lim n 2 √ n = 0 4 . CƠ BẢN (ÔN THI THẠC SĨ TOÁN HỌC) GIỚI HẠN CỦA DÃY SỐ VÀ HÀM SỐ PGS. TS Lê Hoàn Hóa Ngày 11 tháng 10 năm 2004 1 Giới hạn của dãy số 1.1 Định nghĩa Cho (x n ) n là dãy số thực. Ta nói : • Dãy (x n ) n hội. sup{x n } thì lim x n = a. Nếu (x n ) n là dãy giảm, bị chặn dưới và b = inf{x n } thì lim x n = b. 2. Giới hạn kẹp : Giả sử : a n ≤ x n ≤ b n , ∀n ≥ n 0 và lim a n = lim b n = a. Khi đó lim x n =. x n = −∞. Như vậy với một dãy (x n ) n chỉ có hai trường hợp : hoặc (x n ) n hội tụ hoặc (x n ) n phân kỳ. 1.2 Định lý cơ bản 1. Nếu(x n ) n là dãy tăng, bị chặn trên và a = sup{x n } thì lim