1. Trang chủ
  2. » Giáo án - Bài giảng

10 chuyên đề casio THCS

62 495 4

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 62
Dung lượng 2,36 MB

Nội dung

Vn-Student.Com Forum Các chuyên đề casio ************** Môn: Toán Lớp: 9 Năm : 2009- 2010 >>> Chuyên đề : Kiến thức cần nhớ .1- Công thức tính tổng: a) ( 1) 1 2 3 2 n n n + + + + + = b) 2 1 3 5 (2 1)n n+ + + + = c) 2 4 6 2 ( 1)n n n+ + + + = + d) 2 2 2 ( 1)(2 1) 1 2 6 n n n n + + + + + = e) 2 2 3 3 3 3 ( 1) 1 2 3 4 n n n + + + + + = .2 - Bất đẳng thức Bunhiakôpxki: Cho hai bộ số bất kì : ( a , b), (x , y) thì ta có: (ax + by) 2 2 2 2 2 ( )( )a b x y + + Dấu = xảy ra a b x y = .3 - Bất đẳng thức côsi: a) Với hai số a, b 0 thì : 2 a b ab + Dấu = xảy ra a b = b) Với ba số a, b, c 0 thì : 3 3 a b c abc + + Dấu = xảy ra a b = = c c) Với bốn số a, b, c, d 0 thì : 4 4 a b c d abcd + + + Dấu = xảy ra a b = = c = d e) Với n số a 1 , a 2 ,, a n 0 thì : 1 2 1 2 . n n n a a a a a a n + + + Dấu = xảy ra 1 2 n a a a = = = .4 - Hằng đẳng thức vạn năng: a) a 3 + b 3 + c 3 = (a + b +c )(a 2 + b 2 + c 2 - ab - bc - ca ) + 3abc b) (a +b + c) 3 = a 3 + b 3 + c 3 + 3(a + b)(b + c)(c+ a) c) (a + b) n = 0 1 1 1 2 2 2 1 1 1 . . . n n n n n n n n n n n n C a C a b C a b C a b C b + + + + + Với: ! ( , , 0 ) !.( )! k n n C k n k n k n k = Là tổ hợp chập k của n .5 - Các định lí: Định lý Phécma lớn: Với mọi p là số nguyên tố và với mọi a ta có: (mod ) p a a p Các chuyên đề casio lớp 9 1 Vn-Student.Com Forum Định lý Phécma nhỏ: Nếu a là 1 số nguyên không chia hết cho 1 số nguyên tố p thì ta có: a p 1 1(mod p) Định lý ơ le: Nếu a, m , m > 0 , (a , m) = 1 thì ta có: ( ) 1(mod ) m a m Với 1 2 1 2 . n n m p p p = là tích các thừa số nguyên tố , ( ) 1 2 1 1 1 (1 )(1 ) (1 ) m n m p p p = >>> Chuyên đề 1: Tính giá trị Dạng 1.1: Liên quan đến hàm số(có dạng đa thức) Bài 1.1.1: Cho F(x) = x 5 + ax 4 + bx 3 + cx 2 + dx +e (trong đó a, b, c, d ,e= const) Biết F(1) = 1, F(2) = 3 , F(3) = 6, F(4) = 10, F(5) = 15. Tính F(6), F(7), F(8), F(9). Bài 1.1.2: Cho F(x) = x 5 + ax 4 + bx 3 + cx 2 + dx+e (trong đó a, b, c, d ,e= const) Biết F(1) = 2, F(2) = 4 , F(3) = 6, F(4) = 8, F(5) = 10. Tính F(6), F(7), F(8), F(9). Bài 1.1.3: Cho F(x) = x 5 + ax 4 + bx 3 + cx 2 + dx+e (trong đó a, b, c, d ,e= const) Biết F(1) = 1, F(2) = 4 , F(3) = 9, F(4) = 16, F(5) = 25. Tính F(6), F(7), F(8), F(9). Bài 1.1.4: Cho F(x) = x 5 + ax 4 + bx 3 + cx 2 + dx+e (trong đó a, b, c, d,e = const) Biết F(1) = 0, F(2) = 3 , F(3) = 8, F(4) = 15, F(5) = 24. Tính F(6), F(7), F(8), F(9). Bài 1.1.5: Cho P(x) = x 5 + ax 4 + bx 3 + cx 2 + dx +e . (trong đó a, b, c, d,e = const) Biết P(1) = 4, P(2) = 16, P(3) =36 , P(4) = 64, P(5) = 100. Tính P(6), P(7), P(8), P(9). Bài 1.1.6: Cho P(x) = x 4 + ax 3 + bx 2 + cx + d . (trong đó a, b, c, d = const) Biết P(1) = 5 ; P(2) = 14 ; P(3) = 29 ; P(4) = 50 . Hãy tính P(5) ; P(6) ; P(7) ; P(8). Bài 1.1.7: Cho P(x) = x 4 + ax 3 + bx 2 + cx + d . (trong đó a, b, c, d = const) Biết P(1) = 0 ; P(2) = 4 ; P(3) = 18 ; P(4) = 48 . Hãy tính P(2002) . Bài 1.1.8: Cho P(x) = x 4 + ax 3 + bx 2 + cx + d . (trong đó a, b, c, d = const) Biết P(1) = 0,5 ; P(2) = 2 ; P(3) = 4,5 ; P(4) = 8 . Hãy tính P(2002) ; P(2003) . Bài 1.1.9: Cho P(x) = x 5 +ax 4 + bx 3 + cx 2 + dx +e . (trong đó a, b, c, d,e = const) Biết P(1) = 1, P(2) = 5, P(3) =14, P(4) = 30, P(5) = 55. Tính P(6), P(7), P(8), P(9). Bài 1.1.10: Cho P(x) = x 5 +ax 4 + bx 3 + cx 2 + dx +e . (trong đó a, b, c, d,e = const) Biết P(1) = 9, P(2) = 25, P(3) =49 , P(4) = 81, P(5) = 121. Tính P(6), P(7), P(8), P(9). Bài 1.1.11: Cho P(x) = x 5 + ax 4 + bx 3 + cx 2 + dx +e . (trong đó a, b, c, d,e = const) Biết P(1) = 2, P(2) = 9, P(3) =28 , P(4) = 65, P(5) = 126. Tính P(6), P(7), P(8), P(9). Bài 1.1.12: Cho P(x) = x 4 + ax 3 + bx 2 + cx + d . (trong đó a, b, c, d = const) Các chuyên đề casio lớp 9 2 Vn-Student.Com Forum Biết P(1) = 1 ; P(2) = 9 ; P(3) = 25 ; P(4) = 49 . Hãy tính P(5) ; P(6) ; P(7) ; P(8). Bài 1.1.13: Cho đa thức f(x) = x 5 + x 2 + 1 có năm nghiệm là x 1 ; x 2 ; x 3 ; x 4 ; x 5 . Ký hiệu p(x) = x 2 - 81 . Hãy tìm tích p = p(x 1 )p(x 2 )p(x 3 )p(x 4 )p(x 5 ) . Bài 1.1.14: Cho đa thức f(x) = 2x 5 + 3x 2 + 2010 có năm nghiệm là x 1 ; x 2 ; x 3 ; x 4 ; x 5 . Ký hiệu p(x) = x 2 - 100 . Hãy tìm tích p = p(x 1 )p(x 2 )p(x 3 )p(x 4 )p(x 5 ) . Bài 1.1.15: Cho đa thức f(x) = x 5 +2 x 3 + 20112012 có năm nghiệm là x 1 ;x 2 ; x 3 ; x 4 ; x 5 .Ký hiệu p(x) = x 2 . Hãy tìm tích p = p(x 1 )p(x 2 )p(x 3 )p(x 4 )p(x 5 ) . Bài 1.1.16: Cho hàm số :F(x) =50x 4 +ax 3 +bx 2 +cx+d (trong đó a, b, c, d = const) Biết F(1) = 3 ;F(2) = 10 ; F(3) = 29 ; F(4)=67 . Tính F(100) và F(122). Bài 1.1.17: Cho đa thức f(x) = 3x 4 +2009 x+ 2011 có 4 nghiệm là x 1 ;x 2 ; x 3 ; x 4 . Ký hiệu p(x) = x 2 - 49 . Hãy tìm tích p = p(x 1 )p(x 2 )p(x 3 )p(x 4 )p(x 5 ) . Bài 1.1.18: Đa thức F(x) khi chia cho x-3 thì d 10 , khi chia cho x+5 thì d 2 còn khi chia cho (x-3)(x+5) thì đợc thơng là x 2 +1 và còn d. 1/Xác định F(x). 2/Xác định đa thức d. 3/Tính F(10) ; F(1002). Bài 1.1.19: Đa thức F(x) khi chia cho x-3 thì d 7, khi chia cho x+5 thì d -9 còn khi chia cho x 2 -5x+6 thì đợc thơng là x 2 +1 và còn d. 1/Xác định F(x). 2/Xác định đa thức d. 3/Tính F(10) ; F(1001). Bài 1.1.20: Cho đa thức P(x) = x 4 + ax 3 + bx 2 + cx + d . (trong đó a, b, c, d = const) Biết P(1)=10 ; P(2) = 20 ; P(3) = 30 . 1/Tính A = 2011.[ P(12) + P(- 8) ] . 2/Tính A = 2011 2 .[ P(12) + P(- 8) ] . Bài 1.1.21: Đa thức F(x) khi chia cho x-2 thì d 5, khi chia cho x-3 thì d 7 còn khi chia cho 2x 2 -5x+6 thì đợc thơng là 1-2x 2 và còn d. 1/Xác định F(x). 2/Xác định đa thức d. 3/Tính F(10) ; F(1000). Bài 1.1.22: Đa thức F(x) khi chia cho x-2 thì d 2, khi chia cho x-3 thì d 7 còn khi chia cho x 2 - 25x+16 thì đợc thơng là 2-3x 2 và còn d. Tính F(10) ; F(1003). Bài 1.1.23: Cho F(x) = x 5 + ax 4 + bx 3 + cx 2 + dx+e (trong đó a, b, c, d,e = const) Biết F(1) = 3, F(2) = 9 , F(3) = 19, F(4) = 33, F(5) = 51. Tính F(10), F(100), F(1000), F(10000). Bài 1.1.24: Đa thức F(x) khi chia cho x- 3 thì d 7, khi chia cho x+5 thì d -9 , khi chia cho x- 6 thì d 19 còn khi chia cho 2x 3 -5x 2 +6 thì đợc thơng là 3x 2 +2 và còn d. Tính F(100) ; F(1000). Bài 1.1.25: Cho đa thức P(x) = 2x 5 + ax 4 + bx 3 + cx 2 + dx+e. (trong đó a, b, c, d = const) Biết P(1)=8 ; P(2) = 14 ; P(3) = 20 ; P(4) = 26 . 1/Tính A = 2011.[ P(11) - P(- 6) ] . Các chuyên đề casio lớp 9 3 Vn-Student.Com Forum 2/Tính A = 2011 2 .[ P(11) - P(- 6) ] . Bài 1.1.26: Cho đa thức P(x) = x 5 + ax 4 + bx 3 + cx 2 + dx+e. (trong đó a, b, c, d = const) Biết P(1)=-2 ; P(2) = 1 ; P(3) = 6 ; P(4) = 13 . 1/Tính A = [ P(15) - P(- 10) ] :25 2/Tính A 2 ,A 3 ,A 4 . Bài 1.1.27: Cho đa thức P(x) = x 4 + ax 3 + bx 2 + cx + d . (trong đó a, b, c, d = const) Biết P(1) =1 ; P(2) = 3 ; P(3) = 7 . 1/Tính A = [ P(20) + P(- 16) ] :6 2/Tính A 2 , A 3 , A 4 . 3/ Tính S = A + A 2 + A 3 + A 4 . Bài 1.1.28: Cho đa thức f(x) = 5x 4 - 4x 2 + 3 có 4 nghiệm là x 1 ; x 2 ; x 3 ; x 4 . Ký hiệu p(x) = 4x 2 - 100 . Hãy tìm tích p = p(x 1 )p(x 2 )p(x 3 )p(x 4 ) . Bài 1.1.29: Cho P(x) là đa thức với hệ số nguyên có giá trị P(21) = 17 ;P(37) = 33. Biết P(N) = N + 51 .Tính N Dạng 1.2: Tính giá trị biểu thức Dạng 1.2.1: Tính chính xác kết quả của phép tính tràn màn hình Bài 1.2.1.1: Tính kết quả đúng của các tích sau: a) A = 2222255555 ì 2222266666 b) B = 20032003 ì 20042004 c) C = 1980 11 Bài 1.2.1.2: Nêu một phơng pháp (kết hợp trên giấy và máy tính) để tính kết quả đúng của phép tính sau: 12578963.14375 Bài 1.2.1.3: Tính giá trị chính xác của số: a) B = 123456789 2 b) C = 1023456 3 c) 20122003 2 Bài 1.2.1.4: 1) Nêu một phơng pháp tính chính xác số 1038471 3 2)Tìm giá trị chính xác của 1038471 3 . Bài 1.2.1.5: Tính chính xác các phép tính sau: a/ A= 5555566666.6666677777 b/ B = 20! c/ C = 1.1! +2.2! + 3.3! + +16.16! d/ D = 13032006.13032007 e/ E = 3333355555.3333377777 f) Tính chính xác tổng sau: S = 1 ì 1! +2 ì 2! + +10 ì 10! . g) Tính chính xác tổng sau: S = 1 ì 1! +2 ì 2! + +20 ì 20! . Bài 1.2.1.6: Tính chính xác các phép tính sau: a/ A = 1322007.1322009 b/ B = 6666688888.7777799999 c/ C = 20072008 2 Bài 1.2.1.7: Tính chính xác giá trị của M rồi tính tổng các chữ số của M. M = 9876543210123456789.12345 Bài 1.2.1.8: Tính chính xác giá trị của N rồi tính tổng các chữ số của N. Các chuyên đề casio lớp 9 4 Vn-Student.Com Forum N = 9876543210123456789.123456789 Dạng 1.2.2: Tính giá trị của biểu thức lợng giác Bài 1.2.2.1: Hãy tính giá trị của biểu thức: A = '1520sin'1872sin '4035sin'3654sin 00 00 + ; B = '1052cos'2240cos '1763cos'2536cos 00 00 + ; H = (cotg22 0 17- cotg15 0 16)(cos 2 16 0 11- sin 3 20 0 12)(Hãy tính chính xác đến 0,0001) Bài 1.2.2.2: 1) Tính : A = sin 2 2 0 + sin 2 4 0 + + sin 2 86 0 + sin 2 88 0 2) Chứng minh rằng biểu thức sau không phụ thuộc vào x : P = 1994(sin 6 x + cos 6 x) - 2991(sin 4 x + cos 4 x) Bài 1.2.2.3: Cho 0,7651cos = với 0 0 < < 90 0 1) Tính số đo của góc (độ , phút , giây) 2) Tính B = 8 cos 4 - 8cos 2 - cos 4 + 1,05678 Bài 1.2.2.4: Cho cot = 20 21 . Tính A = 2 2cos cos 3 sin 3sin 2 2 + đúng đến 7 chữ số thập phân. Bài 1.2.2.5: Tính: 1) 3 3 2 3 3 3 cos .(1 sin ) tan . (cos sin ).cot M + + = + Biết sin = 0,3456 (0 0 < < 90 0 ) . 2) 2 3 2 3 3 3 4 sin (1 cos ) cos (1 sin ) . (1 tan )(1 cot ) 1 cos N + + + = + + + Biết cos 2 = 0,5678 (0 0 < < 90 0 ) . 3) 2 3 2 3 3 3 tan (1 cos ) cot (1 sin ) . (sin cos )(1 sin cos ) K + + + = + + + Biết tan = tan35 0 .tan36 0 tan52 0 . tan53 0 . (0 0 < < 90 0 ) . Bài 1.2.2.6: Cho sina = 0,7895 ; cosb = 0,8191 ( a , b là góc nhọn) Tính X = a + 2b (độ và phút). Bài 1.2.2.7: a/Tính A = 2 3 1 2 3 4cos cos cos + + + biết 3sin 2cos + = b/ Tính A = 2 3 4 3 2cos cos cos + + + biết 2sin 2cos + = c/ Tính A = 2 3 4 3sin 2sin sin + + + biết sin 1,5cos + = Dạng 1.2.3: Tính giá trị biểu thức dãy có quy luật Bài 1.2. 3.1: 1/Hãy tính giá trị của biểu thức: ( ) ( ) 1 1 1 1 1.2.3 2.3.4 3.4.5 1 2 A n n n = + + +ììì+ + + 2/Hãy tính giá trị của biểu thức: 1 1 1 1 1.2.3 2.3.4 3.4.5 970200 A = + + +ììì+ 3/Hãy tính giá trị của biểu thức: 5 5 5 5 1.2.3 2.3.4 3.4.5 2009.2010.2011 A = + + +ììì+ Các chuyên đề casio lớp 9 5 Vn-Student.Com Forum 4/Hãy tính giá trị của biểu thức: ( ) ( ) ( ) 1 1 1 1 1.3.5 3.5.7 5.7.9 2 1 2 3 2 5 A n n n = + + +ììì+ + + + 5/Hãy tính giá trị của biểu thức: 36 36 36 36 1.3.5 3.5.7 5.7.9 2009.2011.2013 A = + + +ììì+ Bài 1.2.3.2: 1/Tính giá trị của biểu thức: 2 1 1 1 1 1 1 1 1 3 9 16 A n = ì ì ììì ì ữ ữ ữ ữ 2/Tính giá trị của biểu thức: 1 1 1 1 1 1 1 1 3 9 16 10000 A = ì ì ììì ì ữ ữ ữ ữ Bài 1.2.3.3: Tính tổng và viết quy trình tính: 1/ S = 1 + 2 + 3 + + 72 2/ 1 1 1 1 1 2 3 71 72 P = + + + + + 3/ 1 1 1 1 1 2 3 4 72 Q = + + 4/ K = 1 + 3 + 5 + + 99 5/ H = 1.2 +2.3 +3.4 + + 49.50 6/A = 1. 2 2. 3 3. 4 49. 50+ + + + Bài 1.2.3.4: 1/Hãy tính giá trị của biểu thức: A = )1.( 1 12 1 6 1 2 1 + ++++ nn 2/ Hãy tính giá trị của biểu thức: A = 9999900000 1 12 1 6 1 2 1 ++++ Bài 1.2.3.5: Tính ( làm tròn đến 6 chữ số thập phân): 1 / 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10A = + + + + 2/ M = P Q với P = 3 + 3 2 ++ 3 19 ; Q = 2 3 19 1 1 1 1 3 3 3 3 + + + + 3/ N = 1 1 1 1 1 1 1 1 1 2 2 3 2 3 15 + ì + + ììì + + +ììì ữ ữ ữ (chính xác tới 0,0001) Bài 1.2.3.6: Cho S 1 = 100 ; S 2 = S 1 + 15 2 ; S 3 = S 1 + S 2 + 30 2 S 4 = S 1 + S 2 + S 3 +55 2 ; S 5 = S 1 + S 2 + S 3 + S 4 +90 2 Tính S 8 ; S 9 ; S 10 ;S 20 Bài 1.2.3.7: Cho S 1 = 100 ; S 2 = S 1 + 13 2 ; S 3 = S 1 + S 2 + 21 2 S 4 = S 1 + S 2 + S 3 + 34 2 ; S 5 = S 1 + S 2 + S 3 + S 4 +52 2 Tính S 8 ; S 9 ; S 10 ;S 30 Bài 1.2.3.8: Cho S 1 = 196 ; S 2 = S 1 + 2 2 ; S 3 = S 1 + S 2 + 9 2 S 4 = S 1 + S 2 + S 3 + 23 2 ; S 5 = S 1 + S 2 + S 3 + S 4 + 44 2 Tính S 8 ; S 9 ; S 10 ;S 50 Bài 1.2.3.9: Các chuyên đề casio lớp 9 6 Vn-Student.Com Forum Cho dãy số u n = 4 3n n .và S n = u 1 + u 2 ++u n . a/ Viết quy trình bấm phím tính S n . b/ Hãy tính S 5 ;S 10 ;S 15 ;S 20 . Bài 1.2.3.10: Cho dãy số u n Với u 1 = 7 ;u 2 = 7 7+ ;u n = 7 7 7+ + 1 4 4 2 4 43 a/ Viết quy trình bấm phím tính u n . b/ Tính u 1000 Bài 1.2.3.11: Cho dãy số u n .Tính u 10000 với u 1 = 10 ;u 2 = 10 10+ ;u n = 10 10 10+ + 1 4 44 2 4 4 43 Bài 1.2.3.12: Cho dãy số u n = 3 4 5n n + .và S n = u 1 + u 2 ++u n .Hãy tính S 5 ;S 10 ;S 15 ;S 20 . Bài 1.2.3.13: Cho dãy số u n .Tính u 10000 với u 1 = 3 15 ;u 2 = 3 3 15 15+ ;u n = 3 3 3 15 15 15+ + + 1 4 4 42 4 4 43 Bài 1.2.3.14: Cho dãy số :S n = (1 3 +2 3 )(1 3 +2 3 +3 3 )(1 3 +2 3 +3 3 ++n 3 ) a/ Viết quy trình bấm phím tính S n . b/ Tính S n với n = 1,2,3,,10. Bài 1.2.3.15: Cho dãy số :S n = 1 4 +(1 4 +2 4 )+(1 4 +2 4 +3 4 )++(1 4 +2 4 +3 4 ++n 4 ) a/ Viết quy trình bấm phím tính S n . b/ Tính S n với n = 5;10;15;20. Bài 1.2.3.16: Cho dãy số :S n = 1 3 3 3 3 3 3 1 1 1 1 1 1 1 1 1 ( 1) 2 2 3 2 3 n n + + ììì + + ì ữ ữ ữ a/ Viết quy trình bấm phím tính S n . b/ Tính S n với n = 5;7 . Bài 1.2.3.17: Với mỗi số nguyên dơng n > 1.Đặt S n = 1.2 +2.3 +3.4 + +n.(n+1) a/Viết quy trình tính S n b/Tính S 50 ; S 2005 ; S 20052005 c/ So sánh 2 2005 S với S 20052005 Bài 1.2.3.18: Cho 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1 2 3 3 4 4 5 ( 1) n S n n = + + + + + + + + + + + + + a/ Viết quy trình bấm phím tính S n . Các chuyên đề casio lớp 9 7 n dấu căn n dấu căn n dấu căn Vn-Student.Com Forum b/ Tính S 10 ; S 12 và S 2007 ;S 2011 với 6 chữ số ở phần thập phân. Bài 1.2.3.19: Với mỗi số nguyên dơng n . Đặt 3 6 4 2 3. 7 4 3 ( ) 9 4 5. 2 5 n A n n n + = + + + a/Tính A(2007). b/So sánh A(2008) với A(20072008). Bài 1.2.3.20: Cho S 1 = 81 ; S 2 = S 1 + 15 2 ; S 3 = S 1 + S 2 + 25 2 S 4 = S 1 + S 2 + S 3 +39 2 ; S 5 = S 1 + S 2 + S 3 + S 4 +57 2 Tính S 8 ; S 9 ; S 10 . Bài 1.2.3.21: Tính giá trị biểu thức : a/ A = 3 + 8 + 15 + + 9800 b/ B = 1.2.3 + 3.5.7 + 5.7.9 ++ 95.97.99 c/C=3 + 6 + 11 + 20 + 37 ++ (2 n + n) với n = 10, n = 20, n= 30 d/D = 1 + 3 2 + 3 4 + 3 6 ++ 3 100 e/E = 7 + 7 3 + 7 5 + 7 7 ++ 7 99 Bài 1.2.3.22: 1/ Tính A = 1 (1 2) (1 2 3) (1 2 3 2008) 1.2008 2.2007 3.2006 2007.2 2008.1 + + + + + + + + + + + + + + + + 2/ Tính B = 1 - 2 4 + 3 4 - 4 4 + + 49 4 - 50 4 . 3/ Tính C = 1 1 1 1 1 2! 3! 4! 50! + + + + ììì+ . 4/ Tính D = 40 38 36 4 2 . 5/ Tính E = 40 39 38 3 2 . 6) 3 4 5 6 7 8 9 9 2 3 4 5 6 7 8 9 2010A = + + + + Bài 1.2.3.23: Tính (làm tròn đến 6 chữ số thập phân): 9 8 7 6 5 4 3 9 8 7 6 5 4 3 2C = Bài 1.2.3.24: Cho C n = ( 1) ( 2) 3 ( 1) ( 2) 4 3 2 n n n n n n a/ Viết quy trình tính C n . b/ TínhC 50 ; C 100 . Bài 1.2.3.25: Cho T n = ( ) ( ) ( ) 2 0 2 0 2 0 2 0 2 0 2 0 1 1 2 1 2 Sin Sin Sin Sin Sin Sin n+ + + + + + a/ Viết quy trình tính T n b/Tính T 100 . Bài 1.2.3.26: Tính gần đúng (làm tròn đến 6 chữ số thập phân) : A = 3 4 5 6 7 6 5 4 3 2 1 7 2 3 4 5 6 7 + + + Bài 1.2.3.27: Với mỗi số nguyên dơng n > 1 .Đặt S n = 1.2 + 2.3 + 3.4 + + n(n + 1) Tính S 100 và S 2005 . Các chuyên đề casio lớp 9 8 Vn-Student.Com Forum Dạng 1.2.4: Tính giá trị biểu thức đại số Bài 1.2.4.1: Cho biểu thức: M = (4x 4 - 2x 3 + x - 1) 3 Hãy tính giá trị của biểu thức M khi x = 3 2 733 + - 3 2 Bài 1.2.4.2: 1/Hãy tính giá trị của biểu thức: A = 5 +55 +555 + + 55 5 142 43 2/Hãy tính giá trị của biểu thức: A = 5 +55 +555 + + 55 5 142 43 3/Hãy tính giá trị của biểu thức: A = 7 +77 +777 + + 77 7 14 2 43 Bài 1.2.4.3: 1) Hãy tính giá trị của biểu thức: A = 1 99 2 98 98 2 99 1 100 1 99 1 3 1 2 1 ++++ ++++ 2) Trục căn thức ở mẫu số rồi dùng máy tính tính giá trị của biểu thức B = 3 3 2 2 2 2 4+ + với độ chính xác càng cao càng tốt. Bài 1.2.4.4: 1/Hãy tính giá trị của biểu thức: P = ( ) +++ 25332.35 2/ Tính P 80 . 3/Tính P 100 . Bài 1.2.4.5: Hãy tính giá trị của biểu thức: P = ( ) ( ) 154.610.154 + . Bài 1.2.4.6: Hãy tính giá trị của biểu thức: P = ( ) ( ) ( ) ( ) 12,22112,0 9811,412340,2 + Bài 1.2.4.7: Hãy tính giá trị của biểu thức: P = ( ) [ ] 0125,0: 4 1 1 ).8333,125,0: 5 1 136:2,1( 8,12 1 822,925,2:35,675,6 + + Bài 1.2.4.8: Hãy tính giá trị của biểu thức: P = 7 1 3. 5 6 2 9 1 7 5 8 : 37 2 75,6 6251,7 137 4 5 :5,7 + Bài 1.2.4.9: Hãy tính giá trị của biểu thức: P = 22,8: 76,6 32 75 32 3715 + + + Bài 1.2.4.10: Thực hiện phép tính: Các chuyên đề casio lớp 9 9 n số 5 12 số 5 17 số 7 Vn-Student.Com Forum a. A = 2008.2006.2004.2002 2007).12006).(12004).(12002( 222 +++ b. B = 2012.2020.2005.2003 2008.2007.2006).340202003).(20122005( 22 + ; Bài 1.2.4.11: Tính giá trị các biểu thức sau: A = ( 5 - 3 ).( 32 + + 53 + - 2 ). 1 1 1 1 2 3 99 2005 1 2 2003 2004 2004 2003 2 1 + + + + + + + + B = 2008.2007.2006.2005.2004.2003.2002.2001 2011.2010).560202009).(6100302008).(960102007( 222 Bài 1.2.4.12: Cho 3 điện trở R 1 = 4,18 , R 2 = 5,23 , R 3 = 6,17 đợc mắc song song trên 1 mạch điện. Tính điện trở tơng đơng R tđ ( biết 1 2 3 1 1 1 1 R R R R = + + ) Bài 1.2.4.13: a) Tính: A = 321930 291945 2171954 3041945+ + + b) Tính : P(x) = 19 x - 13 x - 11 x khi x = 1,51425367. c) Cho : P(x) = 3 x - 12 x - 2002 x .Tính P(1,0012) Bài 1.2.4.14: Cho a , b là các số thoả mãn : 3 2 3 2 3 2 3 11 a ab b a b = = a) Tính: P = 2010(a 2 + b 30 ) b) Nêu một phơng pháp (kết hợp trên giấy và máy tính) để tính kết quả đúng của: Q = 2010(a 30 + b 2 ) Bài 1.2.4.15: 1) Tìm số C , biết rằng 7,5 % của nó bằng 7 17 3 (8 6 ) 1 55 110 217 2 3 7 ( ) :1 5 20 8 ì 2) Tính bằng máy tính A = 1 2 + 2 2 + + 10 2 . Có thể dùng kết quả đó để tính đợc tổng S = 2 2 + 4 2 + + 20 2 mà không sử dụng máy tính . Em hãy trình bày lời giải tính tổng S . Bài 1.2.4.16: Tính A = 2 2 3 2 3 5 (1,263) (3,124) 15 (2,36) ì ì . Bài 1.2.4.17: Tính gần đúng đến 7 chữ số thập phân: 1 1 1 2 2 2 1 2 91919191 3 9 27 3 9 27 182 : 4 4 4 1 1 1 80808080 4 1 7 49 343 7 49 343 B + + + + + + ữ = ì ì ữ ữ + + Bài 1.2.4.18: Tính 22 25 18 2,6 7 47 50 9 28 16 h ph g h ph g h ph g A ì + = chính xác tới 5 chữ số thập phân. Bài 1.2.4.19: Bài 1.2.4.20: 1) Tính 2 2 2 0,19981998 0,019981998 0,0019981998 A = + + Các chuyên đề casio lớp 9 10 [...]... 1(mod 100 ) Mặt khác: 92 1(mod 40) (92)4 1(mod 40) (92)4 9 1.9(mod 40) 99 = 40q + 9 (q N) Vậy: 9 9 = 940q + 9 = (940)q.99 99 (mod 100 ) 89 (mod 100 ) KL: Hai chữ số tận cùng của 9 9 là:89 b) Ta có: 9 9 89 (mod 100 ) nên 9 9 = 100 k + 89 (k N) 119 = 1 1100 k + 89 = (1 1100 )k 1189 mà 115 51(mod 100 ) (115 )2 1(mod 100 ) (1 110 )10 1(mod 100 ) 1 1100 1(mod 100 ) 89 40.2+9 Nên: 119 11 (mod 100 ) ... 1414 - 14 (mod 10) 6 (mod 10) 4 3 2 1 9 14 4 14 Các chuyên đề casio lớp 9 22 Vn-Student.Com Forum Nên: 1414 =10q +6 (q N) Vậy: 14 14 = 1410q +6 = 14(5q+3).2 = (145q +3)2 Vì : q N nên 145q +3 luôn có chữ số hàng đơn vị là 4 hoặc 6 Do đó: (145q +3)2 luôn có chữ số hàng đơn vị là 6 Cách 2: Ta có:142 6 (mod 10) Nên: (142)7 67 (mod 10) 6 (mod 10) 1414 = 10 q +6 (q N) 14 14 = 1410q +6 = (142)5q... = (x1 - x2)2 + (y1 - y2)2 Bài 1.2.4.50: x4 y 4 1 = + 1/Cho a,b,x,y thoả mãn : a b a + b x2 + y2 = 1 Chứng minh rằng: x 2 010 y 2 010 2 + 100 5 = 100 5 a b (a + b )100 5 x4 y 4 1 = + 2/áp dụng: Cho a,b,x,y thoả mãn : a b a + b x2 + y2 = 1 x 2 010 y 2 010 6,5 3101 0 100 5 + 100 5 ữ Biết a=5,24 ; b = 1,29 Hãy tính giá trị của biểu thức:A = b a Bài 1.2.4.51: Biết rằng : (3 - x + 2x2)15 = a0 + a1x +... khi chia cho 13 và điền vào bảng sau: 70 71 72 73 74 75 76 77 78 79 710 711 Số d Bài 3.3 A.11: a) Tìm số d khi chia 19972008 cho 2003 b/ Tìm số d khi chia 19972001cho 2003 c/ Tìm số d khi chia 2100 cho 100 d/ Tìm số d khi chia 9100 cho 100 e/ Tìm số d khi chia 11201 cho 100 Bài 3.3 A.12: Tìm số d khi chia 102 007200708 cho 1 1100 7 100 100 B - Chứng minh chia hết: Bài 3.3B.1: 1) Chứng minh rằng: 42n+1 +... cùng của số: A = 224 + 195 Bài 3.3 C.12: Tìm chữ số tận cùng của số:2007200820072008 9 9 9 9 99 99 99 702 010 18 Các chuyên đề casio lớp 9 2011 190 23 Vn-Student.Com Forum 99 Bài 3.3 C.13: Tìm hai số tận cùng của số: 99 + 99 Bài 3.3 C.14: Tìm hai số tận cùng của số :101 2 + 102 3 +103 4 +104 5 9 >>> Chuyên đề 4: Hình học Bài 4.1: Cho tam giác ABC có chu vi là 95,3768 cm Tỉ lệ các cạnh của tam giác là 3 : 5 :... (142)5q 146 6 146 (mod 10) 6 (142)3 (mod 10) 6 63 (mod 10) 64 (mod 10) 6 (mod 10) Vậy: Chữ số tận cùng là 6 Bài 3.3 C 4: Tìm 2,3,4,5, 6 chữ số tận cùng của số:521 HD: 521=514 54 53 203125 (mod 106 ) Bài 3.3 C 5: Tìm 8 chữ số tận cùng của số:51995 Bài 3.3 C 6: a) Tìm 2 chữ số tận cùng của: 9 9 b)Tìm 2 chữ số tận cùng của: 119 14 14 9 99 1 2 1 5 Giải: a) Vì 100 = 22.52 nên: (100 ) = 100 (1 )(1 ) = 40... a/20012004 + 20032006 10 b/ 7 + 72 + 73+ +72008 400 Bài 3.3 B.12: Chứng minh rằng: Với mọi số nguyên dơng n thì : 3n+2 - 2n+2 +3n - 2n 10 n n n n n 1 1 k k k +1 k +1 k+1 k+1 k +1 k +1 10 n+1 2 n+1 6 n+ 2 6 n+ 2 6 n+4 C - Số tận cùng: Ta có: abcde = a .10 + b .10 + c .10 + d 10 + e Cho nên: - Tìm 1 chữ số tận cùng:Ta xét đồng d mod 101 - Tìm 2 chữ số tận cùng :Ta xét đồng d mod 102 - Tìm 3 chữ số tận... 2100 16 (mod 40) 100 100 Các chuyên đề casio lớp 9 20 Vn-Student.Com Forum Nên: 2100 = 40q +16 Cho nên: 512002 =5120040q +16 = (5120040)q.5120016 3216(mod 41) Mà: 3216 = 280 = (240)2 1(mod 41) Vậy: 512002 1(mod 41) Bài 3.3 A.9: a) Viết quy trình tìm số d khi chia (515 + 1) cho (212 +1) b) Hãy tìm số d r Bài 3.3 A .10: Tính phần d của các số 70 ; 71 ; 72 ; 73 ; 74 ; 75 ; 76 ; 77 ; 78 ; 79 ; 710. .. 119 5 Các chuyên đề casio lớp 9 21 Vn-Student.Com Forum a) 42 + 22 + 17 b) 22 + 15n 19 Giải:a) Với n = 1 thì: 42 + 22 + 1 = 42 + 22 + 1 = 217 Giả sử mệnh đề đúng với n = k (k N , k 1) tức là: 42 + 22 + 17 Ta phải chứng minh mệnh đề đúng với n = k + 1 tức là: 42 + 22 + 17 Thật vậy: 42 2 nếu k chẵn và 4 nếu k lẻ 22 4 nếu k chẵn và 2 nếu k lẻ Vậy: 42 + 22 + 17 với k * đpcm Bài 3.3 B .10: CMR: a)... B phải trả tổng cộng là 120.000 đ Trong đó đã tính 10. 000đ là thuế GTGT(VAT) Biết rằng thuế VAT với loại hàng A là 10% , đối với loại hàng B là 8%.Nếu không kể thuế VAT thì Hoa phải trả mỗi loại hàng bao nhiêu tiền Bài 2.3: Các chuyên đề casio lớp 9 14 Vn-Student.Com Forum a) Một ngời gửi tiết kiệm số tiền là 80 triệu đồng vào năm 2000 Hỏi đến năm 2 010 số tiền trong sổ tiết kiệm đó là bao nhiêu nếu lãi . 43 a/ Viết quy trình bấm phím tính u n . b/ Tính u 100 0 Bài 1.2.3.11: Cho dãy số u n .Tính u 100 00 với u 1 = 10 ;u 2 = 10 10+ ;u n = 10 10 10+ + 1 4 44 2 4 4 43 Bài 1.2.3.12: Cho dãy số u n . Vn-Student.Com Forum Các chuyên đề casio ************** Môn: Toán Lớp: 9 Năm : 2009- 2 010 >>> Chuyên đề : Kiến thức cần nhớ .1- Công thức tính tổng: . + + + + 2/ 1 2 3 2 010 2011 2 010 3 2 1A = + + + + + + + + + + Bài 1.2.4.48: Tính giá trị biểu thức : Các chuyên đề casio lớp 9 13 Vn-Student.Com Forum ( ) ( ) 12 5 6 2 10 3 5 2 6 3 9 3 2 4 5 2

Ngày đăng: 20/10/2014, 12:00

TỪ KHÓA LIÊN QUAN

w