1. Trang chủ
  2. » Giáo án - Bài giảng

tuyển tập các đề thi học sinh giỏi, đề thi môn toán vào lớp 10 môn toán (8)

26 760 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 26
Dung lượng 1,23 MB

Nội dung

http://kinhhoa.violet.vn S GD&T H Tnh CHNH THC Mó 04 TUYN SINH LP 10 THPT NM HC 2009-2010 Mụn: Toỏn Thi gian l bi:120 phỳt Bỡ 1: 1. Gii phng trỡnh: x 2 + 5x + 6 = 0 2. Trong h trc to Oxy, bit ng thng y = ax + 3 i qua im M(-2;2). Tỡm h s a Bi 2:Cho biu thc: + + + = xxxx x x xx P 1 2 1 2 vi x >0 1.Rỳt gn biu thc P 2.Tỡm giỏ tr ca x P = 0 Bi 3: Mt on xe vn ti nhn chuyờn ch 15 tn hng. Khi sp khi hnh thỡ 1 xe phi iu i lm cụng vic khỏc, nờn mi xe cũn li phi ch nhiu hn 0,5 tn hng so vi d nh. Hi thc t cú bao nhiờu xe tham gia vn chuyn. (bit khi lng hng mi xe ch nh nhau) Bi 4: Cho ng trũn tõm O cú cỏc ng kớnh CD, IK (IK khụng trựng CD) 1. Chng minh t giỏc CIDK l hỡnh ch nht 2. Cỏc tia DI, DK ct tip tuyn ti C ca ng trũn tõm O th t G; H a. Chng minh 4 im G, H, I, K cựng thuc mt ng trũn. b. Khi CD c nh, IK thay , tỡm v trớ ca G v H khi din tớch tam giỏc DJ t giỏ tr nh nht. Bi 5: Cỏc s [ ] 4;1,, cba tho món iu kin 432 ++ cba chng minh bt ng thc: 3632 222 ++ cba ng thc xy ra khi no? HT Bài giảI đề thi vào THPT môn Toán Năm học 2009-2010 Bài 1: a, Giải PT : x 2 + 5x +6 = 0 x 1 = -2, x 2 = -3 . b, Vì đờng thẳng y = a.x +3 đi qua điểm M(-2,2) nên ta có: 2 = a.(-2) +3 a = 0,5 Bài 2: ĐK: x> 0 a, P = ( xxx x x xx + + + 2 1 ).(2- x 1 ) = x x x xxx 12 . 1 + + = )12( xx . b, P = 0 )12( xx x = 0 , x = 4 1 Do x = 0 không thuộc ĐK XĐ nên loại . Vậy P = 0 x = 4 1 . Bài 3: Gọi số xe thực tế chở hàng là x xe ( x N * ) Thì số xe dự định chở hàng là x +1 ( xe ). BO ẹE THI 10 Trang 1 http://kinhhoa.violet.vn Theo dự định mỗi xe phải chở số tấn là : 1 15 +x ( tấn ) Nhng thực tế mỗi xe phải chở số tấn là : x 15 ( tấn ) Theo bài ra ta có PT : x 15 - 1 15 +x = 0,5 Giải PT ta đợc : x 1 = -6 ( loại ) x 2 = 5 ( t/m) Vậy thực tế có 5 xe tham gia vận chuyển hàng . Bài 4 . 1, Ta có CD là đờng kính , nên : CKD = CID = 90 0 ( T/c góc nội tiếp ) Ta có IK là đờng kính , nên : KCI = KDI = 90 0 ( T/c góc nội tiếp ) Vậy tứ giác CIDK là hình chữ nhật . 2, a, Vì tứ giác CIDK nội tiếp nên ta có : ICD = IKD ( t/c góc nội tiếp ) Mặt khác ta có : G = ICD ( cùng phụ với GCI ) G = IKD Vậy tứ giác GIKH nội tiếp . b, Ta có : DC GH ( t/c) DC 2 = GC.CH mà CD là đờng kính ,nên độ dài CD không đổi . GC. CH không đổi . Để diện tích GDH đạt giá trị nhỏ nhất khi GH đạt giá trị nhỏ nhất . Mà GH = GC + CH nhỏ nhất khi GC = CH Khi GC = CH ta suy ra : GC = CH = CD Và IK CD . Bài 5 : Do -1 4,, cba Nên a +1 0 a 4 0 Suy ra : ( a+1)( a -4) 0 a 2 3.a +4 Tơng tự ta có b 2 3b +4 2.b 2 6 b + 8 3.c 2 9c +12 Suy ra: a 2 +2.b 2 +3.c 2 3.a +4+6 b + 8+9c +12 a 2 +2.b 2 +3.c 2 36 ( vì a +2b+3c 4 ) Sở Giáo dục và đào tạo thái bình Kỳ thi tuyển sinh vào lớp 10 THPT Năm học: 2009 - 2010 Môn thi: Toán Ngày thi: 24 tháng 6 năm 2009 (Thời gian làm bài: 120 phút) Bài 1 (2,5 điểm) Cho biểu thức 1 1 4 2 2 x A x x x = + + - - + , với x0; x4 1) Rút gọn biểu thức A. 2) Tính giá trị của biểu thức A khi x=25. 3) Tìm giá trị của x để 1 3 A =- . BO ẹE THI 10 Trang 2 Đề chính thức http://kinhhoa.violet.vn Bµi 2 (2 ®iĨm) Cho Parabol (P) : y= x 2 và đường thẳng (d): y = mx-2 (m là tham số m ≠ 0 ) a/ Vẽ đồ thò (P) trên mặt phẳng toạ độ xOy. b/ Khi m = 3, hãy tìm toạ độ giao điểm (P) và (d) . c/ Gọi A(x A ; y A ), B(x A ; y B ) là hai giao điểm phân biệt của (P) và ( d). Tìm các giá trò của m sao cho : y A + y B = 2(x A + x B ) -1 . Bµi 3 (1,5 ®iĨm) Cho ph¬ng tr×nh: 2 2 2( 1) 2 0x m x m- + + + = (Èn x) 1) Gi¶i ph¬ng tr×nh ®· cho víi m =1. 2) T×m gi¸ trÞ cđa m ®Ĩ ph¬ng tr×nh ®· cho cã hai nghiƯm ph©n biƯt x 1 , x 2 tho¶ m·n hƯ thøc: 2 2 1 2 10x x+ = . Bµi 4 (3,5 ®iĨm) Cho ®êng trßn (O; R) vµ A lµ mét ®iĨm n»m bªn ngoµi ®êng trßn. KỴ c¸c tiÕp tun AB, AC víi ®êng trßn (B, C lµ c¸c tiÕp ®iĨm). 1) Chøng minh ABOC lµ tø gi¸c néi tiÕp. 2) Gäi E lµ giao ®iĨm cđa BC vµ OA. Chøng minh BE vu«ng gãc víi OA vµ OE.OA=R 2 . 3) Trªn cung nhá BC cđa ®êng trßn (O; R) lÊy ®iĨm K bÊt k× (K kh¸c B vµ C). TiÕp tun t¹i K cđa ®êng trßn (O; R) c¾t AB, AC theo thø tù t¹i c¸c ®iĨm P vµ Q. Chøng minh tam gi¸c APQ cã chu vi kh«ng ®ỉi khi K chun ®éng trªn cung nhá BC. 4) §êng th¼ng qua O, vu«ng gãc víi OA c¾t c¸c ®êng th¼ng AB, AC theo thø tù t¹i c¸c ®iĨm M, N. Chøng minh PM + QN ≥ MN. Bµi 5 (0,5 ®iĨm) Gi¶i ph¬ng tr×nh: ( ) 2 2 3 2 1 1 1 2 2 1 4 4 2 x x x x x x- + + + = + + + HÕt L u ý: Gi¸m thÞ kh«ng gi¶i thÝch g× thªm. Hä vµ tªn thÝ sinh: Sè b¸o danh Ch÷ ký gi¸m thÞ sè 1: Ch÷ ký gi¸m thÞ sè 2: §¸p ¸n (c¸c phÇn khã) Bµi 1 : Bµi 2 : Bµi 3 : Bµi 4 :  BỘ ĐỀ THI 10 Trang 3 N M Q P E C B O A K http://kinhhoa.violet.vn 1) 2) 3) Chứng minh Chu vi APQ = AB+AC = 2AB không đổi . 4) Chứng minh : - Góc PMO = gocQNO = gocQOP ( = sđ cung BC/2) - ã ã ã 0 180MPO POM PMO= = 180 0 - ã ã QOP POM Khi đó PMO ~ ONQ ( g-g). - PM.QN = MO.NO = MO 2 Theo BĐT Côsi có PM + QN 2 . 2PM QN MO MN = = Dấu = xảy ra PM = QN K là điểm chính giữa cung BC. Bài 5 : ĐK : 2x 3 + x 2 + 2x + 1 0 ( x 2 + 1) ( 2x + 1) 0 Mà x 2 + 1 > 0 vậy x 1 2 . Ta có vế trái = 2 2 2 2 1 1 1 1 1 1 4 2 4 2 4 2 x x x x x x + + = + + = + + ữ ( vì x 1 2 ) = 1 2 x + Vây ta có phơng trình x + 1 1 2 2 = ( 2x 3 +x 2 +2x+1). 1 1 2 2 = 2.x 3 +x 2 = 0 => x = 0 ; x = -1/2 BO ẹE THI 10 Trang 4 http://kinhhoa.violet.vn Sở GD và ĐT Thành phố Hồ Chí Minh Kì thi tuyển sinh lớp 10Trung học phổ thông Năm học 2009-2010Khoá ngày 24-6-2009Môn thi: toán Câu I: Giải các phơng trình và hệ phơng trình sau: a) 8x 2 - 2x - 1 = 0 b) 2 3 3 5 6 12 x y x y + = = c) x 4 - 2x 2 - 3 = 0 d) 3x 2 - 2 6 x + 2 = 0 Câu II: a) Vẽ đồ thị (P) của hàm số y = 2 2 x và đthẳng (d): y = x + 4 trên cùng một hệ trục toạ độ. b) Tìm toạ độ giao điểm của (P) và (d) bằng phép tính. Câu III: Thu gọn các biểu thức sau: A = 4 8 15 3 5 1 5 5 + + + B = : 1 1 1 x y x y x xy xy xy xy + + ữ ữ ữ + Câu IV: Cho phơng trình x 2 - (5m - 1)x + 6m 2 - 2m = 0 (m là tham số) a) Chứng minh phơng trình luôn có nghiệm với mọi m. b) Gọi x 1 , x 2 là nghiệm của phơng trình. Tìm m để x 1 2 + x 2 2 =1. Câu V: Cho tam giác ABC (AB<AC) có ba góc nhọn nội tiếp đờng tròn (O) có tâm O, bán kính R. Gọi H là giao điểm của ba đờng cao AD, BE, CF của tam giác ABC. Gọi S là diện tích tam giác ABC. a) Chúng minh rằng AEHF và AEDB là các tứ giác nội tiếp đờng tròn. b) Vẽ đờng kính AK của đờng tròn (O). Chứng minh tam giác ABD và tam giác AKC đồng dạng với nhau. Suy ra AB.AC = 2R.AD và S = . . 4 AB BC CA R . c) Gọi M là trung điểm của BC. Chứng minh EFDM là tứ giác nội tiếp đờng tròn. d) Chứngminh rằng OC vuông góc với DE và (DE + EF + FD).R = 2 S. Gợi ý đáp án BO ẹE THI 10 Trang 5 http://kinhhoa.violet.vn  BOÄ ÑEÀ THI 10 Trang 6 http://kinhhoa.violet.vn Sở GD&ĐT Thừa Thiên Huế Đề thi tuyển sinh lớp 10 Năm học: 2009 2010. Môn: Toán Thời gian làm bài: 120 phút Bài 1: (2,25đ)Không sử dụng máy tính bỏ túi, hãy giải các phơng trình sau: a) 5x 3 + 13x - 6=0 b) 4x 4 - 7x 2 - 2 = 0 c) 3 4 17 5 2 11 x y x y = + = Bài 2: (2,25đ)a) Cho hàm số y = ax + b. Tìm a, b biết rằng đồ thị của hàm số đã cho song song với đờng thẳng y = -3x + 5 và đi qua điểm A thuộc Parabol (P): y = 1 2 x 2 có hoàng độ bằng -2. b) Không cần giải, chứng tỏ rằng phơng trình ( 3 1+ )x 2 - 2x - 3 = 0 có hai nghiệm phân biệt và tính tổng các bình phơng hai nghiệm đó. Bài 3: (1,5đ)Hai máy ủi làm việc trong vòng 12 giờ thì san lấp đợc 1 10 khu đất. Nừu máy ủi thứ nhất làm một mình trong 42 giờ rồi nghỉ và sau đó máy ủi thứ hai làm một mình trong 22 giờ thì cả hai máy ủi san lấp đợc 25% khu đất đó. Hỏi nếu làm một mình thì mỗi máy ủi san lấp xong khu đất đã cho trong bao lâu. Bài 4: (2,75đ) Cho đờng tròn (O) đờng kính AB = 2R. Vẽ tiếp tuyến d với đờng tròn (O) tại B. Gọi C và D là hai điểm tuỳ ý trên tiếp tuyến d sao cho B nằm giữa C và D. Các tia AC và AD cắt (O) lần lợt tại E và F (E, F khác A). 1. Chứng minh: CB 2 = CA.CE 2. Chứng minh: tứ giác CEFD nội tiếp trong đờng tròn tâm (O ). 3. Chứng minh: các tích AC.AE và AD.AF cùng bằng một số không đổi. Tiếp tuyến của (O ) kẻ từ A tiếp xúc với (O ) tại T. Khi C hoặc D di động trên d thì điểm T chạy trên đờng thẳng cố định nào? Bài 5: (1,25đ)Một cái phễu có hình trên dạng hình nón đỉnh S, bán kính đáy R = 15cm, chiều cao h = 30cm. Một hình trụ đặc bằng kim loại có bán kính đáy r = 10cm đặt vừa khít trong hình nón có đầy nớc (xem hình bên). Ngời ta nhấc nhẹ hình trụ ra khỏi phễu. Hãy tính thể tích và chiều cao của khối nớc còn lại trong phễu. BO ẹE THI 10 Trang 7 http://kinhhoa.violet.vn Gîi ý ®¸p ¸n SỞ GIÁO DỤC VÀ ĐÀO TẠO KỲ THI TUYỂN SINH LỚP 10 THPT HẢI PHÒNG Năm học 2009-2010 MÔN THI TOÁN Thời gian làm bài: 120 phút(không kể thời gian giao đề)  BOÄ ÑEÀ THI 10 Trang 8 http://kinhhoa.violet.vn Phần I: Trắc nghiệm (2,0 điểm) 1. Giá trị của biểu thức ( 2 3)( 2 3)M = − − bằng: A. 1. B. -1. C. 2 3 . D. 3 2 . 2. Giá trị của hàm số 2 1 3 y x= − tại là A. . B. 3. C. -1. D. 3. Có đẳng thức (1 ) . 1x x x x− = − khi: A. x ≥ 0 B. x ≤ 0 C. 0<x<1 D. 0 ≤ x ≤ 1 4. Đường thẳng đi qua điểm (1;1) và song song với đường thẳng y = 3x có phương trình là: A. 3x-y=-2 B. 3x+y=4. C. 3x-y=2 D. 3x+y=-2. 5. Trong hình 1, cho OA = 5 cm, O’A = 4 cm,AH = 3cm. Độ dài OO’ bằng : A.9cm B. (4 7)+ cm C. 13 cm D. 41 cm 6. Trong hình 2. cho biết MA, MB là các tiếp tuyến của (O). BC là đường kính, . Số đo bằng: A. B. C. D. . Cho đường tròn (O; 2cm), hai điểm A và B thuộc nửa đường tròn sao cho . Độ dài cung nhỏ AB là: A. . B. C. D. 8. Một hình nón có bán kính đường tròn đáy 6 cm, chiều cao 9 cm thì thể tích là: A. B. C. D. Phần II: Tự luận (8,0 điểm) Bài 1: (2 điểm). 1. Tính 1 1 2 5 2 5 A = − + − . 2. Giải phương trình: (2 )(1 ) 5x x x− + = − + 3. Tìm m để đường thẳng y = 3x-6 và đường thẳng 3 2 y x m= + cắt nhau tại một điểm trên trục hoành. Bài 2: (2 d). Cho phương trình x 2 +mx+n = 0 (1) 1. Giải phương trình (1) khi m = 3 và n = 2. 2. Xác định m, n biết phương trình (1) có 2 nghiệm x 1 , x 2 thỏa mãn: 1 2 3 3 1 2 3 9 x x x x − =   − =   BOÄ ÑEÀ THI 10 Trang 9 http://kinhhoa.violet.vn Bi 3: (3 im). Cho tam giỏc ABC vuụng ti A. Mt ng trũn (O) i qua B v C ct cỏc cnh AB, AC ca tam giỏc ABC ln lt ti D v E (BC khụng l ng kớnh ca (O)). ng cao AH ca tam giỏc ABC ct DE ti K. 1. Chng minh ã ã ADE ACB= 2. Chng minh K l trung im ca DE. 3. Trng hp K l trung im AH. Chng minh rng ng thng DE l tip tuyn chung ngoi ca ng trũn ng kớnh BH v ng trũn ng kớnh CH. Bi 4: (1 im). Cho 361 s t nhiờn a 1 , a 2 , , a 361 tha món iu kin: 1 2 3 361 1 1 1 1 37 a a a a + + + + = Chng minh rng trong 361 s t nhiờn ú, tn ti ớt nht hai s bng nhau. Ht Sở Giáo dục và đào tạo Kỳ thi tuyển sinh vào lớp 10 THPT Năm học: 2009 - 2010 BO ẹE THI 10 Trang 10 [...]... = 4.3 = 12 Bµi 5 (1 ®) Với x và y đều dương, ta có x + y〉 0; ( x − y ) ≥ 0 2 ⇒ ( x + y )( x − y ) 2 ≥ 0 ⇒ x 3 + y 3 − x 2 y − xy 2 ≥ 0 ⇒ x 2 y2 + ≥ x + y (1) y x Vậy (1) ln đúng với mọi x > 0, y > 0 ĐỀ THI TUYỂN SINH VÀO LỚP 10 MÔN TOÁN CHUNG TRƯỜNG THPT CHUYÊN LÊ QUÝ ĐÔN BÌNH ĐỊNH NĂM HỌC 2008– 2009 Ngày thi: 17/06/2008 - Thời gian làm bài: 150 phút  BỘ ĐỀ THI 10 Trang 19 http://kinhhoa.violet.vn... ba cạnh là x, y, z nguyên thỏa mãn: 2x2 + 3y2 + 2z2 – 4xy + 2xz – 20 = 0 Chứng minh tam giác đã cho là tam giác đều  BỘ ĐỀ THI 10 Trang 20 http://kinhhoa.violet.vn Câu 1.(1 điểm) Rút gọn: A= GIẢI ĐỀ THI VÀO LỚP 10 MÔN TOÁN CHUNG TRỪỜNG THPT CHUYÊN LÊ QUÝ ĐÔN BÌNH ĐỊNH NĂM HỌC 2008 – 2009 – Ngày: 17/06/2008 Thời gian làm bài: 150 phút a a −1 a a +1 − (a > 0, a  1) a− a a+ a ( a) −1...  1 ( 2 ) ÷=  x + ÷ x + 1  2  2  1  −1 x+ =0 x= ⇔ ⇔ 2 2 ( Tho¶ m·n ®iỊu kiƯn )  2  x + 1= 1 x = 0 ⇔ x+ Tập nghiệm: S= 0,25 { } −1 ;0 2  BỘ ĐỀ THI 10 Trang 15 http://kinhhoa.violet.vn SỞ GIÁO DỤC VÀ ĐÀO TẠO QUẢNG TRỊ ĐỀ THI TUYỂN SINH LỚP 10 THPT Năm học 2007-2008 Bài 1 (1,5 điểm) Cho biểu thức A = 9 x − 27 + x − 3 − 1 4 x − 12 với x > 3 2 a/ Rút gọn biểu thức A b/ Tìm... tốn bằng cách lập phương trình hay hệ phương trình * Gọi:  Số áo tổ  may được trong 1 ngày là x  Số áo tổ  may được trong 1 ngày là y * Chênh lệch số áo trong 1 ngày giữa 2 tổ là: ( x ∈ ¥; x > 10) x − y =10  3x +5y =1 310 0,5 ( y ∈ ¥, y ≥ 0) x − y = 10 * Tổng số áo tổ  may trong 3 ngày, tổ  may trong 5 ngày là: Ta cã hƯ 2.5đ 3x + 5y = 1 310 y = x 10 ⇔ 3x +5( x 10) =1 310 y = x 10 ⇔ 8x... ®iĨm) Gi¶i ph¬ng tr×nh: 1 1 1 + x 2 + x + = ( 2 x 3 + x 2 + 2 x +1) 4 4 2 HÕt x2 - HƯỚNG DẪN GIẢI ĐỀ THI VÀO LỚP 10 THPT (2009-2 010) CÂU NỘI DUNG ĐIỂM 1 Bài tốn về phân thức đại số 2,5đ 1.1 Rút gọn biểu thức Đặt y = x ⇒ x = y 2; y ≥ 0, y ≠ 2 0,5  BỘ ĐỀ THI 10 Trang 11 http://kinhhoa.violet.vn Khi đó A= y2 1 1 + + 2 y − 4 y −2 y +2 = = Suy ra 1.2 1.3 A= y2 y +2... (6 + 4 – 10) = 0  x2 – 2x = 0  x(x – 2) = 0  x = 2 (x > 0) Suy ra x = y = z = 2 Vậy tam giác đã cho là tam giác đều  BỘ ĐỀ THI 10 Trang 22 http://kinhhoa.violet.vn Së Gi¸o Dơc vµ §µo T¹o NGhƯ an Kú thi tun sinh vµo líp 10 Thpt n¨m häc 2009 - 2 010 §Ị chÝnh thøc M«n thi: To¸n Thêi gian: 120 phót (kh«ng kĨ thêi gian giao ®Ị) Câu I (3,0 ®iĨm) Cho biĨu thøc A = x x +1 x −1 − x −1 x... th¼ng cè ®Þnh HÕt - Hä vµ tªn thÝ sinh: Sè b¸o danh: Së Gd&§t NghƯ an I Híng dÉn chung: Kú thi tun sinh vµo líp 10 Thpt n¨m häc 2009 - 2 010 híng dÉn vµ biĨu ®iĨm ChÊm ®Ị chÝnh thøc (Híng dÉn vµ biĨu ®iĨm chÊm gåm 03 trang) M«n: to¸n  BỘ ĐỀ THI 10 Trang 23 http://kinhhoa.violet.vn 1) NÕu thÝ sinh lµm bµi ®óng, kh«ng theo c¸ch nªu trong... OA vng góc với DE Gợi ý: câu d/: Kẻ Ax vng góc với OA C/m Ax song song với ED suy ra đpcm Hết  BỘ ĐỀ THI 10 Trang 16 http://kinhhoa.violet.vn Sở GD & ĐT Bến Tre Đề khảo sát KỲ THI TUYỂN SINH LỚP 10 THPT Môn: Toán Thời gian : 120 phút Bài 1:(4 điểm) − 2mx + y = 5 1) Cho hệ phương trình :  mx + 3 y = 1 a) Gi¶i hƯ phương tr×nh khi m = 1 T×m m ®Ĩ x – y = 2 1 B = 20 + 3 45 − 125 2)Tính... néi tiÕp vµ BP vu«ng gãc víi EF 3) TÝnh diƯn tÝch phÇn giao nhau cđa hai ®êng trßn khi AB = R  BỘ ĐỀ THI 10 Trang 17 http://kinhhoa.violet.vn Phßng GD - §T Trùc Ninh §Ị thi thư tun sinh líp 10 n¨m häc 2009-2 010 M«n To¸n ( Thêi gian lµm bµi 120 phót) Bµi 1: Tr¾c nghiƯm (2 ®iĨm) Hãy viết vào bài làm của mình phương án trả lời mà em cho là đúng, ( ChØ cÇn viÕt ch÷ c¸i øng víi c©u tr¶ lêi... + 2  1 2 a  1 2 0,25 0,25  BỘ ĐỀ THI 10 Trang 12 http://kinhhoa.violet.vn 2 2 Ta cã x1 + x2 = ( x1 + x2 ) − 2x1x2 2 = 4( m + 1) − 2( m2 + 2) 2 = 2m2 + 8m 2 2 * Theo yªu cÇu: x1 + x2 = 10 ⇔ 2m2 + 8m = 10 m = 1 ⇔ 2m2 + 8m − 10 = 0 ⇔   m = −5( lo¹i ) Kết luận: Vậy m = 1 là giá trị cần tìm 4 Hình học 3,5 4.1 1đ 0,5 * Vẽ đúng hình và ghi đầy đủ giả thi t kết luận * Do AB, AC là 2 tiếp . án BO ẹE THI 10 Trang 5 http://kinhhoa.violet.vn  BOÄ ÑEÀ THI 10 Trang 6 http://kinhhoa.violet.vn Sở GD&ĐT Thừa Thi n Huế Đề thi tuyển sinh lớp 10 Năm học: 2009 2 010. Môn: Toán Thời. nhau. Ht Sở Giáo dục và đào tạo Kỳ thi tuyển sinh vào lớp 10 THPT Năm học: 2009 - 2 010 BO ẹE THI 10 Trang 10 http://kinhhoa.violet.vn Hà Nội Môn thi: ToánNgày thi: 24 tháng 6 năm 2009 Thời gian. ẹE THI 10 Trang 4 http://kinhhoa.violet.vn Sở GD và ĐT Thành phố Hồ Chí Minh Kì thi tuyển sinh lớp 10Trung học phổ thông Năm học 2009-2010Khoá ngày 24-6-200 9Môn thi: toán Câu I: Giải các

Ngày đăng: 19/08/2014, 22:24

TỪ KHÓA LIÊN QUAN

w